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We must be ignorant of much, if we would know anything.

Cardinal John Newman (1801–1890).

Preface

T
HESE ARE MY INCOMPLETE NOTES on the fluid dynamics of the atmosphere and ocean,
which is part of the larger field of geophysical fluid dynamics (GFD). It is an
incomplete draft, it almost certainly contains errors, and many sources are not

properly referenced. There are four parts to the book: basic GFD (chapters 1–5); waves,
instabilities and turbulence (chaps 6–10); atmospheric circulation (chaps 11–13); and
ocean circulation (chaps 14–16). The concentration in these notes is on the fluid dy-
namics relevant to the large-scale, extra-tropical general circulation of the atmosphere
and ocean, typically involving scales of motion at and larger than the first baroclinic
radius of deformation. Furthermore, the chapters on the circulation focus on the steady
and statistically steady circulation and perforce a number of important topics are omit-
ted — climate variability, equatorial phenomena, the spin-up of the ocean circulation,
the quasi-biennial oscillation. Thus, although the book may appear rather large it is
focussed on a limited and hopefully coherent range of material.

I have tried to keep the overall treatment of topics as straightforward and as clear
as possible and in practice this means that the level should be appropriate for graduate
students. There is a fair amount of repetition in these notes, and some (but not all)
of this will be cleaned up as things progress. However, I think that some books have
too little repetition, so that important things appear once, just like many unimportant
things. Repetition can serve both to emphasize the important things, and to keep chap-
ters and sections reasonably self-contained so the reader can jump around if s/he wishes.
Obviously the chapters are intellectually linked — for example, heat transport in the at-
mosphere depends on baroclinic instability, but hopefully the reader already familiar
with the latter will be able to read about the former without too much cross-referencing,
and will regard the repetition that is present as a ‘feature’ and not a ‘bug’!

The treatment generally is fairly physical and phenomenological, and rigour in the
mathematical sense is absent — we treat the derivatives of integrals and of infinitesimal
quantities rather informally, for example. An asterisk, *, next to a section means that

xi



xii Preface

it may be omitted on first reading; it may be a little more advanced and is not essential
for most of the subsequent material. A dagger, †, next to section means that the section
discusses topics of research and may be controversial or even wrong. Roughly speaking,
an asterisk typically indicates there is more advanced manipulation of the equations,
whereas a dagger typically indicates there is approximation of the equations. If the
asterisk or dagger is applied to a section it applies to all the subsections within. and
if a dagger or asterisk appears within a section that is already so-marked, the warnings
are even more emphatic. Problems marked with diamonds may be difficult, and I do
not know the solutions to all of them. Good answers to some of them are probably
publishable and I would appreciate hearing about any such work. Qui docet discit.

Please send your comments, questions and criticism to me at gkv@princeton.edu.
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NOTATION

Mathematical style generally follows ISO standard practice, as described for example
by Beccari (1999). Variables are normally set in italics, differential operators in ro-
man, vectors in bold italics, and tensors in slanting sans serif. A subscripts denotes a
derivative only if the subscript is a coordinate, such as x, y or z; a subscript 0 generally
denotes a constant reference value (e.g., �0). The components of a vector are denoted
by superscripts. The list below contains only the more important variables, or instances
of non-obvious notation. Distinct meanings are separated with a semi-colon.

Variable Description

x;y; z Cartesian coordinates, usually in zonal, meridional and vertical directions
t Time
#; � Latitude, longitude
i; j;k Unit vectors in .x;y; z/ directions
p Pressure
Z Log-pressure, �H log p=p0

L;H Horizontal length scale, vertical (height) scale
S Salinity; source term on right-hand side of evolution equation
T Temperature
� Potential temperature
� Pressure divided by density, p=�; passive tracer
b Buoyancy, �gı�=�0 or �g� 0=�0

u; v; z Components of velocity in x;y; z or �; #; z directions
v Three-dimensional velocity, .u; v; z/
u Two-dimensional, horizontal velocity .u; v/
! Vorticity
� Vertical component of vorticity
 Streamfunction
m Angular momentum about the earth’s axis of rotation
˝;˝ Rotation rate of earth and associated vector
f; f0 Coriolis parameter, and its reference value
ˇ Rate of change of f with latitude, @f=@y
ˇT ; ˇS Coefficient of expansion with respect to temperature, salinity
N Buoyancy, or Brunt-Väisälä, frequency
Q Potential vorticity (in particular Ertel PV)
q Quasi-geostrophic potential vorticity
PQ Rate of heating
F Eliassen Palm flux, .Fy ;Fz /

A Wave activity
� Wind stress
� Zonal component or magnitude of wind stress; eddy turnover time
˛ Inverse density, or specific volume
� Density
�� Potential density



xiv Notation

Variable Description

Re Real part of expression; Reynolds number, UL=�

Ra Rayleigh number
Ro Rossby number, U=fL

Pr Prandtl ratio, f0=N

h Layer thickness (in shallow water equations)
� Layer thickness (in isentropic coordinates); Prandtl number
� Specific entropy; perturbation height; enstrophy cascade or dissipation rate
cg group velocity, .cx

g ; c
y
g ; c

z
g/

cp; cv Heat capacities at constant pressure and volume
g Acceleration due to gravity
� Kinematic viscosity
v Meridional component of velocity
� Diffusivity; the ratio R=cp

 Vorticity gradient, ˇ � uyy ; the ratio cp=cv

� Generic small parameter (‘epsilon’)
" Cascade or dissipation rate of energy (‘varepsilon’)
K Kolmogorov or Kolomogorov-like constant�
@a

@b

�
c

Derivative of a with respect to b at constant c.

@a

@b

ˇ̌̌̌
aDc

Derivative of a with respect to b evaluated at a D c.

rz Gradient operator at constant value of z, i @x C j @y , and similarly for rx ;ry

rz � Divergence operator at constant value of z, i.e., @x C @y , and similarly for rx �;ry �

curlz Vertical component of r� operator, curlzA D k � r � A D @xAy � @yAx

D
Dt

Material derivative (generic)
D3

Dt
Material derivative in three dimensions, for example @=@t C v � r.

D2

Dt
Material derivative in two dimensions, for example @=@t C u � r.

Dg

Dt
Material derivative using geostrophic velocity, for example @=@t C ug � r.



Part I

FUNDAMENTALS OF
GEOPHYSICAL FLUID DYNAMICS





Are you sitting comfortably? Then I’ll begin.

Julia Lang, Listen With Mother, BBC radio program, 1950–1982.

CHAPTER 1

Equations of Motion

T
HIS CHAPTER establishes the fundamental governing equations of motion for a
fluid, with particular reference to the fluids of the earth’s atmosphere and ocean.1

Our approach in many places is quite informal, and the treatment of the standard
topics of viscosity and pressure is quite brief.

1.1 TIME DERIVATIVES FOR FLUIDS

The equations of motion of fluid mechanics differ from those of rigid-body mechanics
because fluids form a continuum, and because fluids flow and deform. Thus, even
though both classical solid and fluid media are governed by the same relatively simple
physical laws (Newton’s laws and the laws of thermodynamics), the expression of these
laws differs between the two. To determine the equations of motion for fluids we must
clearly establish what the time derivative of some property of a fluid actually means,
and that is the subject of this section.

1.1.1 Field and material viewpoints

In solid-body mechanics one is normally concerned with the position and momentum
of identifiable objects — the angular velocity of a spinning top or the motions of the
planets around the sun are two well-worn examples. The position and velocity of a
particular object is then computed as a function of time by formulating equations of the
general form

dxi

dt
D F.fxig; t/ (1.1)

where fxig is the set of positions and velocities of all the interacting objects and the
operator F on the right-hand side is formulated using Newton’s laws of motion. For

3
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4 Chapter 1. Equations of Motion

example, two massive point objects interacting via their gravitational field obey

dri

dt
D vi ;

dvi

dt
D �

Gmj

.ri � rj /2
yri;j ; i D 1; 2I j D 3 � i: (1.2)

We thereby predict the positions, ri and velocities, vi of the objects given their masses,
mi and the gravitational constant G, and where yri;j is a unit vector directed from ri to
rj .

In fluid dynamics such a procedure would lead to an analysis of fluid motions in
terms of the positions and momenta of particular fluid elements, each identified by some
label, which might simply be their position at an initial time. We call this a material
point of view, because we are concerned with identifiable pieces of material; it is also
sometimes called a Lagrangian view (after J.-L. Lagrange). The procedure is perfectly
acceptable in principle, and if followed would provide a complete description of the
fluid dynamical system. However, from a practical point of view it is much more than
we need, and it would be extremely complicated to implement. Instead, for most prob-
lems we would like to know what the values of velocity, density and so on are at fixed
points in space as time passes. (A weather forecast we might care about tells us how
warm it will be where we live, and if we are given that we don’t particularly care where
a fluid parcel comes from.) Since the fluid is a continuum, this knowledge is equivalent
to knowing how the fields of the dynamical variables evolve in space and time, and this
is often known as the field or Eulerian viewpoint (after L. Euler).2 Thus, whereas in
the material view we consider the time evolution of identifiable fluid elements, in the
field view we consider the time evolution of the fluid field from a particular frame of
reference. That is, we seek evolution equations of the form

@

@t
�.x;y; z; t/ D F; (1.3)

where the field �.x;y; z; t/ is a dynamical variable (e.g., velocity, density, tempera-
ture) which gives the value at any point in space-time, and F is some operator to be
determined from Newton’s laws of motion and appropriate thermodynamic laws.

Although the field viewpoint will turn out to be the most practically useful, the
material description is invaluable both in deriving the equations and in the subsequent
insight it frequently provides. This is because the important quantities from a funda-
mental point of view are often those which are associated with a given fluid element:
it is these which directly enter Newton’s laws of motion and the thermodynamic equa-
tions. It is thus important to have a relationship between the rate of change of quantities
associated with a given fluid element and the local rate of change of a field. The material
or advective derivative provides this relationship.

1.1.2 The material derivative of a fluid element

A fluid element is an infinitesimal, indivisible, piece of fluid — effectively a very small
fluid parcel. The material derivative is the rate of change of a property (such as temper-
ature, or momentum) of a particular fluid element. It is also known as the ‘substantive
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derivative’ (the derivative associated with a parcel of fluid substance), the ‘advective
derivative’ (because the fluid property is being advected), the ‘convective derivative’
(convection is a slightly old-fashioned name for advection, still used in some fields), or
the ‘Lagrangian derivative’. It is just the total time derivative of a property of a piece of
fluid.

Let us suppose that a fluid is characterized by a (given) velocity field v.x; t/, which
determines its velocity throughout. Let us also suppose that it has another property �,
and let us seek an expression for the rate of change of � of a fluid element. Since � is
changing in time and in space we use the chain rule:

ı� D
@�

@t
ıt C

@�

@x
ıx C

@�

@y
ıy C

@�

@z
ız D

@�

@t
ıt C ıx � r�: (1.4)

This is true in general for any ıt , ıx, etc. Thus the total time derivative is

d�
dt

D
@�

@t
C

dx

dt
� r�: (1.5)

If this is to be a material derivative we must identify the time derivative in the second
term on the right-hand side with the rate of change of position of a fluid element, namely
its velocity. Hence, the material derivative of the property � is

d�
dt

D
@�

@t
C v � r�: (1.6)

The right-hand side expresses the material derivative in terms of the local rate of change
of � (@�=@t ), and a contribution arising from the spatial variation of �, experienced
only as the fluid parcel moves. Because the material derivative is so common, and to
distinguish it from other derivatives, we denote it by the operator D=Dt . Thus, the
material derivative of the field � is

D�
Dt

D
@�

@t
C .v � r/� : (1.7)

The brackets in the last term of this equation are helpful in reminding us that .v � r/ is
an operator acting on �.

Material derivative of vector field

The material derivative may act on a vector field b, in which case

Db

Dt
D
@b

@t
C .v � r/b: (1.8)

In Cartesian coordinates this is

Db

Dt
D
@b

@t
C u

@b

@x
C v

@b

@y
C w

@b

@z
; (1.9)
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and for a particular component of b,

Dbx

Dt
D
@bx

@t
C u

@bx

@x
C v

@bx

@y
C w

@bx

@z
; (1.10)

or, in Cartesian tensor notation,

Dbi

Dt
D
@bi

@t
C vj

@bi

@xj

D
@bi

@t
C vj@j bi : (1.11)

where the subscripts denote the Cartesian components and repeated indices are sum-
med. In coordinate systems other than Cartesian the advective derivative of a vector is
not simply the sum of the advective derivative of its components, because the coordi-
nate vectors change direction with position; this will be important when we deal with
spherical coordinates (and see problem 2.5). Finally, we note that the advective deriva-
tive of the position of a fluid element, r say, is its velocity, and this may easily checked
by explicitly evaluating Dr=Dt .

1.1.3 Material derivative of a finite volume

The volume that a given, unchanging, mass of fluid occupies is deformed and advected
by the fluid motion, and there is no particular reason why it should remain constant.
Indeed, the volume will change as a result of the movement of each element of its
bounding material surface, and will in general change if there is a non-zero normal
component of the velocity at the fluid surface. That is, if the volume of some fluid isR

dV , then
D
Dt

Z
V

dV D

Z
S

v � dS ; (1.12)

where the subscript V indicates that the integral is a definite integral over some finite
volume V , although the limits of the integral will be functions of time if the volume is
changing. The integral on the right-hand side is over the closed surface, S , bounding the
volume. Although intuitively apparent (to some), this expression may be derived more
formally using Leibnitz’s formula for the rate of change of an integral whose limits are
changing (problem 1.2). Using the divergence theorem on the right-hand side, (1.12)
becomes

D
Dt

Z
V

dV D

Z
V

r � v dV: (1.13)

The rate of change of the volume of an infinitesimal fluid element of volume �V is
obtained by taking the limit of this expression as the volume tends to zero, giving

lim
�V !0

1

�V

D�V

Dt
D r � v: (1.14)

We will often write such expressions informally as

D�V

Dt
D �V r � v; (1.15)



1.1 Time Derivatives for Fluids 7

with the limit implied.
Consider now the material derivative of a property, �, of an infinitesimal fluid ele-

ment; that is, � is the amount per unit volume of ��stuff — it might, for example, be
mass density or density of a dye, per unit volume, in a fluid, and � might be a vector.
Then we have

D
Dt
.��V / D �

D�V

Dt
C�V

D�
Dt
: (1.16)

Using (1.15) this becomes

D
Dt
.��V / D �V

�
�r � v C

D�
Dt

�
; (1.17)

and the analogous result for a finite fluid volume is just

D
Dt

Z
V

� dV D

Z
V

�
�r � v C

D�
Dt

�
dV: (1.18)

This expression is to be contrasted with the Eulerian derivative for which the volume,
and so the limits of integration, are fixed and we have

d
dt

Z
V

� dV D

Z
V

@�

@t
dV: (1.19)

Now consider the material derivative of the integral of fluid property � multiplied
by the mass density, �. This arises, for example, in the derivation of the momentum
equation, where the momentum of a fluid element is �v�V . In general the material
derivative of ���V is given by

D
Dt
.���V / D ��V

D�
Dt

C �
D
Dt
.��V / (1.20)

But ��V is just the mass of the fluid element, and that is constant — it is how a fluid
element is defined. Thus the second term on the right-hand side vanishes and

D
Dt
.���V / D ��V

D�
Dt

and
D
Dt

Z
V

�� dV D

Z
V

�
D�
Dt

dV; (1.21a,b)

where (1.21b) applies to a finite volume. That expression may also be derived more
formally using Leibnitz’s formula for the material derivative of an integral, and the
result also holds when � is a vector. The result is quite different from the corresponding
Eulerian derivative, in which the volume is kept fixed; in that case we have:

d
dt

Z
V

�� dV D

Z
V

@

@t
.��/ dV: (1.22)

Various material and Eulerian derivatives are summarized in the shaded box on the
following page.
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Material and Eulerian Derivatives

The material derivative of a scalar (�) and a vector (b) field are given by:

D�
Dt

D
@�

@t
C v � r�;

Db

Dt
D
@b

@t
C .v � r/b: (D.1)

Various material derivatives of integrals are:

D
Dt

Z
V

� dV D

Z
V

�
D�
Dt

C �r � v

�
dV D

Z
V

�
@�

@t
C r � .�v/

�
dV; (D.2)

D
Dt

Z
V

dV D

Z
V

r � v dV; (D.3)

D
Dt

Z
V

�� dV D

Z
V

�
D�
Dt

dV: (D.4)

These formulae also hold if � is a vector. The Eulerian derivative of an integral is:

d
dt

Z
V

� dV D

Z
V

@�

@t
dV; (D.5)

so that

d
dt

Z
V

dV D 0 and
d
dt

Z
V

�� dV D

Z
V

@��

@t
dV: (D.6)

1.2 THE MASS CONTINUITY EQUATION

In classical mechanics mass is absolutely conserved, and in solid-body there is usually
no need for any separate equation to explicitly describe its effects. However, in fluid
mechanics fluid flows into and away from regions, and fluid density may change, and an
equation that explicitly accounts for the flow of mass is one of the ‘equations of motion’
of the fluid.

1.2.1 An Eulerian derivation

We will first derive the mass conservation equation from an Eulerian point of view; that
is to say, our reference frame is fixed in space and the fluid flows through it. First we
give an elementary derivation in Cartesian coordinates (refer to Fig. 1.1). Consider the
infinitesimal, rectangular parallelepiped, control volume ıV D ıxıyız that is fixed in
space. Fluid moves into or out of the volume through its surface S , including through
its face in y–z plane, of area ıA D ıyız at coordinate x. The fluid flow through this
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Fig. 1.1 Mass conservation in a cubic Eulerian control volume.

face, into the control volume, is

.�u/x � Area D .�u/xıyız (1.23)

where u is the component of velocity in the x-direction, and the subscript x here denotes
the coordinate of the argument. A small distance to the right the flow out of the control
volume is

.�u/xCıxıyız: (1.24)

Thus, the accumulation of fluid within the control volume, due to motion in the x-
direction only, is

ıyızŒ.�u/x � .�u/xCıx � D �
@.�u/

@x
ıxıyız: (1.25)

To this must be added the effects of motion in the y- and z-directions, namely

�

�
@.�v/

@y
C
@.�w/

@z

�
ıxıyız: (1.26)

This net accumulation of fluid must be accompanied by a corresponding increase of
fluid mass within the control volume. This is

@

@t
.Density � Volume/ D ıxıyız

@�

@t
; (1.27)

because the volume is constant. Thus, because mass is conserved, (1.25), (1.26) and
(1.27) give

ıxıyız

�
@�

@t
C
@.�u/

@x
C
@.�v/

@y
C
@.�w/

@z

�
D 0: (1.28)

Because the control volume is arbitrary the quantity in square brackets must be zero
zero and we have the mass continuity equation:

@�

@t
C r � .�v/ D 0: (1.29)
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Figure 1.2 Mass con-
servation in an arbitrary
Eulerian control volume
V bounded by a sur-
face S . The mass gain,R

V
.@�=@t / dV is equal to

the mass flowing into the
volume, �

R
S
.�v/ � dS D

�
R

V
r � .�v/ dV .

Vector derivation

Consider an arbitrary control volume V bounded by a surface S , fixed in space, with by
convention the direction of S being toward the outside of V , as in Fig. 1.2. The rate of
fluid loss due to flow through the closed surface S is then given by

Fluid loss D

Z
S

�v � dS D

Z
V

r � .�v/ dV (1.30)

using the divergence theorem. This must be balanced by a change in the mass M of
the fluid within the control volume, which, since its volume is fixed, implies a density
change. That is

Fluid loss D �
dM

dt
D �

d
dt

Z
V

� dV D �

Z
V

@�

@t
dV: (1.31)

Equating (1.30) and (1.31) yieldsZ
V

�
@�

@t
C r � .�v/

�
dV D 0 (1.32)

Again, because the volume is arbitrary, the integrand must vanish and we recover (1.29).

1.2.2 Mass continuity via the material derivative

We now derive the mass continuity equation (1.29) from a material perspective. This
is the most fundamental approach of all since the principle of mass conservation states
simply that the mass of a given element of fluid is, by definition of the element, constant.
Thus, consider a small mass of fluid of density � and volume �V: Then conservation
of mass may be represented by

D
Dt
.��V / D 0 (1.33)
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Both the density and the volume of the parcel may change, so

�V
D�
Dt

C �
D�V

Dt
D �V

�
D�
Dt

C �r � v

�
D 0 (1.34)

where the second expression follows using (1.15). Since the volume element is arbi-
trary, the term in brackets must vanish and

D�
Dt

C �r � v D 0: (1.35)

After expansion of the first term this becomes identical to (1.29). This result may be
derived more formally by re-writing (1.33) as the integral expression

D
Dt

Z
V

� dV D 0: (1.36)

Expanding the derivative using (1.18) gives

D
Dt

Z
V

� dV D

Z
V

�
D�
Dt

C �r � v

�
dV D 0: (1.37)

Because the volume over which the integral is taken is arbitrary the integrand itself must
vanish and we recover (1.35). Summarizing, equivalent partial differential equation
representing conservation of mass are:

D�
Dt

C �r � v D 0;
@�

@t
C r � .�v/ D 0 : (1.38a,b)

1.2.3 A general continuity equation

The derivation of continuity equation for a general scalar property of a fluid is similar
to that for density, except that there may be an external source or sink, and potentially
a means of transferring the property from one location to another than by fluid motion,
for example by diffusion. If � is the amount of some property of the fluid per unit
volume (commonly known as the concentration of that property), and if the net effect
per unit volume of all nonconservative processes is denoted by QŒ��, then the continuity
equation for concentration may be written:

D
Dt
.��V / D QŒ���V (1.39)

Expanding the left hand side and using (1.15) we obtain

D�
Dt

C �r � v D QŒ�� (1.40)

or equivalently
@�

@t
C r � .�v/ D QŒ��: (1.41)
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If we are interested in a tracer that is normally measured per unit mass of fluid
(which is typical when considering thermodynamic quantities) then the conservation
equation would be written

D
Dt
.���V / D QŒ����V ; (1.42)

where � is the tracer mixing ratio — that is, the amount of tracer per unit fluid mass
— and QŒ�� represents nonconservative sources (per unit mass). Then, since ��V is
constant we obtain

D�
Dt

D QŒ��: (1.43)

The source term QŒ�� is evidently equal to the rate of change of � of a fluid element.
When this is so, it is common to write it simply as P�, so that

D�
Dt

D P�: (1.44)

A tracer obeying (1.44) with P� D 0 is said to be materially conserved. If the tracer
is materially conserved in the absence of nonconservative sources then it is sometimes
said to be ‘semi-materially conserved’.

1.3 THE MOMENTUM EQUATION

The momentum equation is a partial differential equation that describes how the velocity
or momentum of a fluid responds to internal and imposed forces. We will derive it using
material methods and initially without paying any attention to the those forces, and then
we will examine the influences of momentum sources, informally deducing the terms
representing the pressure, gravitational and viscous forces.

1.3.1 Advection

Let m.x;y; z; t/ be the momentum-density field (momentum per unit volume) of the
fluid. Thus, m D �v and the total momentum of a volume of fluid is given by the
volume integral

R
V

m dV . Now, for a fluid the rate of change of a momentum of an
identifiable fluid mass is given by the material derivative, and by Newton’s second law
this is equal to the force acting on it. Thus,

D
Dt

Z
V

�v dV D

Z
V

F dV (1.45)

Now, using (1.21b) (with � replaced by v) the left-hand side is

D
Dt

Z
V

�v dV D

Z
V

�
Dv
Dt

dV; (1.46)

and (1.45) becomes Z
V

�
�

Dv
Dt

� F

�
dV D 0: (1.47)
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Because the volume is arbitrary the integrand itself must vanish and we obtain

�
Dv
Dt

D F : (1.48)

Expanding the material derivative, this may be written

@v

@t
C .v � r/v D

F

�
(1.49)

We have thus obtained an expression for how a fluid accelerates if subject to known
forces. These forces are however not all external to the fluid itself; a stress arises from
the direct contact between one fluid parcel and another, giving rise to pressure and
viscous forces, sometimes referred to as contact forces. Because a complete treatment
of these would be very lengthy, and is available elsewhere, we treat both of these very
informally and intuitively.

1.3.2 The pressure force

Within or at the boundary of a fluid the pressure is the normal force per unit area due to
the collective action of molecular motion. Thus

dFp D �p dS : (1.50)

where p is the pressure, Fp is the pressure force, and dS an infinitesimal surface
element. If we grant ourselves this intuitive notion, it is a simple matter to assess the
influence of pressure on a fluid, for the pressure force on a volume of fluid is the integral
of the pressure over the its boundary and so

Fp D �

Z
S

p dS : (1.51)

The minus sign arises because the pressure force is directed inward, whereas S is a
vector normal to the surface and directed outward. Applying a form of the divergence
theorem to the right-hand side gives

Fp D �

Z
V

rp dV (1.52)

and so the pressure force per unit volume is just �rp. Inserting this into (1.49) we
obtain

@v

@t
C .v � r/v D �

rp

�
C F 0 (1.53)

where F 0 includes only viscous and body forces, per unit mass.
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Table 1.1 Experimental values of vis-
cosity for air, water and mercury at
room temperature and pressure. � . kg m�1 s�1/ � .m2 s�1/

Air 1:8 10�5 1:5 10�5

Water 1:1 10�3 1:1 10�6

Mercury 1:6 10�3 1:2 10�7

1.3.3 Viscosity and diffusion

Viscosity, like pressure, is a force due to the internal motion of molecules. The effects
of viscosity are apparent in many situations — the flow of treacle or volcanic lava are
obvious examples. In other situations, for example large-scale flow the atmosphere,
viscosity is to a first approximation negligible. However, for a constant density fluid
viscosity is the only way that energy may be removed from the fluid, so that if energy is
being added in some way viscosity must ultimately become important if the fluid is to
reach an equilibrium where energy input equals energy dissipation. When tea is stirred
in a cup, viscosity is the mechanism whereby the fluid eventually stops spinning after
we have removed our spoon.

A number of textbooks3 show that, for most Newtonian fluids, the viscous force
per unit volume is equal to �r2v, where � is a coefficient of diffusivity. Although not
exact, this is an extremely good approximation for most liquids and gases. With this
term, the momentum equation becomes,

@v

@t
C .v � r/v D �

1

�
rp C �r

2v (1.54)

where � � �=� is the kinematic viscosity. For gases, dimensional arguments suggest
that the magnitude of � should be given by

� � hmean free path � mean molecular velocityi (1.55)

which for a typical molecular velocity of 300 m s�1 and a mean free path of 7 � 10�8 m
gives the not unreasonable estimate of 2:1 � 10�5 m2 s�1, within a factor of two of the
experimental value (table 1.1). Interestingly, the kinematic viscosity is less for water
and mercury than it is for air.

1.3.4 Hydrostatic balance

The vertical component — meaning the component parallel to the gravitational force
— of the momentum equation is

Dw
Dt

D �
1

�

@p

@z
� g (1.56)

where w is the vertical component of the velocity. If the fluid is static the gravitational
term is balanced by the pressure term and we have

@p

@z
D ��g; (1.57)
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and this is known as hydrostatic balance. It is clear that the pressure at a point is
given by the weight of the fluid above it, provided p D 0 at the top of the fluid. It
might also appear that (1.57) would be a good approximation to (1.56) provided vertical
accelerations, Dw=Dt , are small compared to gravity, which is nearly always the case
in the atmosphere and ocean. While this statement is true if we need only a reasonably
accurate representation of the pressure at a point or in a column, the satisfaction of this
condition is not sufficient to ensure that (1.57) provides an accurate enough pressure
to determine the horizontal pressure gradients responsible for producing motion. We
return to this point in section 2.7.

1.4 THE EQUATION OF STATE

In three dimensions the momentum and continuity equations provide four equations,
but contain five unknowns — three components of velocity, density and pressure. Ob-
viously other equations are needed, and an equation of state relates the various ther-
modynamic variables to each other. The conventional equation of state is an expression
that relates temperature, pressure, composition (salinity), and density, and we may write

p D p.�;T;S/: (1.58)

where S is the salinity (see below). An equation of this form is not the most fundamen-
tal equation of state from a thermodynamic perspective (an issue we visit later) but it
connects readily measurable quantities. For an ideal gas we have

p D �RT; (1.59)

where R is the gas constant for air and T is temperature. (R is related to the uni-
versal gas constant Ru by R D Ru=m where m is the mean molecular weight of the
constituents of the gas. Also, R D nk where k is Boltzmann’s constant and n is the
number of molecules per unit mass.) For dry air, R D 287 J kg�1 K�1. Air has virtually
constant composition, except for variations in water vapour content. A measure of this
is the water vapour mixing ratio, w D �w=�d where �w and �d are the densities of wa-
ter vapour and dry air, respectively, and in the atmosphere w varies between 0 and 0:03.
This variation makes the gas constant in the equation of state a weak function of water
vapour mixing ratio; that is, p D �ReffT where Reff D Rd .1 C wRv=Rd /=.1 C w/

where Rd and Rv are the gas constants of dry air and water vapour. Since w � 0:01 the
variation of Reff is quite small and is often ignored, especially in theoretical studies.4

For a liquid such as seawater no such analytic expression is easily derivable, and
semi-empirical equations are usually resorted to. One complication is the presence of
salinity: seawater is in fact a solution of many ions in water — chloride (� 1:9% by
weight) sodium (1%), sulfate (0.26%), magnesium (0.13%) and so on, with a total aver-
age concentration of about 35‰ (ppt, or parts per thousand). The ratio of the fractions
of these salts is more-or-less constant throughout the ocean, and their total concentra-
tion may be parameterized by a single measure, the salinity, S . Given this, the density
of seawater is a function of three variables — pressure, temperature, and salinity. For
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pure water in a laboratory setting the temperature effect dominates and a reasonable
approximation of the equation of state is

� D �0Œ1 � ˇT .T � T0/�; (1.60)

where �0 and T0 are constant reference values, and ˇT is a thermal expansion coef-
ficient. Even for pure water, this equation is only valid for small variations around a
reference state — note, for example, that pure water generally expands when heated,
but that it contracts as its temperature rises from 0° C to 4° C, so that ˇT cannot be
constant.

In the ocean both pressure and salinity affect the density of seawater and the con-
ventional equation of state has the general form ˛ D ˛.T;S;p/, where ˛ D 1=� is the
specific volume and S the salinity. Small variations around a reference value can be
obtained by using

d˛ D

�
@˛

@T

�
S;p

dT C

�
@˛

@S

�
T;p

dS C

�
@˛

@p

�
T;S

dp

D ˛.ˇT dT � ˇS dS � ˇp dp/;

(1.61)

where the second line serves to define the thermal expansion coefficient ˇT , the saline
contraction coefficient ˇS , and the compressibility coefficient ˇp (equal to ˛ divided by
the bulk modulus). These are in general not constants, but for small variations around a
reference state they may be treated as such and we have

˛ D ˛0

�
1 C ˇT .T � T0/ � ˇS .S � S0/ � ˇp.p � p0/

�
: (1.62)

Typical values of these parameters, with variations typically encountered through the
ocean, are: ˇT � 2 .˙1:5/ � 10�4 K�1 (values increase with both temperature and
pressure), ˇS � 7:6 .˙0:2/�10�4 ppt�1 (ppt = parts per thousand), ˇp � 4:1 .˙0:5/�

10�10 Pa�1. Since the variations around the mean density are small (1.62) can also be
written

� D �0

�
1 � ˇT .T � T0/C ˇS .S � S0/C ˇp.p � p0/

�
: (1.63)

A linear equation of state for seawater is not accurate enough for quantitative oceanog-
raphy; the ˇ parameters in (1.62) themselves vary with pressure, temperature and (more
weakly) salinity so introducing nonlinearities to the equation. The most important of
these are captured by an equation of state of the form

˛ D ˛0

�
1 C ˇT .1 C  �p/.T � T0/C

ˇ�
T

2
.T � T0/

2
� ˇS .S � S0/ � ˇp.p � p0/

�
:

(1.64)
The starred constants ˇ�

T
and  � capture the leading nonlinearities:  � is the thermo-

baric parameter and ˇ�
T

is the second thermal expansion coefficient. Even this expres-
sion has quantitative deficiencies and more complicated semi-empirical formulae are
often used if high accuracy is needed.5 More discussion is to be found in section 1.8.2.

Clearly, the equation of state introduces, in general, a sixth unknown, temperature,
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and we will have to introduce another physical principle — the first law of thermody-
namics or the principle of energy conservation — to obtain a complete set of equations.
However, if the equation of state were such that it linked only density and pressure,
without introducing another variable, then the equations would be complete; the sim-
plest cases of all being constant density fluids for which the equation of state is just
� D constant. A fluid for which the density is a function of pressure alone is called
a barotropic fluid; otherwise, it is a baroclinic fluid. Equations of state of the form
p D C� are sometimes called polytropic.

1.5 THE THERMODYNAMIC EQUATION

The thermodynamic equation embodies the principle of the conservation of energy, and
in fluids in which the equation of state involves temperature (and not just density and
pressure) then the thermodynamic equation is necessary to obtain a closed system of
equations.6

1.5.1 A few fundamentals

A fundamental postulate of thermodynamics is that the internal energy of a system in
equilibrium is a function of its extensive properties volume, entropy, and the mass of
its various constituents. (Extensive means that their value depends of the amount of
material present, as opposed to an intensive quantity such as temperature.) For our
purposes it is more convenient to divide all of these by the mass of fluid present, so
expressing the internal energy per unit mass, I , as a function of the specific volume (or
inverse density) ˛ D ��1, the specific entropy �, and the mass fractions of its various
components, or its chemical composition, which we parameterize as its salinity S . Thus
we have

I D I.˛; �;S/; (1.65a)

or an equivalent equation for entropy,

� D �.I; ˛;S/: (1.65b)

Given the functional forms on the right-hand sides, either of these constitutes a complete
description of the macroscopic state of a system in equilibrium, and we call them the
fundamental equation of state. The first differential of (1.65a) gives, formally,

dI D
@I

@˛
d˛ C

@I

@�
d�C

@I

@S
dS: (1.66)

We will now ascribe physical meaning to these differentials.
Conservation of energy states that the internal energy of a body may change because

of work done by or on it, or because of a heat input, or because of a change in its
chemical composition. We write this as

dI D dQ � dW C dC (1.67)
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where dW is the work done by the body, dQ is the heat input to the body, and dC

accounts for the change in internal energy caused by a change in its chemical compo-
sition (e.g., its salinity). This is the first law of thermodynamics. It is applicable to a
definite fluid mass, so we can regard dI as the change in internal energy per unit mass,
and similarly for the other quantities. Let us consider the causes of variations in these
quantities.

Heat Input: The heat input dQ is not the differential of any quantity, and we can-
not unambiguously define the heat content of a body as a function of its state.
However, the second law of thermodynamics provides a relationship between
the heat input and the change in the entropy of a body, namely that in an (in-
finitesimal) quasi-static or reversible process, with constant composition,

T d� D dQ; (1.68)

where � is the entropy of the body. The entropy is a function of the state of a
body and is, by definition, an adiabatic invariant. It is an extensive quantity,
meaning that if we double the amount of material then we double the entropy.
Here we will be dealing with the amount of a quantity per unit mass, so that �
is the specific entropy.

Work done: The work done by a body is equal to the pressure times the change in its
volume. That is

dW D p d˛; (1.69)

where ˛ D 1=� is the specific volume of the fluid and p is the pressure.

Composition: The change in internal energy due to compositional changes is related
to the change in salinity by

dC D � dS; (1.70)

where � is the chemical potential of the solution. The salinity of a parcel of
fluid is conserved unless there are explicit sources and sinks, such as precip-
itation and evaporation at the surface and molecular diffusion. When these
effects do occur the internal energy of a fluid parcel changes by (1.70). How-
ever, these effects are usually small, and most important effect of salinity is
that it changes the density of seawater. In the atmosphere the composition of
a parcel of air primarily varies according to the amount of water vapour in it;
however, the main importance of water vapour is that when condensation or
evaporation occurs, heat is released (or required) which provides an entropy
source in (1.68).

Collecting equations (1.67) – (1.70) together we have

dI D T d� � p d˛ C � dS : (1.71)

We refer to this (often with dS D 0) as the fundamental thermodynamic relation.
The fundamental equation of state, (1.65), describes the properties of a particular fluid,
and the fundamental relation, (1.71), expresses the conservation of energy. Much of
classical thermodynamics follows from these two expressions.
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1.5.2 * More thermodynamic relations

From (1.71) it follows that

T D

�
@I

@�

�
˛;S

; p D �

�
@I

@˛

�
�;S

; � D

�
@I

@S

�
�;˛

: (1.72a,b,c)

These may be regarded as the defining relations for these variables; it is because of
the use of (1.71), and not just the formal expression (1.66), that the pressure and tem-
perature defined this way are indeed related to the internal motion of motion of the
molecules that constitute the fluid. Note that if we write

d� D
1

T
dI C

p

T
d˛ �

�

T
dS; (1.73)

it is also clear that

p D T

�
@�

@˛

�
I;S

; T �1
D

�
@�

@I

�
˛;S

; � D �T

�
@�

@S

�
I;˛

: (1.74a,b,c)

In the following derivations, we will unless noted suppose that the composition of a
fluid parcel is fixed, and drop the suffix S on partial derivatives unless ambiguity might
arise.

Because the right-hand-side of (1.71) is equal to an exact differential, the second
derivatives are independent of the order of differentiation. That is,

@2I

@�@˛
D

@2I

@˛@�
(1.75)

and therefore, using (1.72) �
@T

@˛

�
�

D �

�
@p

@�

�
˛

: (1.76)

This is one of the Maxwell relations, which are a collection of four similar relations
which follow directly from the fundamental thermodynamic relation (1.71) and simple
relations between second derivatives. A couple of others will be useful.

Define the enthalpy of a fluid by

h � I C p˛ (1.77)

then, for a parcel of constant composition, (1.71) becomes

dh D T d�C ˛dp: (1.78)

But h is a function only of � and p so that in general

dh D

�
@h

@�

�
p

d�C

�
@h

@p

�
�

dp: (1.79)

Comparing the last two equations we have

T D

�
@h

@�

�
p

and ˛ D

�
@h

@p

�
�

: (1.80)
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Noting that
@2h

@�@p
D

@2h

@p@�
(1.81)

we evidently must have �
@T

@p

�
�

D

�
@˛

@�

�
p

; (1.82)

and this is our second Maxwell relation.
To obtain the third, we write

dI D T d� � p d˛ D d.T �/ � � dT � d.p˛/C ˛ dp; (1.83)

or
dG D �� dT C ˛ dp; (1.84)

where G � I � T �C p˛ is called the ‘Gibbs free energy’. Now, formally, we have

dG D

�
@G

@T

�
p

dT C

�
@G

@p

�
T

dp: (1.85)

Comparing the last two equations we see that � D �.@G=@T /p and ˛ D .@G=@p/T .
Furthermore, because

@2G

@p@T
D

@2G

@T @p
(1.86)

we have our third Maxwell equation,�
@�

@p

�
T

D �

�
@˛

@T

�
p

: (1.87)

The fourth Maxwell equation, whose derivation is left to the reader, is�
@�

@˛

�
T

D

�
@p

@T

�
˛

; (1.88)

and all four Maxwell equations are summarized in the box at the top of the next page.
All of them follow from the fundamental thermodynamic relation, (1.71), which is the
real silver hammer of thermodynamics.

* Equation of state revisited

The fundamental equation of state (1.65) gives complete information about a fluid in
thermodynamic equilibrium, and given this we can obtain expressions for the temper-
ature, pressure and chemical potential using (1.72). These are also equations of state;
however, each of them contains less information than the fundamental equation because
a derivative has been taken, although all three together provide the same information.
Equivalent to the fundamental equation of state are, using (1.78), an expression for
the enthalpy as a function of pressure, entropy and composition, or, using (1.84) the
Gibbs function as a function of pressure, temperature and composition. The conven-
tional equation of state, (1.58), is obtained by eliminating entropy between (1.72a) and
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Maxwell’s Relations

The four Maxwell equations are:�
@T

@˛

�
�

D �

�
@p

@�

�
˛

;

�
@T

@p

�
�

D

�
@˛

@�

�
p

;�
@�

@p

�
T

D �

�
@˛

@T

�
p

;

�
@�

@˛

�
T

D

�
@p

@T

�
˛

:

(M.1)

These imply:

@.T; �/

@.p; ˛/
�

�
@T

@p

��
@�

@˛

�
�

�
@T

@˛

��
@�

@p

�
D 0: (M.2)

(1.72b). Given the fundamental equation of state, the thermodynamic state of a body is
fully specified by a knowledge of any two of p; �;T; � and I , plus its composition.

One simple fundamental equation of state is to take the internal energy to be a
function of density and not entropy; that is, I D I.˛/. Bodies with such a property
are called homentropic. Using (1.72) temperature and chemical potential have no role
and the density is a function of pressure alone — the defining property of a barotropic
fluid. Neither water nor air are, in general, homentropic but under some circumstances
the flow may be adiabatic and p D p.�/ (e.g., problem 1.10).

In an ideal gas the molecules do not interact except by elastic collisions, and the
volume of the molecules is negligible compared to the total volume they occupy. The
internal energy then depends only on temperature, and not on the density. A simple
ideal gas is an ideal gas for which the heat capacity is constant, so that

I D cT; (1.89)

where c is a constant. Using this and the conventional ideal gas equation, p D �RT ,
where R is also constant, we can infer the fundamental equation of state; however,
we will defer that until we discuss potential temperature in section 1.5.4. A general
ideal gas also obeys p D �RT , but it has heat capacities that may be a function of
temperature (but only of temperature — see problem 1.12).

Internal energy and specific heats

We can obtain some useful relations between the internal energy and specific heat ca-
pacities, and some useful estimates of their values, by some simple manipulations of
the fundamental thermodynamic relation. Assuming that the composition of the fluid is
constant (1.71) is

T d� D dI C p d˛; (1.90)
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so that

T d� D

�
@I

@T

�
˛

dT C

��
@I

@˛

�
T

C p

�
d˛: (1.91)

From this, we see that the heat capacity at constant volume (or constant ˛) cv is given
by

cv � T

�
@�

@T

�
˛

D

�
@I

@T

�
˛

: (1.92)

Thus, c in (1.89) is equal to cv .
Similarly, using (1.78) we have

T d� D dh � ˛ dp

D

�
@h

@T

�
p

dT C

��
@h

@p

�
� ˛

�
dp:

(1.93)

The heat capacity at constant pressure, cp , is then given by

cp � T

�
@�

@T

�
p

D

�
@h

@T

�
p

: (1.94)

For later use, we define the ratios  � cp=cv and � � R=cp .
For an ideal gas h D I C RT D T .cv C R/. But cp D .@h=@t /p , and hence

cp D cv C R, and . � 1/= D �. Statistical mechanics tells us that for a simple
ideal gas the internal energy is equal to kT=2 per molecule, or RT=2 per unit mass,
for each excited degree of freedom, where k is the Boltzmann constant and R the gas
constant. The diatomic molecules N2 and O2 that comprise most of our atmosphere
have two rotational and three translational degrees of freedom, so that I � 5RT=2,
and so cv � 5R=2 and cp � 7R=2, both being constants. These are in fact very
good approximations to the measured values for the earth’s atmosphere, and give cp �

103 J kg�1K�1. The internal energy is simply cvT and the enthalpy is cpT . For a liquid,
especially one containing dissolved salts such as seawater, no such simple relations are
possible: the heat capacities are functions of the state of the fluid, and the internal
energy is a function of pressure (or density) as well as temperature.

1.5.3 Thermodynamic equations for fluids

The thermodynamic relations — for example (1.71) — apply to identifiable bodies or
systems; thus, the heat input affects the fluid parcel to which it is applied, and we can
apply the material derivative to the above thermodynamic relations to obtain equations
of motion for a moving fluid. But in doing so we make two assumptions:

(i) That locally the fluid is in thermodynamic equilibrium. This means that, although
the thermodynamic quantities like temperature, pressure and density vary in space
and time, locally they are related by the thermodynamic relations such as the equa-
tion of state and Maxwell’s relations.



1.5 The Thermodynamic Equation 23

(ii) That macroscopic fluid motions are reversible and so not entropy producing. Thus,
the diabatic term dQ represents the entropy sources — such effects as viscous
dissipation of energy, radiation, and conduction — whereas the macroscopic fluid
motion itself is adiabatic.

The first point requires that the temperature variation on the macroscopic scales must
be slow enough that there can exist a volume that is small compared to the scale of
macroscopic variations, so that temperature is effectively constant within it, but that is
also sufficiently large to contain enough molecules so that macroscopic variables such
as temperature have a proper meaning. Accepting these assumptions, the expression

T d� D dQ (1.95)

implies that we may write

T
D�
Dt

D PQ; (1.96)

where PQ is the total rate of heat input per unit mass. This is a thermodynamic equation
of motion of the fluid.

For seawater a full specification of its thermodynamic state requires a knowledge
of the salinity S , and this is determined by the conservation equation

DS

Dt
D PS ; (1.97)

where PS represents effects of evaporation and precipitation at the ocean surface, and
molecular diffusion. Somewhat analogously, for atmosphere the thermodynamics in-
volve water vapour whose evolution is given by the conservation of water vapour mix-
ing ratio

Dw
Dt

D Pw (1.98)

where Pw represents the effects of condensation and evaporation. Salt has an important
effect on the density of seawater, whereas the effect of water vapour on the density of
air is slight.

Equation (1.96) is not a useful equation unless the entropy can be related to the
other fluid variables, temperature, pressure and density. This can be done using the
equation of state and the thermodynamic relations we have derived, and is the subject
of the following sections. An ideal gas is the simplest case with which to start.

1.5.4 Thermodynamic equation for an ideal gas

For a fluid parcel of constant composition the fundamental thermodynamic relation is

dQ D dI C p d˛ (1.99)

For an ideal gas the internal energy is a function of temperature only and dI D cv dT

(also see problems 1.12 and 1.14), so that

dQ D cv dT C p d˛ or dQ D cp dT � ˛ dp; (1.100a,b)



24 Chapter 1. Equations of Motion

where the second expression is derived using ˛ D RT=p and and cp � cv D R.
Forming the material derivative of (1.99) gives the general thermodynamic equation

DI

Dt
C p

D˛
Dt

D PQ: (1.101)

Similarly, for an ideal gas (1.100a,b) respectively give

cv
DT

Dt
C p

D˛
Dt

D PQ; or cp

DT

Dt
�

RT

p

Dp

Dt
D PQ: (1.102a,b)

Although (1.102) are equations in the state variables p, T and/or ˛, time derivatives
act on two variables and this is not convenient for many purposes. Using the mass
continuity equation, (1.102a) may be written

cv
DT

Dt
C p˛r � v D PQ: (1.103)

Alternatively, using the ideal gas equation we may eliminate T in favor of p and ˛,
giving the equivalent equation

Dp

Dt
C pr � v D PQ

�R

cv
: (1.104)

Potential temperature and potential density

When a fluid parcel changes pressure adiabatically, it will expand or contract and, using
(1.100b), its temperature change is determined by

cp dT D ˛ dp: (1.105)

As this temperature change occurs is not caused by heating, it is useful to define a
temperature-like quantity that changes only if diabatic effects are present. To this end,
we define the potential temperature, � , to be the temperature that a fluid would have if
moved adiabatically to some reference pressure (often taken to be the 1000 hPa, which
is close to the pressure at the earth’s surface). Thus, in adiabatic flow the potential
temperature of a fluid parcel is conserved, essentially by definition, and

D�
Dt

D 0: (1.106)

Such an evolution equation holds, for adiabatic flow at constant composition, for the
potential temperature of any fluid, but to be useful we must be able to relate � to the
other thermodynamic variables. For an ideal gas we use (1.100b) and the equation of
state to write the thermodynamic equation as

d� D cp d ln T � R d ln p: (1.107)

The definition of potential temperature then implies that

cp d ln � D cp d ln T � R d ln p; (1.108)
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and this is satisfied by

� D T

�
pR

p

��
(1.109)

where pR is a reference pressure and � D R=cp .
Note that

d� D cp

d�
�

(1.110)

and, if cp is constant,

� D cp ln �: (1.111)

Equation (1.110) is in fact a general expression for potential temperature of a fluid
parcel of constant composition (see section 1.8.1), but (1.111) applies only if cp is
constant, as in, to a very good approximation, the earth’s atmosphere.

Using (1.108), the thermodynamic equation in the presence of heating is simply

cp

D�
Dt

D
�

T
PQ ; (1.112)

with � given by (1.109). Equations (1.103), (1.104) and (1.112) are all equivalent forms
of the thermodynamic equation for an ideal gas.

The potential density, �� , is the density that a fluid parcel would have if moved
adiabatically and at constant composition to a reference pressure, pR. If the equation of
state is written as � D f .p;T / then the potential density is just

�� D f .pR; �/: (1.113)

For an ideal gas we therefore have

�� D
pR

R�
I (1.114)

that is, potential density is proportional to the inverse of potential temperature. We may
also write (1.114) as

�� D �

�
pR

p

�1=

: (1.115)

Finally, for later use we note that for small variations around a reference state ma-
nipulation of the ideal gas equation gives

ı�

�
D
ıT

T
� �

ıp

p
D

1



ıp

p
�
ı�

�
: (1.116)
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* Potential temperature and the fundamental equation of state

Eq. (1.111) is closely related to the fundamental equation of state: using I D cvT ,
(1.109), and the equation of state p D �RT , we can express the entropy explicitly in
terms of the density and the internal energy, to wit

� D cv ln I � R ln �C constant : (1.117)

This is the fundamental equation of state for a simple ideal gas. If we were to begin with
this, we could straightforwardly derive all the thermodynamic quantities of interest for
a simple ideal gas: for example, using (1.74a) we immediately recover P D �RT , and
from (1.74b) we obtain I D cvT . Indeed, (1.117) could be used to define a simple
ideal gas, but such an a priori definition seems a little unmotivated. Of course the heat
capacities must still be determined by experiment or by a kinetic theory — they are not
given by the thermodynamics, and (1.117) holds only if they are constant.

1.5.5 * Thermodynamic equation for liquids

For a liquid such as seawater no simple exact equation of state exists. Thus, although
(1.112) holds at constant salinity for a liquid by virtue of the definition of potential
temperature, an accurate expression relating potential temperature to the other thermo-
dynamic variables is nonlinear, complicated and, to most eyes, uninformative. Yet for
both theoretical and modelling work a thermodynamic equation is needed to represent
energy conservation, and an equation of state needed to close the system, and one of two
approaches is thus generally taken: For most theoretical work and for idealized models
a simple analytic but approximate equation of state is used, but in situations where more
accuracy is called for, such as quantitative modelling or observational work, an accu-
rate but complex semi-empirical equation of state is used. This section outlines how
relatively simple thermodynamic equations may be derived that are adequate in many
circumstances, and which illustrate the principles used in deriving more complicated
equations.

Thermodynamic equation using pressure and density

If we regard � as a function of pressure and density (and salinity if appropriate) we
obtain

T d� D T
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dS: (1.118)

From this, and using (1.96) and (1.97), we obtain for a moving fluid
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�
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D�
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� T
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�
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�
�;S
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�
�;p

PS (1.119)
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But .@p=@�/�;S D c2
s where cs is the speed of sound (see section 1.6). This is a

measurable quantity in a fluid, and often nearly constant, and so useful to keep in an
equation. Then the thermodynamic equation may be written in the form

D�
Dt

�
1

c2
s

Dp

Dt
D QŒ�� (1.120)

where QŒ�� D .@�=@�/p;S PQ=T � .@�=@S /�;p PS appropriately represents the effects
of all diabatic and salinity source terms. This form of the thermodynamic equation is
valid for both liquids and gases.

Approximations: The speed of sound in a fluid is related to its compressibility —
the less compressible the fluid, the greater the sound speed. In a fluid it is
often sufficiently high that the second term in (1.120) can be neglected, and the
thermodynamic equation takes the simple form:

D�
Dt

D QŒ��: (1.121)

This equation is a very good approximation for many laboratory fluids. Note
that this equation is a thermodynamic equation, arising from the principle of
conservation of energy for a liquid. It is a very different equation from the
mass conservation equation, which for compressible fluids is also an evolution
equation for density.

In the ocean the enormous pressures resulting from columns of seawater kilo-
meters deep mean that although the the second term in (1.120) may be small,
it is not negligible, and a better approximation results if we suppose that the
pressure is given by the weight of the fluid above it — the hydrostatic approx-
imation. In this case dp D ��g dz and (1.120) becomes

D�
Dt

C
�g

c2
s

Dz

Dt
D QŒ��: (1.122)

In the second term the height field varies much more than the density field, so a
good approximation is to replace � by a constant, �0, in this term only. Taking
the speed of sound also to be constant gives

D
Dt

�
�C

�0z

H�

�
D QŒ�� (1.123)

where
H� D c2

s =g (1.124)

is the density scale height of the ocean. In water, cs � 1500 m s�1 so that
H� � 200 km. The quantity in square brackets in (1.123) is (in this approx-
imation) the potential density, this being the density that a parcel would have
if moved adiabatically and with constant composition to the reference height
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z D 0. The density scale height as defined here is due to the mean compress-
ibility (i.e., the change in density with pressure) of seawater and, because sound
speed varies only slightly in the ocean, this is nearly a constant. The adiabatic
lapse rate of density is the rate at which the density of a parcel changes when
undergoing an adiabatic displacement. From (1.123) it is approximately

�

�
@�

@z

�
�

�
�0g

c2
s

� 5 .kg m�3/=km (1.125)

so that if a parcel is moved adiabatically from the surface to the deep ocean
(5 km depth, say) its density its density will increase by about 25 kg m�3, a
fractional density increase of about 1/40 or 2.5%.

Thermodynamic equation using pressure and temperature

Taking entropy to be a function of pressure and temperature (and salinity if appropriate)
we have

T d� D T
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For a moving fluid, and using (1.96) and (1.97), this implies,
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D QŒT �: (1.127)

where QŒT � D PQ=cp � T c�1
p

PS.@�=@S / includes the effects of the entropy and saline
source terms. Now substitute the Maxwell relation (1.87) in the form�
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to give
DT
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T
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Dt
D QŒT �; (1.129a)

or, equivalently,
DT

Dt
�

T
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�
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Dp

Dt
D QŒT �: (1.129b)

The density and temperature are related through a measurable coefficient of thermal
expansion ˇT where �

@�

@T

�
p

D �ˇT � (1.130)
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Equation (1.129) then becomes

DT

Dt
�
ˇT T

cp�

Dp

Dt
D QŒT � : (1.131)

This is form of the thermodynamic equation is valid for both liquids and gases, and in
an ideal gas ˇT D 1=T .

Approximations: Liquids are characterized by a small coefficient of thermal expan-
sion, and it is sometimes acceptable in laboratory fluids to neglect the second
term on the left-hand side of (1.131). We then obtain an equation analogous to
(1.121), namely

DT

Dt
D QŒT �: (1.132)

This approximation relies on the smallness of the coefficient of thermal expan-
sion. A better approximation is to again suppose that the pressure in (1.131)
varies according only to the weight of the fluid above it. Then dp D ��gdz

and (1.131) becomes

1

T

DT

Dt
C
ˇT g

cp

Dz

Dt
D

QŒT �

T
: (1.133)

For small variations of T , and if ˇT is nearly constant, this simplifies to

D
Dt

�
T C

T0z

HT

�
D QŒT � (1.134)

where
HT D cp=.ˇT g/ (1.135)

is the temperature scale height of the fluid. The quantity T C T0z=HT is (in
this approximation) the potential temperature, � , so called because it is the
temperature that a fluid at a depth z would have if moved adiabatically to a
reference depth, here taken as z D 0 — the temperature changing because of
the work done by or on the fluid parcel as it expands or is compressed. That is,

� � T C
ˇT gT0

cp

z (1.136)

In seawater, however, the expansion coefficient ˇT and cp are functions of
pressure and (1.136) is not good enough for quantitative calculations. With
the approximate values for the ocean of ˇT � 2 � 10�4 K�1 and cp � 4 �

103 J kg�1 K�1 we obtain HT � 2000 km.

The adiabatic lapse rate is rate at which the temperature of a parcel changes in
the vertical when undergoing an adiabatic displacement. From (1.133) it is

�ad D �

�
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�
�

D
TgˇT

cp

: (1.137)
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Forms of the Thermodynamic Equation

General form
For a parcel of constant composition the thermodynamic equation is

T
D�
Dt

D PQ or cp

D ln �
Dt

D
1

T
PQ (T.1)

where � is the entropy, � is the potential temperature, cp ln � D � and PQ is the heating
rate. Appplying the first law of thermodynamics T d� D dI C p d˛ gives:

DI

Dt
C p

D˛
Dt

D PQ or
DI

Dt
C RT r � v D PQ (T.2)

where I is the internal energy.

Ideal gas
For an ideal gas dI D cv dT , and the (adiabatic) thermodynamic equation may be
written in the following equivalent, exact, forms:

cp

DT

Dt
� ˛

Dp

Dt
D 0;

Dp

Dt
C pr � v D 0;

cv
DT

Dt
C p˛r � v D 0;

D�
Dt

D 0;

(T.3)

where � D T .pR=p/
� . The two expressions on the second line are usually the most

useful in modelling and theoretical work.

Liquids
For liquids we may usefully write the (adiabatic) thermodynamic equation as a conser-
vation equation for potential temperature � or potential density �pot and represent these
in terms of other variables. For example:

D�
Dt

D 0; � �

(
T (approximately)
T C .ˇT gz=cp/ (with some thermal expansion),

(T.4a)

D�pot

Dt
D 0; �pot �

(
� (very approximately)
�C .�0gz=c2

s / (with some compression).
(T.4b)

Unlike (T.3) these are not equivalent forms. More accurate semi-empirical expressions
that may also include saline effects are often used for quantitative applications.

In general it is a function of temperature, salinity and pressure, but it is a
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calculable quantity if ˇT is known. With the oceanic values above, it is ap-
proximately 0:15 K km�1. Again this is not accurate enough for quantitative
oceanography because the expansion coefficient is a function of pressure. Nor
is it a good measure of stability, because of the effects of salt.

It is interesting that the scale heights given by (1.124) and (1.135) differ so
much. As mentioned, the first is due to the compressibility of seawater [and
so related to c2

s , or ˇp in (1.63)] whereas the second is due to the change of
density with temperature [ˇT in (1.63)], and is the distance over which the
the difference between temperature and potential temperature changes by an
amount equal to the temperature itself (i.e., by about 273 K). The two heights
differ so much because the value of thermal expansion coefficient is not di-
rectly tied to the compressibility — for example, fresh water at 4° C has a zero
thermal expansion, and so would have an infinite temperature scale height, but
its compressibility differs little from water at 20° C. (See also problem 1.20.)

In the atmosphere the ideal gas relationship gives ˇT D 1=T and so

�ad D
g

cp

(1.138)

which is approximately 10 K km�1. The only approximation involved in deriv-
ing this is the use of the hydrostatic relationship.

Thermodynamic equation using density and temperature

Taking entropy to be a function of density and temperature (and salinity if appropriate)
we have
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For a moving fluid this implies,
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�
@�

@˛

�
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D˛
Dt

D

PQ

cv
: (1.140)

If density is nearly constant, as in many liquids, then the second term in (1.140) is small,
and also cp � cv .

The thermodynamic equations for a fluid are summarized on page 30, and the complete
equations of motion for a fluid are summarized on page 32. Also, note that for ideal gas
(1.120) and (1.131) are exactly equivalent to (1.103) or (1.104) (problem 1.11).



32 Chapter 1. Equations of Motion

The Equations of Motion of a Fluid

For dry air, or for a salt-free liquid, the complete set of equations of motion may be
written as follows:

The mass continuity equation:

@�

@t
C r � .�v/ D 0: (EOM.1)

If density is constant this reduces to r � v D 0.

The momentum equation:

Dv
Dt

D �
rp

�
C �r

2v C F ; (EOM.2)

where F represents the effects of body forces such as gravity and � is the kinematic
viscosity. If density is constant, or pressure is given as a function of density alone (e.g.,
p D C� ), then (EOM.1) and (EOM.2) form a complete system.

The thermodynamic equation:

D�
Dt

D
1

cp

�
�

T

�
PQ: (EOM.3)

where PQ represents external heating and diffusion, the latter being �r2� where � is the
diffusivity.

The equation of state:
� D g.�;p/ (EOM.4)

where g is a given function. For example, for an ideal gas, � D p�R=.R�p
��1/.

The equations describing fluid motion are called the Euler equations if the viscous term
is omitted, and the Navier-Stokes equations if viscosity is included.7 Sometimes the
Euler equations are taken to mean the momentum and mass conservation equations for
an inviscid fluid of constant density.

1.6 SOUND WAVES

Full of sound and fury, signifying nothing.

William Shakespeare, Macbeth, c. 1606.

We now consider, rather briefly, one of the most common phenomena in fluid dynamics
yet one which is relatively unimportant for geophysical fluid dynamics — sound waves.
Sound itself is not a meteorologically or oceanographically important phenomenon,
except in a few special cases, for the pressure disturbance produced by sound waves
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is a tiny fraction of the ambient pressure and too small to be of importance for the
circulation. For example, the ambient surface pressure in the atmosphere is about 105 Pa
and variations due to large-scale weather phenomena are about 103 Pa, often larger,
whereas sound waves of 60 dB produce pressure variations of about 10 Pa.

The smallness of the disturbance produced by sound waves justifies a linearization
of the equations of motion about a spatially uniform basic state (denoted by a subscript
0) that is a time-independent solution to the equations of motion. Thus, we write v D

v0 Cv0, � D �0 C�0 and so on, substitute in the equations of motion, and neglect terms
involving products of primed quantities, as these are assumed small. By choice of our
reference frame we will simplify matters further by setting v0 D 0. The linearized
momentum and mass conservation equations are then

�0

@v0

@t
D �rp0 (1.141)

�0

@�0

@t
D ��0r � v0 (1.142)

These linear equations do not in themselves determine the magnitude of the disturbance,
and the linear approximation must be checked a posteriori (problem 1.5). Now, sound
waves are largely adiabatic. Thus,

dp

dt
D

�
@p

@�

�
�

d�
dt
; (1.143)

where .@p=@�/� is the derivative at constant entropy, whose particular form is given by
the equation of state for the fluid at hand. Then, from (1.141) – (1.143) we obtain a
single equation for pressure,

@2p0

@t2
D c2

s r
2p0; (1.144)

where c2
s D .@p=@�/�. Eq. (1.144) is the classical wave equation; solutions propagate

at a speed cs which thus may be identified as the speed of sound. In an ideal gas
manipulation of the equation of state leads to p D C� for adiabatic compressions,
whence c2

s D p=� D RT where  D cp=cv . Values of  typically range from 5/3
for a monatomic gas to 7/5 for a diatomic gas. For air, which is almost entirely diatomic,
this leads to cs � 350 m s�1 at 300 K. In seawater no such theoretical approximation is
easily available but measurements show that cs � 1500 m s�1.

1.7 COMPRESSIBLE AND INCOMPRESSIBLE FLOW

There are many important circumstances in fluid dynamics when the dynamics are com-
pletely specified by the momentum equation and a form of the mass conservation equa-
tion. This arises in general when the equation of state does not introduce temperature,
and the simplest such equation of state would be that density be constant. Although
there are probably no fluids of exactly constant density, in many cases the density of
a fluid will vary so little that it is a very good approximation to consider the density
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effectively constant in the mass conservation equation. The motion is then said to be
incompressible. For example, in the earth’s oceans the density varies by less that 5%,
even though the pressure at the ocean bottom, a few kilometers below the surface, is
several hundred times the atmospheric pressure at the surface.

Let us first note how the mass conservation equation simplifies when density is
strictly constant, and then consider under what conditions this is a good approximation.

1.7.1 Constant density fluids

If a fluid is strictly of constant density, the mass continuity equation (1.38) simplifies
easily by neglecting all derivatives of density yielding

r � v D 0 : (1.145)

The prognostic equation (1.38) has become a diagnostic equation (1.145), or a con-
straint to be satisfied by the velocity at each instant of the fluid motion. A consequence
of this equation is that the volume of each material fluid element remains constant. To
see this recall the expression for the conservation of mass in the form

D
Dt
.��V / D 0: (1.146)

If � is constant this reduces to an expression for volume conservation, namely D�V =Dt D

0, whence (1.145) is recovered because D�V =Dt D �V r �v . The absolute constancy
of density is an idealization which is rarely, if ever, realized in the natural world. How-
ever, there are many cases in which it is a very good approximation to use (1.145) in
place of the full continuity equation. These depend not only on the physical nature of
the fluid but also on the flow itself, as we shall now discuss.

1.7.2 Incompressible flows

An incompressible fluid is one in which the density of a given fluid element does not
change.8 Thus, in the mass continuity equation

D�
Dt

C �r � v D 0; (1.147)

the material derivative of density is neglected and we obtain,

r � v D 0: (1.148)

In reality no fluid is truly incompressible and for (1.148) to approximately hold we just
require that that

jD�=Dt j � j�r � vj: (1.149)

Our working definition of incompressibility, then, is that in an incompressible fluid
density changes (from whatever cause) are so small that they have a negligible affect on
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the mass balance, and (1.147) may be replaced by (1.148). We do not need to assume
that the densities of differing fluid elements are similar to each other, just that the density
of any particular fluid element is nearly constant, but in the ocean (and in most liquids)
it is in fact the case that variations in density are everywhere small compared to the
mean density, and it this is condition that we generally apply. The atmosphere is not
incompressible and (1.148) does not in general hold there. Note also that the fact that
r � v D 0 does not imply that we may independently use D�=Dt D 0. Indeed for a
liquid with equation of state � D �0.1 � ˇT .T � T0// and thermodynamic equation
cpDT=Dt D PQ we obtain

D�
Dt

D �
ˇT �0

cp

PQ: (1.150)

Note too that incompressibility does not necessarily imply the neglect of density vari-
ations in the momentum equation — it is only in the mass continuity equation that
density variations are neglected.

Some conditions for incompressibility

The condition that density is largely unaffected by pressure gives one necessary condi-
tion for the legitimate use of (1.148), as follows. First assume adiabatic flow, and omit
the gravitational term. Then

dp

dt
D

�
@p

@�

�
�

d�
dt

D c2
s

d�
dt

(1.151)

so that the density and pressure variations of a fluid parcel are related by

ıp � c2
s ı�: (1.152)

From the momentum equation we estimate

U 2

L
�

1

L

ıp

�0

; (1.153)

where U and L are typical velocities and lengths and where �0 is a representative value
of the density. Using (1.152) and (1.153) gives U 2 � c2

s ı�=�0. The incompressibility
condition ı�=�0 << 1 then becomes

U 2

c2
s

<< 1: (1.154)

That is, for a flow to be incompressible the fluid velocities must be less than the speed
of sound, or the Mach number, M � U=cs , must be small.

In the earth’s atmosphere it is apparent that density changes significantly with
height. Assuming hydrostatic balance and an ideal gas, then

1

�

@p

@z
D �g; (1.155)
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Fig. 1.3 A temperature-salinity diagram for seawater, calculated using an
empirical equation of state. Contours are (density - 1000) kg m�3, and the
temperature is potential temperature, which in the deep ocean may be less
than in situ temperature a degree or so (see Fig. 1.4). Left panel: at sea-
level (p D 105 Pa D 1000 mb). Right panel: at p D 4 � 107 Pa, a depth of
about 4 km. Note that in both cases the contours are slightly convex.

and if (for simplicity) we assume that atmosphere is isothermal then

@p

@z
D

�
@p

@�

�
T

@�

@z
D RT0

@�

@z
: (1.156)

Using (1.155) and (1.156) gives

� D �0 exp.�z=H�/; (1.157)

where H� D RT0=g is the (density) scale height of the atmosphere. It is easy to see
that density changes are negligible only if we concern ourselves with motion less than
the scale height, so this is another necessary condition for incompressibility.

In the atmosphere, although the Mach number is small for most flows, vertical
displacements often exceed the scale height and in those cases the flow cannot be con-
sidered incompressible. In the ocean density changes from all causes are small and in
most circumstances the ocean may be considered to contain an incompressible fluid.
We return to this in the next chapter when we consider the Boussinesq equations.

1.8 * MORE THERMODYNAMICS OF LIQUIDS

1.8.1 Potential temperature, potential density and entropy

For an ideal gas we were able to derive a single prognostic equation for a single vari-
able, potential temperature. As potential temperature is in turn simply related to the
temperature and pressure, this is a useful prognostic equation. Can we achieve some-
thing similar with a more general equation of state, with non-constant coefficients of
expansion?
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Potential temperature

The potential temperature is defined as the temperature that a parcel would have if
moved adiabatically to a given reference pressure pR, often taken as 105 Pa (or 1000
hPa, or 1000 mb, approximately the pressure at the sea-surface). Thus it may be calcu-
lated, at least in principle, through an integral of the form

�.S;T;pI pR/ D T C

Z pR

p

� 0
ad.S;T;p/ dp (1.158)

where � 0
ad D .@T=@p/�. The potential temperature of a fluid parcel is directly related

to its entropy, provided its composition does not change. We already demonstrated this
for an ideal gas, and to see it explicitly in the general case let us first write the equation
of state in the form

� D �.S;T;p/: (1.159)

Now, by definition of potential temperature we have

� D �.S; � I pR/ and � D �.�;S I pR/: (1.160)

For a parcel of constant salinity, changes in entropy are caused only by changes in
potential temperature so that

d� D
@�.S; � I pR/

@�
d�: (1.161)

Now, if we express entropy as a function of temperature and pressure then

T d� D T

�
@�

@T

�
p

dT C T

�
@�

@p

�
T

dp

D cp dT � T

�
@˛

@T

�
p

dp:

(1.162)

using one of the Maxwell relations. Suppose a fluid parcel moves adiabatically, then
d� D 0 and, by (1.161), d� D 0. That is, the potential temperature at each point along
its trajectory is constant and � D �.�/. How do we evaluate this function? Simply note
that the temperature at the reference pressure pR is the potential temperature, so that
directly from (1.162)

d� D cp.pR; �/
d�
�

; (1.163)

and d�=d� D cp.pR; �/=� . If cp is constant this integrates to

� D cp ln � C constant (1.164)

as for a simple ideal gas (1.111).
Since potential temperature is conserved in adiabatic motion, the thermodynamic

equation can be written

cp

D�
Dt

D
�

T
PQ: (1.165)
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where the right-hand-side represents heating. (If salinity is changing, then the right-
hand side should also include any saline source terms and saline diffusion. However,
such terms usually have a very small effect.) This equation is equivalent to (1.120) or
(1.131), although it is only useful if � can be simply related to the other state variables.
In principle this can be done using (1.158), and in practice empirical relationships have
been derived that express potential temperature in terms of the local temperature, pres-
sure and salinity, and density in terms of potential temperature, salinity and pressure
(see section 1.8.2 for more discussion).

Potential density

Potential density, �� , is defined as the density that a parcel would have if moved adi-
abatically and with fixed composition to a given reference pressure pR often, but not
always, taken as 105 Pa, or 1 bar. If the equation of state is of the form � D �.S;T;p/

then by definition we have
�� D �.S; � I pR/: (1.166)

For a parcel moving adiabatically (i.e., fixed salinity and entropy or potential tem-
perature) its potential density is therefore conserved. For an ideal gas (1.166) gives
�� D pR=.R�/ [as in (1.114)] and potential density provides no more information than
potential temperature. However, in the oceans potential density accounts for the effect
of salinity on density and so is a much better measure of the static stability of a column
of water than density itself.

From (1.123) an approximate expression for the potential density in the ocean is

�� D

�
�C

�0gz

c2
s

�
: (1.167)

Although this may suffice for theoretical or some modelling work, the vertical gradient
of potential temperature in the ocean is often close to zero and a still more accurate,
generally semi-empirical, expression is needed to determine stability properties.

Because density is so nearly constant in the ocean, it is common to subtract the
amount 1000 kg m�3 before quoting its value, and depending on whether this value
refers to in situ density or the potential density the results are called �t (‘sigma-tee’) or
�� (‘sigma-theta’) respectively. Thus,

�t D �.p;T;S/ � 1000; �� D �.pR; �;S/ � 1000: (1.168a,b)

If the potential density is referenced to a particular level, this is denoted by a subscript
on the � . Thus, �2 is the potential density referenced to 200 bars of pressure, or about
2 kilometers depth.

1.8.2 * More About Seawater

We now consider, rather didactically, some of the properties of the equation of state for
seawater, noting in particular those nonlinearities that, although small, give it somewhat
peculiar properties. We use a prototypical equation of state, (1.64) that, although not
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Parameter Description Value

�0 Reference Density 1:027 � 103 kg m�3

˛0 Reference Specific Volume 9:738 � 10�4 m3 kg�1

T0 Reference temperature 283K
S0 Reference salinity 35 psu � 35‰
c0 Reference sound speed 1490 m s�1

ˇT First thermal expansion coefficient 1:67 � 10�4 K�1

ˇ�
T

Second thermal expansion coefficient 1:00 � 10�5 K�2

ˇS Haline contraction coefficient 0:78 � 10�3 psu�1

ˇp Inverse bulk modulus (� ˛0=c
2
0

) 4:39 � 10�10 m s2 kg�1

� Thermobaric parameter (�  0�) 1:1 � 10�8 Pa�1

cp0 Specific heat capacity at constant pressure 3986 J kg�1 K�1

Table 1.2 Various thermodynamic and equation-of-state parameters for
seawater. Specifically, these parameters may be used in the approximate
equations of state (1.64) and (1.178).

highly accurate except for small variations around a reference state, does capture the
essential nonlinearities.9 That equation of state may be written as:

˛ D ˛0

�
1 C ˇT .1 C  �p/.T � T0/C

ˇ�
T

2
.T � T0/

2
� ˇS .S � S0/ � ˇp.p � p0/

�
;

(1.169)
where we may take p0 D 0 and ˇp D ˛0=c

02
0

, where c0
0

is a reference sound speed.
The starred parameters are associated with the nonlinear terms: ˇ�

T
is the second ex-

pansion coefficient and  � is the ‘thermobaric parameter’, which determines the extent
to which the thermal expansion of water depends on temperature. An equation of this
form is useful because its coefficients can, in principle, be measured in the field or in the
laboratory, and approximate values are given in table 1.2. However, it may not be the
most useful form for modelling or observational work, because T is not materially con-
served. Let us use this equation to deduce various thermodynamic quantities of interest,
and also transform it to a more useful form for modelling.

Potential temperature of seawater

It would be useful to express (1.169) in terms of materially conserved variables, and
so in terms of potential temperature rather than temperature. Now, by definition the
potential temperature is obtained by integrating the adiabatic lapse rate from the in situ
pressure to the reference pressure (zero); that is

� � T D

Z z.pD0/

z

�
@T

@z

�
�

dz D

Z 0

p

�
@T

@p

�
�

dp (1.170)
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Fig. 1.4 Examples of variation of potential temperature of seawater with
pressure, temperature and salinity. Left panel: the sloping lines show po-
tential temperature as a function of pressure at fixed salinity (S D 35 psu)
and temperature (13:36° C, the value of potential temperature at the sur-
face). The solid line is computed using an accurate, empirical equation
of state, the almost-coincident dashed line uses the simpler expression
(1.177a) and the dotted line (labelled L) uses the even simpler linear expres-
sion (1.177c). The near vertical solid line, labelled S, shows the variation of
potential temperature with salinity at fixed temperature and pressure. Right
panel: Contours of the difference between temperature and potential tem-
perature, (T � � ) in the pressure-temperature plane, again for S D 35 psu.
The solid lines use very accurate empirical formula, and the dashed lines
use (1.177). The simpler equation can be improved locally, but not glob-
ally, by tuning the coefficients. (100 bars of pressure (107 Pa or 10 MPa) is
approximately 1 km depth.)

Using (1.162), the adiabatic lapse rate is�
@T

@p

�
�

D
T

cp

�
@˛

@T

�
p;S

D
T

cp

˛0ŒˇT .1 C  �p/C ˇ�
T .T � T0/�: (1.171)

Now, cp satisfies cp D T .@�=@T /p , so that, using the Maxwell relation (1.87),�
@cp

@p

�
T;S

D T

�
@

@T

�
@�

@p

�
T

�
p

D T
@2˛

@T 2
: (1.172)

Thus, for our equation of state, we have�
@cp

@p

�
T;S

D �T˛0ˇ
�
T ; (1.173)

and therefore
cp D cp0.T;S/ � pT˛0ˇ

�
T : (1.174)

The first term cannot be determined solely from the conventional equation of state; in
fact for seawater specific heat varies very little with temperature (of order one part in
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a thousand for a 10 K temperature variation). It varies more with salinity, changing by
about �5 J kg�1 K�1 per part-per-thousand change in salinity. Thus we take

cp0.T;S/ D cp1 C cp2.S � S0/; (1.175)

where cp1 and cp2 are constants that may be experimentally determined.
Using (1.174) and (1.171) in (1.170) gives,

� D T exp
�

�
˛0ˇT p

cp0

h
1 C

1

2
 �p C

ˇ�
T

ˇT

.T � T0/
i�
: (1.176)

This equation is a relationship between T , � and p analogous to (1.109) for an ideal
gas. The exponent itself is small, the second and third terms in square brackets are small
compared to unity, and the deviations of both T and � from T0 are also presumed small.
Taking advantage of all of this enables the expression to be rewritten, with increasing
levels of approximation, as

T 0
�

T0˛0ˇT

cp0

p

�
1 C

1

2
 �p C T0

˛0ˇ
�
T

cp0

p

�
C � 0

�
1 C T0

˛0ˇ
�
T

cp0

p

�
; (1.177a)

�
T0˛0ˇT

cp0

p

�
1 C

1

2
 �p

�
C � 0

�
1 C T0

˛0ˇ
�
T

cp0

p

�
; (1.177b)

�
T0˛0ˇT

cp0

p C � 0; (1.177c)

where T 0 D T � T0 and � 0 D � � T0. The last of the three, (1.177c), holds for a
linear equation of state, and is useful for calculating approximate differences between
temperature and potential temperature; making use of the hydrostatic approximation
reveals that it is essentially the same as (1.136). Note that the potential temperature
is related to temperature via the thermal expansion coefficient and not, as one might
naïvely have expected, the compressibility coefficient. Plots of the difference between
temperature and potential temperature, that also give both a sense of of the accuracy of
these simpler formula, is given in Fig. 1.4.

Using (1.177b) in the equation of state (1.169) we find that, approximately,

˛ D ˛0

"
1 �

˛0p

c2
0

C ˇT .1 C  0�p/� 0
C

1

2
ˇ�

T �
02

� ˇS .S � S0/

#
; (1.178)

where  0� D  � C T0ˇ
�
T
˛0=cp0 �  � and c�2

0
D c0�2

0
� ˇ2

T
T0=cp � c0�2

0
is a

reference value of the speed of sound ( � and  0� differ by a few percent, and c2
0

and c02
0

differ by only a few parts in a thousand). Given (1.178), it is in principle
straightforward, although in practice rather tedious, to compute various thermodynamic
quantities of interest; a calculation of the buoyancy frequency is given in problem 2.19.
We may approximate (1.178) further by using the hydrostatic pressure instead of the
actual pressure; thus, letting p D �g.z � z0/=˛0 where z0 is the nominal value of z at
which p D 0, we obtain

˛ D ˛0

"
1 C

g.z � z0/

c2
0

C ˇT

�
1 �  0� g.z � z0/

˛0

�
� 0

C
ˇ�

T

2
� 02

� ˇS .S � S0/

#
:

(1.179)
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Fig. 1.5 Examples of the variation of density of seawater (minus
1000 kg m�3) with (a) potential temperature (K); (b) salt (psu); and (c) pres-
sure (Pa), for seawater. Panel (d), shows the thermal expansion coefficient,
ˇT D ���1

0
.@�=@T /p;S K�1, for each of the two curves in panel (a).

Using z instead of p in the equation of state entails a slight loss of accuracy, but it
turns out to be necessary to ensure that the Boussinesq equations conserve energy and
potential vorticity, as discussed in later chapters.

The variation of density with potential temperature and salinity and pressure is il-
lustrated in Fig. 1.3.

1.9 THE ENERGY BUDGET

The total energy of a fluid includes the kinetic, potential and internal energies. Both
fluid flow and pressure forces will in general move energy from place to place, but we
nevertheless expect energy to be conserved in an enclosed volume. Let us now consider
what form energy conservation takes in a fluid.

1.9.1 Constant density fluid

For a constant density fluid the momentum equation and the mass continuity equation r�

v D 0, are sufficient to completely determine the evolution of a system. The momentum
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equation is
Dv
Dt

D �r .� C ˚/C �r
2v; (1.180)

where � D p=�0 and ˚ is the potential for any conservative force (e.g., gz for a
uniform gravitational field). We can rewrite the advective term on the left-hand-side
using the identity,

.v � r/v D �v �!C r.v2=2/; (1.181)

where ! � r � v is the vorticity, discussed more in later chapters. Then, omitting
viscosity, we have

@v

@t
C! � v D �rB; (1.182)

where B D .�C˚Cv2=2/ is the Bernoulli function for constant density flow. Consider
for a moment steady flows (@v=@t D 0). Streamlines are, by definition, parallel to v
everywhere, and the vector v � ! is everywhere orthogonal to the streamlines, so that
taking the dot product of the steady version of (1.182) with v gives v � rB D 0. That is,
for steady flows the Bernoulli function is constant along a streamline, and DB=Dt D 0.

Reverting back to the time-varying case, take the dot product with v and include
the density to yield

1

2

@�0v
2

@t
C �0v � .! � v/ D ��0v � rB (1.183)

The second term on the left-hand-side vanishes identically. Defining the kinetic energy
density K, or energy per unit volume, by K D �0v

2=2, (1.183) becomes an expression
for the rate of change of K,

@K

@t
C r � .�0vB/ D 0: (1.184)

Because ˚ is time-independent this may be written

@

@t

�
�0.

1

2
v2

C ˚/

�
C r �

�
�0v

�
1

2
v2

C ˚ C �

��
D 0: (1.185)

or
@E

@t
C r � Œv.E C p/� D 0: (1.186)

where E D K C �0˚ is the total energy density (i.e, the total energy per unit volume).
This has the form of a general conservation equation in which a local change in a quan-
tity is balanced by the divergence of its flux. However, the energy flux, v.�0v

2=2 C

�0˚C�0�/, is not simply the velocity times the energy density �0.v
2=2 C˚/; there is

an additional term, vp, that represents the energy transfer occurring when work is done
by the fluid against the pressure force.

Now consider a volume through which there is no mass flux, for example a domain
bounded by rigid walls. The rate of change of energy within that volume is then given
by the integral of (1.183)

d yK

dt
�

d
dt

Z
V

K dV D �

Z
V

r � .�0vB/ dV D �

Z
S

�0Bv � dS D 0; (1.187)
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using the divergence theorem, and where yK is the total kinetic energy. Thus, the total
kinetic energy within the volume is conserved. Note that for a constant density fluid the
gravitational potential energy, yP , is given by

yP D

Z
V

�0gz dV; (1.188)

which is a constant, not affected by a re-arrangement of the fluid. Thus, in a constant
density fluid there is no exchange between kinetic energy and potential energy and the
kinetic energy itself is conserved.

1.9.2 Variable density fluids

We start with the momentum equation

�
Dv
Dt

D �rp � �r˚; (1.189)

and take its dot product with v to obtain an equation for the evolution of kinetic energy,

1

2
�

Dv
Dt

2

D �v � rp � �v � r˚

D �r � .pv/C pr � v � �v � r˚: (1.190)

From (1.90) the internal energy equation for adiabatic flow is

�
DI

Dt
D ��p

D˛
Dt

D �pr � v (1.191)

where the second equality follows by use of the continuity equation. Finally, and some-
what trivially, the potential energy density obeys

�
D˚
Dt

D �v � r˚: (1.192)

Adding (1.190), (1.191) and (1.192) we obtain

�
D
Dt

�
1

2
v2

C I C ˚

�
D �r � .pv/; (1.193)

which, on expanding the material derivative and using the mass conservation equation,
becomes

@

@t

�
�

�
1

2
v2

C I C ˚

��
C r �

�
�v

�
1

2
v2

C I C ˚ C p=�

��
D 0: (1.194)

This may be written

@E

@t
C r � Œv.E C p/� D 0 ; (1.195)
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where E D �.v2=2 C I C ˚/ is the total energy per unit volume, or the total energy
density, of the fluid. This is the energy equation for an unforced, inviscid and adiabatic,
compressible fluid. Just as for the constant density case, the energy flux contains the
term pv that represents the work done against pressure and, again, the second term
vanishes when integrated over a closed domain with rigid boundaries, implying that
the total energy is conserved. However, now there can now be an exchange of energy
between kinetic, potential and internal components. The quantity � D I C p˛ C ˚ D

hC˚ is sometimes referred to as the static energy, or the dry static energy. However, it is
not a component of the globally conserved total energy; the conserved energy contains
only the quantity I C˚ plus the kinetic energy, and it is it is only the flux of static energy
that affects the energetics. For an ideal gas we have � D cvT C RT C˚ D cpT C˚ ,
and if the potential is caused by a uniform gravitational field then � D cpT C gz.

Bernoullis’ theorem

For steady flow @=@t D 0 and r � �v D 0 so that (1.194) may be written v � rB D 0

where B is the Bernoulli function given by

B D

�
1

2
v2

C I C ˚ C p=�

�
D

�
1

2
v2

C h C ˚

�
: (1.196)

This means that, for steady flow,
DB

Dt
D 0; (1.197)

and the Bernoulli function is a constant along streamline. For an ideal gas in a constant
gravitation field B D v2=2 C cpT C gz.

For adiabatic flow we also have D�=Dt D 0. Thus, steady flow is both along
surfaces of constant � and along surfaces of constant B, and the vector

l D r� � rB (1.198)

is parallel to streamlines.10 A related result for unsteady flow is given in section 4.8.

1.9.3 Viscous Effects

We might expect that viscosity will always act to reduce the kinetic energy of a flow,
and we will demonstrate this for a constant density fluid. Retaining the viscous term in
(1.180), the energy equation becomes

d yE

dt
�

d
dt

Z
V

E dV D �

Z
V

v � r
2v dV: (1.199)

The right hand side is negative definite. To see this we use the vector identity

r � .r � v/ D r.r � v/ � r
2v; (1.200)

and because r � v D 0 we have r2v D �r �!, where ! � r � v. Thus,

d yE

dt
D ��

Z
V

v � .r �!/ dV D ��

Z
V

! � .r � v/ dV D ��

Z
V

!2 dV; (1.201)
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after integrating by parts, providing v � ! vanishes at the boundary. Thus, viscosity
acts to extract kinetic energy from the flow. The loss of kinetic energy reappears as an
irreversible warming of the fluid (‘Joule heating’), and the total energy of the fluid is
conserved, but this effect plays no role in a constant density fluid. The effect is normally
locally small, at least in the earth’s ocean and atmosphere, although it is sometimes
included in comprehensive General Circulation Models.

1.10 AN INTRODUCTION TO NON-DIMENSIONALIZATION AND SCALING

The units we use to measure length, velocity and so on are irrelevant to the dynam-
ics, and not necessarily the most appropriate units for a given problem. Rather, it is
convenient to express the equations of motion, so far as is possible, in so-called ‘nondi-
mensional’ variables, by which we mean expressing every variable (such as velocity)
as the ratio of its value to some reference value. For velocity the reference could, for
example, be the speed of of light — but this would not be very helpful for fluid dy-
namical problems in the earth’s atmosphere or ocean! Rather, we should choose the
reference value as a natural one for a given flow, in order that, so far as possible, the
nondimensional variables are order-unity quantities, and doing this is called scaling the
equations. Evidently, there is no reference velocity that is universally appropriate, and
much of the art of fluid dynamics lies in choosing sensible scaling factors for the prob-
lem at hand. Non-dimensionalization plays an important role in fluid dynamics, and we
introduce it here with a simple example.

1.10.1 The Reynolds number

Consider the constant-density momentum equation in Cartesian coordinates. If a typ-
ical velocity is U , a typical length is L, a typical timescale is T , and a typical value
of the pressure deviation is ˚ , then the approximate sizes of the various terms in the
momentum equation are given by

@v

@t
C .v � r/v D �r� C �r

2v (1.202a)

U

T

U 2

L
�

˚

L
�

U

L2
: (1.202b)

The ratio of the inertial terms to the viscous terms is .U 2=L/
ı
.�U=L2/ D UL=�, and

this is the Reynolds number.11 More formally, we can nondimensionalize the momen-
tum equation by writing

yv D
v

U
; yx D

x

L
; yt D

t

T
; y� D

�

˚
; (1.203)

where the terms with hats on are nondimensional values of the variables and the capital-
ized quantities are known as scaling values, and these are the approximate magnitudes
of the variables. We choose the nondimensionalization so that the nondimensional vari-
ables are of order unity. Thus, for example, we choose U so that u D O.U / where this
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should be taken to mean that the magnitude of the variable u is approximately U , or that
u � U , and we say that ‘u scales like U ’. [This O./ notation differs somewhat from
the conventional mathematical meaning of ‘order’, in which a D O.�˛/ represents a
limit in which a=�˛ ! constant as � ! 0.] Thus, if there are well-defined length and
velocity scales in the problem, and we choose these scales to perform the nondimen-
sionalization, then the nondimensional variables are of order unity. That is, yu D O.1/,
and similarly for the other variables.

Because there are no external forces in this problem, appropriate scaling values for
time and pressure are

T D
L

U
; ˚ D U 2: (1.204)

Substituting (1.203) and (1.204) into the momentum equation we obtain

U 2

L

�
@yv

@yt
C .yv � yr/yv

�
D �

U 2

L
yr y� C

�U

L2
yr

2v; (1.205)

where yr is the nondimensional gradient operator. Eq. (1.205) simplifies to

@yv

@yt
C .yv � yr/yv D �yr y� C

1

Re
yr

2
yv; (1.206)

where
Re �

UL

�
(1.207)

is, again, the Reynolds number. If we have chosen our length and velocity scales sensi-
bly — that is, if we have scaled them properly — each variable in (1.206) is order unity,
with the viscous term being multiplied by 1=Re. There are two important conclusions:

(i) The ratio of the importance of the inertial terms to the viscous terms is given by
the Reynolds number, defined by (1.207). In the absence of other forces, such as
those due to gravity and rotation, the Reynolds number is the only non-dimensional
parameter explicitly appearing in the momentum equation. Hence its value, along
with the boundary conditions, controls the behaviour of the system.

(ii) More generally, by scaling the equations of motion appropriately the parameters
determining the behaviour of the system become explicit. Scaling the equations is
intelligent nondimensionalization.

Notes

1 Parts of the first few chapters, and many of the problems, draw on notes prepared
over the years for a graduate class at Princeton University, originally written by
Steve Garner, Isaac Held and Yoshio Kurihara and also taught by Paul Kushner and
myself.

2 Joseph-Louis Lagrange (1736–1813) was a Franco-Italian, born and raised in Turin
who then lived and worked mainly in Germany and France. He made notable con-
tributions in analysis, number theory and mechanics and was recognized as one
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of the greatest mathematicians of the 18th century. He laid the foundations of
the calculus of variations (to wit, the ‘Lagrange multiplier’) and first formulated
the principle of least action, and his monumental treatise Mécanique Analytique
(1788) provides a unified analytic framework (it contains no diagrams, a feature
virtually emulated in Whitaker’s Analytical Dynamics, 1927) for all Newtonian me-
chanics.

Leonard Euler (1707–1783), a Swiss mathematician who lived and worked for ex-
tended periods in Berlin and St. Petersburg, made important contributions in many
areas of mathematics and mechanics, including the analytical treatment of alge-
bra, the theory of equations, calculus, number theory and classical mechanics. He
was the first to establish the form of the equations of motion of fluid mechanics,
writing down both the field description of fluids and what we now call the material
or advective derivative.

Truesdell (1954) points out that ‘Eulerian’ and ‘Lagrangian’ coordinates, especially
the latter, are inappropriate eponyms. The so-called Eulerian description was intro-
duced by d’Alembert in 1749 and generalized by Euler in 1752, and the so-called
Lagrangian description was introduced by Euler in 1759. The modern confusion
evidently stems from a monograph by Dirichlet in 1860 that credits Euler in 1757
and Lagrange in 1788 for the respective methods. One perhaps should therefore
refer to the two points of view as the ‘field’ or ‘spatial’ view, and the ‘material’ view;
we will also use ‘Eulerian’ because it implies a special rules for taking derivatives,
but will eschew ‘Lagrangian’.

3 For example Batchelor (1967).

4 Rd and Rv are related by the molecular weights of water and dry air, Mv and Md ,
so that ˛ � Rd=Rv D Mv=Md D 0:62. Rather than allow the gas constant to vary,
meteorologists sometimes incorporate the variation of humidity into the definition
of temperature, so that instead of p D �ReffT we use p D �Rd Tv, so defining
the ‘virtual temperature’, Tv. It is easy to show that Tv � Œ1 C w.˛�1 � 1/�T .
Atmospheric GCMs often use a virtual temperature.

5 The form of (1.64) was suggested by de Szoeke (2003). More accurately, and with
more complication, the international equation of state of seawater (Unesco 1981)
is an empirical equation that fits measurements to an accuracy of order 10�5 (see
Fofonoff 1985). Somewhat simpler, more easily computable and generally accurate
formulae are also available from Mellor (1991), Wright (1997), and (with particular
attention to high accuracy) McDougall et al. (2002). The formulae of Wright and
McDougall et al are of the form:

� D
p C p0

�C ˛0.p C p0/

where ˛0, p0 and � are expressed as polynomials in potential temperature and
salinity, using the Gibbs function of Feistel and Hagen (1995), which is as or more
accurate than the UNESCO formula. Wright’s formula used are used for Fig. 1.5 and
Fig. 1.3. Bryden (1973) provides polynomial formulae for potential temperature of
seawater in terms of temperature, salinity and pressure and this is used for Fig.
1.4. In most numerical ocean models potential temperature and salinity are the
prognostic thermodynamic variables and an empirical equation of state is used to
compute density and potential density.
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6 This section does not develop thermodynamics from its fundamentals; for that
see, e.g., Callen (1985).

7 Claude-Louis-Marie-Henri Navier (1785–1836) was a French civil engineer, profes-
sor at the École Polytechnique and later at the École des Ponts et Chaussée. He
was a expert in road and bridge building (he developed the theory of suspension
bridges) and, relatedly, made lasting theoretical contributions to the theory of
elasticity, being the first to publish a set of general equations for the dynamics
of an elastic solid. In fluid mechanics, he laid down the now-called Navier-Stokes
equations, including the viscous terms, in 1822.

George Gabriel Stokes (1819–1903). Irish born (in Skreen, County Sligo), he held
the Lucasian chair of Mathematics at Cambridge from 1849 until his retirement.
As well as having a role in the development of fluid mechanics, especially through
his considerations of viscous effects, Stokes worked on the dynamics of elasticitiy,
fluorescence, the wave theory of light, and was (rather ill-advisedly in hindsight) a
proponent of the idea of an ether permeating all space.

8 Some sources take incompressibility to mean that density is unaffected by pres-
sure, but this alone is insufficient to guarantee that the mass conservation equa-
tion can be approximated by r � v D 0.

9 Following de Szoeke (2003), where a more complete discussion is to be found.

10 These results, usually known as Bernoulli’s theorem, were developed by Daniel and
Johannes Bernoulli and so should be known as the Bernoullis’ theorem.

11 Osborne Reynolds (1842-1912) was an Irish born (Belfast) physicist who was pro-
fessor of engineering at Manchester University from 1868–1905. His early work
was in electricity and magnetism, but he is now most famous for his work in hy-
drodynamics. The ‘Reynolds number,’ which determines the ratio of inertial to
viscous forces, and the ‘Reynolds stress,’ which is the stress on the mean flow due
to the fluctuating components, are both named after him. He was also one of the
first scientists to think about the concept of group velocity.

Further Reading

There are numerous books on hydrodynamics; some of them are:

Lamb, H. 1932. Hydrodynamics, 6th edn.
This is a classic text in the subject, although its notation is now too dated to make
it really useful as an introduction. Another very well-known text is:

Batchelor, G. K. 1967. An Introduction to Fluid Dynamics.
This mainly treats incompressible flow. It is rather heavy going for the true begin-
ner, but nevertheless is a very useful reference for the fundamentals. Two other
useful references are:

Tritton, D. J. 1988. Physical Fluid Dynamics, 2nd edn.

Kundu, P. and I. M. Cohen 1990. Fluid Mechanics.
Both are introductions written at the advanced undergraduate/beginning graduate
level, and are easier-going than Batchelor. Kundu and Cohen’s book has more
material on geophysical fluid dynamics.

There are also numerous books on thermodynamics, two clear and useful ones being:

Reif, F., 1965. Fundamentals of Statistical and Thermal Physics,
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Callen, E. B. 1985 Thermodynamics and an Introduction to Thermostatistics.
Reif’s book has become something of a classic, and Callen provides a rather more
axiomatic approach.

An introduction to thermodynamic effects in fluids, with an emphasis on fundamental
properties, is provided by:

Salmon, R, 1998, Lectures on Geophysical Fluid Dynamics.

Problems

It is by the solution of problems that the investigator tests the temper of his
steel; he finds new methods and new outlooks, and gains a wider and freer
horizon.
David Hilbert (1862–1943).

1.1 For an infinitesimal volume, informally show that

D
Dt
.���V / D ��V

D�
Dt
; (P1.1)

and hence informally deduce that

D
Dt

Z
V

�� dV D

Z
V

�
D�
Dt

dV: (P1.2)

where � is an arbitrary, differentiable, property of the fluid.

1.2 Show that the derivative of an integral is given by

d
dt

Z x2.t/

x1.t/

�.x; t/ dx D

Z x2

x1

@�

@t
dx C

dx2

dt
�.x2; t/ �

dx1

dt
�.x1; t/: (P1.3)

By generalizing to three-dimensions show that the material derivative of an integral
of a fluid property is given by

D
Dt

Z
V

�.x; t/ dV D

Z
V

@�

@t
dV C

Z
S

�v � dS D

Z
V

�
@�

@t
C r � .v�/

�
dV; (P1.4)

where the surface integral (
R

S
) is over the surface bounding the volume V . Hence

deduce that
D
Dt

Z
V

�� dV D

Z
V

�
D�
Dt

dV: (P1.5)

1.3 Why is there no diffusion term in the mass continuity equation?

1.4 By invoking Galilean invariance we can often choose, without loss of generality, the
basic state for problems in sound waves to be such that u0 � 0. The perturbation
velocity is then certainly larger than the basic state velocity. How can we then justify
ignoring the nonlinear term in the perturbation equation, as the term u0@u0=@x is
certainly no smaller than the linear term u0@u0=@x?

1.5 For sound waves in air of amplitude 60 dB, show that the linear approximation to
the equations of motion is a good one. For example, in a one-dimensional problem,
show that the term u0@u0=@x is much smaller than @u0=@t . What amplitude of sound
wave is required for the nonlinear terms to become important? Is this achieved at a
rock concert?
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1.6 Using the observed value of molecular diffusion of heat in water, estimate how
long it would take for a temperature anomaly to mix from the top of the ocean
to the bottom, assuming that molecular diffusion alone is responsible. Comment
on whether you think the real ocean has reached equilibrium after the last ice age
(which ended about 12,000 years ago).

1.7 Consider the following flow:

u D � z

v D V sinŒk.x � ct/�

where � , V , k and c are positive constants. (This is similar to the flow in the mid-
latitude troposphere — an eastward flow increasing with height, with a transverse
wave superimposed.) Suppose that � z > c for the region of interest. Consider
particles located along the y D 0 axis at t D 0, and compute their position at some
later time t . Compare this with the streamfunction for the flow at the same time.
(Hint: Show that the meridional particle displacement is � D  =.u � c/, where  is
the streamfunction and u and c are parameters.)

1.8 Consider the two-dimensional flow

u D A.y/ sin!t; v D A.y/ cos!t: (P1.6)

The time-mean of this at a fixed point flow is zero. If A is independent of y, then
fluid parcels move clockwise in a circle. What is its radius? If A does depend on y,
find an approximate expression for the average drift of a particle,

lim
t!1

x.a; t/

t

where a is a particle label and A is suitably ‘small’. Be precise about what small
means.
Partial solution: Write A.y/ D A0 C ay and solve

dy

dt
D .A0 C ay/ cos!t (P1.7)

as a polynomial function of sin!t . Then solve

dx

dt
D .A0 C ay/ sin!t

using the solution for y. The rectification of the standing oscillation by the oscillat-
ing trajectory now appears, because hsin!t sin!ti ¤ 0. The small parameter is the
relative variation of A across a particle displacement, namely

ıA

A
D
.aA0=b/

A0

D
a

b
:

That is, the shear is small compared to the frequency.

1.9 Suppose that a sealed, insulated container consists of two compartments, and that
one of them is filled with an ideal gas and the other is a vacuum. The partition
separating the compartments is removed. How does the temperature of the gas
change? (Answer: It stays the same.) Reconcile this answer with the first law of
thermodynamics for an ideal gas:

dQ D T d� D dI C dW D cv dT C p d˛; (P1.8)
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as well as with the notion that a parcel that is ascending adiabatically through the
atmosphere will generally cool.

1.10 Show that adiabatic flow in an ideal gas satisfies p�� where  D cp=cv.

1.11 (a) Show that for an ideal gas (1.120) is equivalent to (1.104). You may use the
Maxwell relation .@˛=@�/p D .@T=@p/�.

(b) Show that for an ideal gas (1.131) is equivalent to (1.103). You may use the
results of part (a).

1.12 Show that it follows directly from the equation of state, P D RT=˛, that the internal
energy of an ideal gas is a function of temperature only.
Solution: From (1.91) and p D RT=˛ we have

d� D
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d˛: (P1.9)

But, mathematically,
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Equating the coefficient of dT and d˛ in these two expressions gives�
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: (P1.11)

Noting that @2�=.@˛@T / D @2�=.@T @˛/ we obtain

@2I

@˛@T
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@2I

@T @˛
�

�
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@˛

�
T

: (P1.12)

Thus, .@I=@˛/T D 0. Because, in general, the internal energy may be considered
either a function of temperature and density or temperature and pressure, this
proves that for an ideal gas the internal energy is a function only of temperature.

1.13 Show that it follows directly from the equation of state P D RT=˛, that for an ideal
gas the heat capacity at constant volume, cv, is, at most, a function of temperature.

1.14 Show that for an ideal gas
T d� D cvdT C pd˛: (P1.13)

and that its internal energy is given by I D
R

cvdT .
Solution: Let us regard � as a function of T and ˛, where ˛ is the specific volume
1=�. Then

T d� D T

�
@�

@T

�
˛

dT C T

�
@�

@˛

�
T

d˛

D cv dT C T

�
@�

@˛

�
T

d˛ (P1.14)

by definition of cv. For an ideal gas the internal energy is a function of temperature
alone (problem 1.12), so that using (1.74) the pressure of a fluid p D T .@�=@˛/I D

T .@�=@˛/T and (P1.14) becomes

T d� D cv dT C p d˛ (P1.15)
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But, in general, the fundamental thermodynamic relation is

T d� D dI C p d˛: (P1.16)

The terms on the right hand side of (P1.15) are identifiable as the change in the
internal energy and the work done on a fluid, and so dI D cv dT . The heat capacity
need not necessarily be constant, although for air it very nearly is, but it must be a
function of temperature only.

1.15 (a) Beginning with the expression for potential temperature for an ideal gas, � D

T .pR=p/
� , where � D R=cp, show that

d� D
�

T
.dT � ˛dp/; (P1.17)

and therefore that the first law of thermodynamics may be written as

dQ D T d� D cp

T

�
d�: (P1.18)

(b) Show that (P1.18) is generally true, without making the ideal gas approximation.

1.16 Obtain an expression for the Gibbs function for an ideal gas in terms of pressure
and temperature.

1.17 From (1.117) derive the conventional equation of state for an ideal gas, and obtain
expressions for the heat capacities.

1.18 Consider an ocean at rest with known vertical profiles of potential temperature and
salinity, �.z/ and S.z/. Suppose we also know the equation of state in the form
� D �.�;S;p/. Obtain an expression for the buoyancy frequency. Check your
expression by substituting the equation of state for an ideal gas and recovering a
known expression for the buoyancy frequency.

1.19 � Obtain an expression, in terms of temperature and pressure, for the potential
temperature of a van der Waals gas, with equation of state .pCa=˛2/.˛�b/ D RT ,
where a and b are constants. Show that it reduces to the expression for an ideal
gas in the limit a ! 0, b ! 0.

1.20 � In seawater, why does potential temperature differ from in situ temperature? Is is
because of the compressibility (with pressure) or the thermal expansion of water? A
good answer will include, inter alia, a physical explanation of the difference in scale
heights of (1.124) and (1.135) and a discussion of the lapse rate and scale heights
of water that is between 0° and 4° C.





If a body is moving in any direction, there is a force, arising from the
earth’s rotation, which always deflects it to the right in the northern
hemisphere, and to the left in the southern.

William Ferrel, The influence of the Earth’s rotation upon the relative motion of
bodies near its surface, 1858.

CHAPTER 2

Effects of Rotation and Stratification

T
HE ATMOSPHERE AND OCEAN are shallow layers of fluid on a sphere in that their
thickness or depth is much less than their horizontal extent. Furthermore, their
motion is strongly influenced by two effects: rotation and stratification, the

latter meaning that there is a mean vertical gradient of (potential) density that is often
large compared with its horizontal gradient. Here we consider how the equations of
motion are affected by these effects. First, we consider some elementary effects of
rotation on a fluid and derive the Coriolis and centrifugal forces, and then we write
down the equations of motion appropriate for motion on a sphere. Then we discuss
some approximations to the equations of motion that are appropriate for large-scale flow
in the ocean and atmosphere, in particular the hydrostatic approximation, and how the
presence of strong stratification can be used to further simplify the governing equations.

2.1 THE EQUATIONS OF MOTION IN A ROTATING FRAME OF REFERENCE

Newton’s second law of motion, that the acceleration on a body is proportional to the
imposed force divided by the body’s mass, applies in so-called inertial frames of ref-
erence. The earth rotates with a period of about almost 24 hours (23h 56m) relative to
the distant stars, and the surface of the earth manifestly is not, in that sense, an inertial
frame. Nevertheless, because the surface of the earth is moving (in fact at speeds of up
to a few hundreds of meters per second) it is very convenient to describe the flow rela-
tive to the earth’s surface, rather than in some inertial frame. This necessitates recasting
the equations into a form that is appropriate for a rotating frame of reference, and that
is the subject of this section.

55
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Figure 2.1 A vector C rotat-
ing at an angular velocity ˝ . It
appears to be a constant vector
in the rotating frame, whereas in
the inertial frame it evolves ac-
cording to .dC =dt /I D ˝ � C .

C

C

x C

Ω

Ω

θ

λ

2.1.1 Rate of change of a vector

Consider first a vector C of constant length rotating relative to an inertial frame at a
constant angular velocity ˝ . Then, in a frame rotating with that same angular velocity
it appears stationary and constant. If in small interval of time ıt it the vector C rotates
through a small angle ı� then the change in C , as perceived in the inertial frame, is
given by (see Fig. 2.1)

ıC D jC j cos � ı�m; (2.1)

where the vector m is the unit vector in the direction of change of C , which is perpen-
dicular to both C and˝ . But the rate of change of the angle � is just, by definition, the
angular velocity so that ı� D j˝ jıt and

ıC D jC jj˝ j sin y� m ıt D ˝ � C ıt: (2.2)

using the definition of the vector cross product, where y� D . =2 � �/ is the angle
between˝ and C . Thus �

dC

dt

�
I

D ˝ � C (2.3)

where the left hand side is the rate of change of C as perceived in the inertial frame.
Now consider a vector B that changes in the inertial frame. In a small time ıt the

change in B as seen in the rotating frame is related to the change seen in the inertial
frame by

.ıB/I D .ıB/R C .ıB/rot (2.4)

where the terms are, respectively, the change seen in the inertial frame, the change due
to the vector itself changing as measured in the rotating frame, and the change due to
the rotation. Using (2.2) .ıB/rot D ˝ � B ıt , and so the rates of change of the vector
B in the inertial and rotating frames are related by�

dB

dt

�
I

D

�
dB

dt

�
R

C˝ � B : (2.5)
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This relation applies to a vector B that, as measured at any one time, is the same in both
inertial and rotating frames.

2.1.2 Velocity and acceleration in a rotating frame

The velocity of a body is not measured to be the same in the inertial and rotating frames,
so care must be taken when applying (2.5) to velocity. First apply (2.5) to r , the position
of a particle to obtain �

dr

dt

�
I

D

�
dr

dt

�
R

C˝ � r (2.6)

or
vI D vR C˝ � r: (2.7)

We refer to vR and vI as the relative and inertial velocity, respectively, and (2.7) relates
the two. Apply (2.5) again, this time to the velocity vR to give�

dvR

dt

�
I

D

�
dvR

dt

�
R

C˝ � vR; (2.8)

or, using (2.7) �
d
dt
.vI �˝ � r/

�
I

D

�
dvR

dt

�
R

C˝ � vR; (2.9)

or �
dvI

dt

�
I

D

�
dvR

dt

�
R

C˝ � vR C
d˝
dt

� r C˝ �

�
dr

dt

�
I

: (2.10)

Then, noting that �
dr

dt

�
I

D

�
dr

dt

�
R

C˝ � r D .vR C˝ � r/; (2.11)

and assuming that the rate of rotation is constant, (2.10) becomes�
dvR

dt

�
R

D

�
dvI

dt

�
I

� 2˝ � vR �˝ � .˝ � r/: (2.12)

This equation may be interpreted as follows. The term on the left-hand side is
the rate of change of the relative velocity as measure in the rotating frame. The first
term on the right-hand side is the rate of change of the inertial velocity as measured
in the inertial frame (or, loosely, the inertial acceleration). Thus, by Newton’s second
law, it is equal to force on a fluid parcel divided by its mass. The second and third
terms on the right-hand side (including the minus signs) are the ‘Coriolis force’ and
the ‘centrifugal force’ per unit mass. Neither of these are true forces — they may be
thought of as quasi-forces (i.e., ‘as if’ forces); that is, when a body is observed from a
rotating frame it seems to behave as if unseen forces are present that affect its motion.
If (2.12) is written, as is common, with the terms C2˝ � vr and C˝ � .˝ � r/ on
the left-hand side then these terms should be referred to as the Coriolis and centrifugal
accelerations.1
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Centrifugal force

If r? is the perpendicular distance from the axis of rotation (see Fig. 2.1 and substitute
r for C ), then, because ˝ is perpendicular to r?, ˝ � r D ˝ � r?. Then, using the
vector identity˝ � .˝ � r?/ D .˝ � r?/˝ � .˝ �˝/r? and noting that the first term
is zero, we see that the centrifugal force per unit mass is just given by

Fce D �˝ � .˝ � r/ D ˝2r?: (2.13)

This may usefully be written as the gradient of a scalar potential,

Fce D �r˚ce: (2.14)

where ˚ce D �.˝2r2
?
/=2 D �.˝ � r?/

2=2.

Coriolis force

The Coriolis force per unit mass is:

FCo D �2˝ � vR: (2.15)

It plays a central role in much of geophysical fluid dynamics and will be considered
extensively later on. For now, we just note three basic properties:

(i) There is no Coriolis force on bodies that are stationary in the rotating frame.
(ii) The Coriolis force acts to deflect moving bodies at right angles to their direction

of travel.
(iii) The Coriolis force does no work on a body, a consequence of the fact that vR �

.˝ � vR/ D 0.

2.1.3 Momentum equation in a rotating frame

Since (2.12) simply relates the accelerations of a particle in the inertial and rotating
frames, then in the rotating frame of reference the momentum equation may be written

Dv
Dt

C 2˝ � v D �
1

�
rp � r˚: (2.16)

We have dropped the subscript R; henceforth, unless ambiguity is present, all velocities
without a subscript will be considered to be relative to the rotating frame.

2.1.4 Mass and tracer conservation in a rotating frame

Let � be a scalar field that, in the inertial frame, obeys

D�
Dt

C �r � vI D 0: (2.17)

Now, observers in both the rotating and inertial frame measure the same value of �.
Further, D�=Dt is simply the rate of change of � associated with a material parcel, and
therefore is reference frame invariant. Thus,�

D�
Dt

�
R

D

�
D�
Dt

�
I

(2.18)
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where .D�=Dt/R D .@�=@t /R C vR � r� and .D�=Dt/I D .@�=@t /I C vI � r� and
the local temporal derivatives .@�=@t /R and .@�=@t /I are evaluated at fixed locations
in the rotating and inertial frames, respectively.

Further, since v D vI �˝ � r , we have that

r � vI D r � .vI �˝ � r/ D r � vR (2.19)

since r � .˝ � r/ D 0. Thus, using (2.18) and (2.19), (2.17) is equivalent to

D�
Dt

C �r � v D 0 (2.20)

where all observables are measured in the rotating frame. Thus, the equation for the
evolution of a scalar whose measured value is the same in rotating and inertial frames
is unaltered by the presence of rotation. In particular, the mass conservation equation is
unaltered by the presence of rotation.

Although we have taken (2.18) as true a priori, the individual components of the
material derivative differ in the rotating and inertial frames. In particular�

@�

@t

�
I

D

�
@�

@t

�
R

� .˝ � r/ � r� (2.21)

because ˝ � r is the velocity, in the inertial frame, of a uniformly rotating body. Simi-
larly,

vI � r� D .vR C˝ � r/ � r�: (2.22)

Adding the last two equations reprises and confirms (2.18).

2.2 EQUATIONS OF MOTION IN SPHERICAL COORDINATES

The earth is very nearly spherical and it might appear obvious that we must cast our
equations in spherical coordinates. Although this does turn out to be true, the presence
of a centrifugal force causes some complications which we must first discuss. The
reader who is willing ab initio to treat the earth as a perfect sphere and to neglect the
horizontal component of the centrifugal force may skip the next section.

2.2.1 * The centrifugal force and spherical coordinates

The centrifugal force is a potential force, like gravity, and so we may therefore define
an ‘effective gravity’ equal to the sum of the true gravity and the centrifugal force.
The true gravitational force is directed toward the center of the earth, except possibly
for tiny effects due to the earth’s lack of sphericity and inhomogeneity, but the line of
action of the effective gravity will in general differ slightly from this, and therefore
have a component in the ‘horizontal’ plane, that is the plane perpendicular to the radial
direction. The magnitude of the centrifugal force is ˝2r?, and so the effective gravity
is given by

g � geff D ggrav C˝2r? (2.23)
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Fig. 2.2 Left: Directions of forces and coordinates in true spherical ge-
ometry. g is the apparent gravity (including the centrifugal force, C ) and
its horizontal component is evidently non-zero. Right: a modified coordi-
nate system, in which the vertical direction is defined by the direction of g,
and so the horizontal component of g is identically zero. The dashed line
schematically indicates a surface of constant geopotential. The differences
between the direction of g and the direction of the radial coordinate, and
between the sphere and the geopotential surface, are much exaggerated
and in reality are similar to the thickness of the lines themselves.

where ggrav is the gravitational force due to the gravitational attraction of the earth and
r? D r cos# . Both gravity and centrifugal force are potential forces and therefore we
may define the geopotential, ˚ , such that

g D �r˚ (2.24)

Surfaces of constant ˚ are not quite spherical because r?, and hence the centrifugal
force, vary with latitude (Fig. 2.2).

The components of the centrifugal force parallel and perpendicular to the radial
direction are ˝2r cos2 # and ˝2r cos# sin# . Newtonian gravity is much larger than
either of these, and at the earth’s surface the ratio of centrifugal to gravitational terms is
approximately, and no more than,

˛ �
˝2a

g
�
.7:27 � 10�5/2 � 6:4 � 106

10
� 3 � 10�3 (2.25)

(Note that at the equator and pole the horizontal component of the centrifugal force
is zero and the effective gravity does point toward the center of the earth.) The angle
between g and the line to the center of the earth is given by a similar expression and so is
also small, typically around 3�10�3 radians. However, the horizontal component of the
centrifugal force is still large compared to the Coriolis force, their ratio in mid-latitudes
being given by

Horizontal centrifugal force
Coriolis force

�
˝2a cos# sin#

2˝u
�
˝a

4juj
� 10; (2.26)
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using u D 10 m s�1. The centrifugal term therefore dominates over the Coriolis term,
and is largely balanced by a pressure gradient force. Thus, if we adhered to true spher-
ical coordinates, both the horizontal and radial components of the momentum equation
would be dominated by a static balance between a pressure gradient and gravity or cen-
trifugal terms. Although in principle there is nothing wrong with writing the equations
this way, it obscures the dynamical balances involving the Coriolis force and pressure
that determine the large-scale horizontal flow.

A way around this problem is to use the direction of the geopotential force to de-
fine the vertical direction, and then to regard the surfaces of constant ˚ as being true
spheres.2 The horizontal component of apparent gravity is then identically zero, and
we have traded a potentially large dynamical error for a very small geometric error.
The geopotential ˚ is then a function of the vertical coordinate alone, and for many
purposes we can just take ˚ D gz. In fact, over time, the earth has developed an equa-
torial bulge to compensate for and neutralize the centrifugal force, so that the effective
gravity does in fact act in a direction virtually normal to the earth’s surface; that is, the
surface of the earth is an oblate spheroid of nearly constant geopotential and, because
the oblateness is very small (the polar diameter is about 12,714 km, whereas the equato-
rial diameter is about 12,756 km) using spherical coordinates is a very accurate way to
map the spheroid. The direction normal to geopotential surfaces, the local vertical, is,
in this approximation, taken to be the direction of increasing r in spherical coordinates.
If the angle between apparent gravity and a natural direction of the coordinate system
were not small then more heroic measures would be called for. Note, though, that the
equatorial bulge is not a sine qua non of this approximation: if the solid earth were a
true sphere the dynamics of the atmosphere would be virtually unaltered, and we would
use the same equations to describe that motion, with a similar small geometric error in
the coordinates.

2.2.2 Some identities in spherical coordinates

The location of a point is given by the coordinates .�; #; r/ where � is the angular
distance eastward (i.e., longitude), # is angular distance poleward (i.e., latitude) and r is
the radial distance from the center of the earth. (See Fig. 2.3. In many fields co-latitude
is used as a spherical coordinate, but meteorology and oceanography use latitude.) If a

is the radius of the earth, then we also define z D r � a. At a given location we may
also define the Cartesian increments .ıx; ıy; ız/ D .r cos#ı�; rı#; ır/.

For a scalar quantity � the material derivative in spherical coordinates is

D�
Dt

D
@�

@t
C

u

r cos#
@�

@�
C
v

r

@�

@#
C w

@�

@r
; (2.27)

where the velocity components corresponding to the coordinates �; #; r/ are

.u; v; w/ �

�
r cos#

D�
Dt
; r

D#
Dt
;

Dr

Dt

�
: (2.28)

That is, u is the zonal velocity, v is the meridional velocity and w the vertical velocity.
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Figure 2.3 The spherical co-
ordinate system. The orthogo-
nal unit vectors i, j and k point
in the direction of increasing
longitude �, latitude # , and
altitude z. Locally, one may
apply a Cartesian system with
variables x, y and z measur-
ing distances along i, j and k.

If we define .i; j;k/ to be the unit vectors in the direction of increasing .�; #; r/ then

v D iu C jv C kw: (2.29)

Note also that Dr=Dt D Dz=Dt .
The divergence of a vector B D iB� C jB# C kBz is

r � B D
1

cos#

�
1

r

@B�

@�
C

1

r

@

@#
.B# cos#/C

cos#
r2

@

@r
.r2Br /

�
: (2.30)

The vector gradient of a scalar is:

r� D i
1

r cos#
@�

@�
C j

1

r

@�

@#
C k

@�

@r
(2.31)

The Laplacian of a scalar is:

r
2� � r � r� D

1

r2 cos#

�
1

cos#
@2�

@�2
C

@

@#

�
cos#

@�

@#

�
C cos#

@

@r

�
r2 @�
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��
:

(2.32)
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The curl of a vector is:

curl B D r � B D
1

r2 cos#

ˇ̌̌̌
ˇ̌ i r cos# j r k

@=@� @=@# @=@r

B�r cos# B#r Br

ˇ̌̌̌
ˇ̌ (2.33)

The vector Laplacian r2B (used for example when calculating viscous terms in the
momentum equation) may be obtained from the vector identity:

r
2B D r.r � B/ � r � .r � B/ (2.34)

Only in Cartesian coordinates does this take the simple form,

r
2B D

@2B

@x2
C
@2B

@y2
C
@2B

@z2
: (2.35)

The expansion in spherical coordinates is rather uninformative and rarely needed.

Rate of change of unit vectors

In spherical coordinates the defining unit vectors are i, the unit vector pointing eastward,
parallel to a line of latitude; j is the unit vector pointing polewards, parallel to a merid-
ian; and k, the unit vector pointing radially outward. The directions of these vectors
change with location, and in fact this is the case in nearly all coordinate systems, with
the notable exception of the Cartesian one, and thus their material derivative is not zero.
One way to evaluate this is to consider geometrically how the coordinate axes change
with position (2.5). We will approach the problem a little differently, by first obtaining
the effective rotation rate˝flow, relative to the earth, of a unit vector as it moves with the
flow, and then applying (2.3). Specifically, let the fluid velocity be v D .u; v; w/. The
meridional component, v, produces a displacement rı# D vıt , and this give rise a lo-
cal effective vector rotation rate around the local zonal axis of �.v=r/i, the minus sign
arising because a displacement in the direction of the north pole is produced by negative
rotational displacement around the i axis. Similarly, the zonal component, u, produces
a displacement ı�r cos# D uıt and so an effective rotation rate, but now about the
earth’s rotation axis, of u=.r cos#/. Now, a rotation around the earth’s rotation axis
may be written as (see Fig. 2.4)

˝ D ˝.j cos# C k sin#/: (2.36)

If the scalar rotation rate is not ˝ but is u=.r cos#/, then the vector rotation rate is

u

r cos#
.j cos# C k sin#/ D j

u

r
C k

u tan#
r

: (2.37)

Thus, the total rotation rate of a vector that moves with the flow is

˝flow D �i
v

r
C j

u

r
C k

u tan#
r

: (2.38)
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Applying (2.3) to (2.38), we find

Di
Dt

D ˝flow � i D
u

r cos#
.j sin# � k cos#/; (2.39a)

Dj
Dt

D ˝flow � j D �i
u

r
tan# � k

v

r
; (2.39b)

Dk
Dt

D ˝flow � k D i
u

r
C j

v

r
: (2.39c)

2.2.3 Equations of motion

Mass Conservation and Thermodynamic Equation

The mass conservation equation, (1.38a), expanded in spherical co-odinates, is
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D 0

(2.40)

Equivalently, using the form (1.38b), this is
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.r2w�/ D 0: (2.41)

The thermodynamic equation, (1.112), is a tracer advection equation. Thus, using
(2.27), its (adiabatic) spherical coordinate form is
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r cos#
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@�
C
v

r

@�

@#
C w

@�

@r
D 0; (2.42)

and similarly for tracers such as water vapour or salt.

Momentum Equation

Recall that inviscid momentum equation is:

Dv
Dt

C 2˝ � v D �
1

�
rp � r˚: (2.43)

where ˚ is the geopotential. In spherical coordinates the directions of the coordinate
axes change with position and so the component expansion of (2.43) is

Dv
Dt

D
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Dt
i C

Dv
Dt

j C
Dw
Dt

k C u
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C v
Dj
Dt

C w
Dk
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(2.44a)

D
Du

Dt
i C

Dv
Dt

j C
Dw
Dt

k C˝flow � v (2.44b)
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Fig. 2.4 a) On the sphere the rotation vector ˝ can be decomposed into
two components, one in the local vertical and one in the local horizontal,
pointing toward the pole. That is, ˝ D ˝yj C ˝z k where ˝y D ˝ cos#
and ˝z D ˝ sin# . In geophysical fluid dynamics, the rotation vector in
the local vertical is often the more important component in the horizontal
momentum equations. On a rotating disk, (b), the rotation vector ˝ is
parallel to the local vertical k.

using (2.39). Using either (2.44a) and the expressions for the rates of change of the
unit vectors given in (2.39), or (2.44b) and the expression for˝flow given in (2.38), this
becomes
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uv tan#
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�
:

(2.45)

Using the definition of a vector cross product the Coriolis term is:

2˝ � v D

ˇ̌̌̌
ˇ̌ i j k

0 2˝ cos# 2˝ sin#
u v w

ˇ̌̌̌
ˇ̌

D i .2˝w cos# � 2˝v sin#/C j 2˝u sin# � k 2˝u cos#: (2.46)

Using (2.45) and (2.46), and the gradient operator given by (2.31), the momentum equa-
tion (2.43) becomes:
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r cos#
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�r cos#
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; (2.47a)
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; (2.47b)
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u2 C v2
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� 2˝u cos# D �

1

�

@p

@r
� g: (2.47c)

The terms involving ˝ are called Coriolis terms, and the quadratic terms on the left-
hand sides involving 1=r are often called metric terms.
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2.2.4 The primitive equations

The so-called primitive equations of motion are simplifications of the above equations
frequently used in atmospheric and oceanic modelling.3 Three related approximations
are involved; these are:

(i) The hydrostatic approximation. In the vertical momentum equation the gravita-
tional term is assumed to be balanced by the pressure gradient term, so that

@p

@z
D ��g: (2.48)

The advection of vertical velocity, the Coriolis terms, and the metric term .u2 C

v2/=r are all neglected.

(ii) The shallow-fluid approximation. We write r D a C z where the constant a is
the radius of the earth and z increases in the radial direction. The coordinate r is
then replaced by a except where it used as the differentiating argument. Thus, for
example,

1

r2

@.r2w/

@r
!

@w

@z
: (2.49)

(iii) The traditional approximation. Coriolis terms in the horizontal momentum equa-
tions involving the vertical velocity, and the still smaller metric terms uw=r and
vw=r , are neglected.

The second and third of these approximations should be taken, or not, together, the
underlying reason being that they both relate to the presumed small aspect ratio of the
motion, so the approximations succeed or fail together. If we make one approximation
but not the other then we are being asymptotically inconsistent, and angular momentum
and energy conservation are not assured [see section 2.2.7]. The hydrostatic approxi-
mation also depends on the small aspect ratio of the flow but in a slightly different way.
For large-scale flow in the terrestrial atmosphere and ocean all three approximations
are in fact all very accurate approximations. We defer a more complete treatment until
section 2.7, in part because a treatment of the hydrostatic approximation is done most
easily in the context of the Boussinesq equations, derived in section 2.4.

Making these approximations, the momentum equations become
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We note the ubiquity of the factor 2˝ sin# , and take the opportunity to define the
Coriolis parameter, f � 2˝ sin# .

The corresponding mass conservation equation for a shallow fluid layer is:
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(2.52)

or equivalently,
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2.2.5 Primitive equations in vector form

The primitive equations may be written in a compact vector form provided we make
a slight reinterpretation of the material derivative of the coordinate axes. Let u D

ui C vj C 0 k be the horizontal velocity. The primitive equations (2.50a) and (2.50b)
may be written as

Du

Dt
C f � u D �

1

�
rzp (2.54)

where f D f k D 2˝ sin#k and rzp D Œ.a cos#/�1@p=@�; a�1@p=@# �, the gradi-
ent operator at constant z. In (2.54) the material derivative of the horizontal velocity is
given by
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where instead of (2.39) we have
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D e̋flow � i D j
u tan#

a
; (2.56a)

Dj
Dt

D e̋flow � j D �i
u tan#

a
; (2.56b)

where e̋flow D ku tan#=a [which is the vertical component of (2.38), with r replaced
by a.]. The advection of the horizontal wind u is still by the three-dimensional velocity
v. The vertical momentum equation is the hydrostatic equation, (2.50c), and the mass
conservation equation is

D�
Dt

C �r � v D 0 or
@�

@t
C r � .�v/ D 0: (2.57)

where D=Dt on a scalar is given by (2.51), and the second expression is written out in
full in (2.53).
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2.2.6 The vector invariant form of the momentum equation

The ‘vector invariant’ form of the momentum equation is so-called because it appears
to take the same form in all coordinate systems — there is no advective derivative of the
coordinate system to worry about. Restricting attention to the incompressible case, with
the aid of the identity .v � r/v D �v�!C r.v2=2/ the three dimensional momentum
equation may be written:

@v

@t
C .2˝ C!/ � v D �rB: (2.58)

where B D � C v2=2 C ˚ is the Bernoulli function and ! is the relative vorticity,
! D r � v. In spherical coordinates this is:
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Making the traditional approximation, and considering the horizontal and vertical
components of the momentum equation separately, gives
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C .2˝ C k�/ � u C w
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@z
D �rzBh (2.61)

where u D .u; v; 0/, ˝ D k˝ sin# , Bh D � C u2=2, rz is the horizontal gradient
operator (the gradient at a constant value of z), and using (2.60), � is given by

� D
1

a cos#
@v

@�
�

1

a cos#
@

@#
.u cos#/ D

1

a cos#
@v

@�
�

1

a

@u

@#
C

u

a
tan#: (2.62)

The separate components of the momentum equation are then found to be:

@u

@t
� .f C �/v C w

@u

@z
D �

1

a cos#
@Bh

@�
; (2.63)

and
@v

@t
C .f C �/u C w

@v

@z
D �

1

a

@Bh

@#
: (2.64)

Similar expressions arise in a compressible fluid, with a different form for the right-hand
side (problem 2.2).

2.2.7 Angular Momentum

The zonal momentum equation can be usefully expressed as a statement about axial an-
gular momentum; that is, angular momentum about the rotation axis. The zonal angular
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momentum per unit mass is the component of angular momentum in the direction of
the axis of rotation and it is given by, without making any shallow atmosphere approxi-
mation,

m D .u C˝r cos#/r cos#: (2.65)

The evolution equation for this quantity follows from the zonal momentum equation
and has the simple form

Dm

Dt
D �

1

�

@p

@�
(2.66)

where the material derivative is

D
Dt

D
@

@t
C

u

r cos#
@

@�
C
v

r

@

@#
C w

@

@r
: (2.67)

Using the mass continuity equation, this can be written as

D�m

Dt
C �mr � v D �

@p

@�
(2.68)

or

@�m

@t
C

1

r cos#
@.�um/

@�
C

1

r cos#
@

@#
.�vm cos#/C

@

@z
.�mw/ D �

@p

@�
: (2.69)

This is an angular momentum conservation equation.
If the fluid is confined to a shallow layer near the surface of a sphere, then we may

replace r , the radial coordinate, by a, the radius of the sphere, in the definition of m,
and we define zm � .u C˝a cos#/a cos# . Then (2.66) is replaced by

D zm

Dt
D �

1

�

@p

@�
(2.70)

where now
D
Dt

D
@

@t
C

u

a cos#
@

@�
C
v

a

@

@#
C w

@

@z
: (2.71)

Using mass continuity this may be written as

@� zm

@t
C

u

a cos#
@ zm

@�
C
v

a

@ zm

@#
C w

@ zm

@z
D �

1

�

@p

@�
: (2.72)

which is the appropriate angular momentum conservation equation for a shallow atmo-
sphere.

* From angular momentum to the spherical component equations

A somewhat indirect way to derive the three components of the momentum equation
in spherical polar coordinates is to begin with (2.66) and the principle of conserva-
tion of energy. That is, we take the equations for conservation of angular momentum
and energy as true a priori and demand that the forms of the momentum equation be
constructed to satisfy these. Expanding the material derivative in (2.66), noting that
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Dr=Dt D w and Dcos#=Dt D �.v=r/ sin# , immediately gives (2.47a). Multiplica-
tion by u then yields

u
Du

Dt
� 2˝uv sin# C 2˝uw cos# �

u2v tan#
r

C
u2w

r
D �

u

�r cos#
@p

@�
: (2.73)

Now suppose that the meridional and vertical momentum equations are of the form

Dv
Dt

C Coriolis and metric terms D �
1

�r

@p

@#
(2.74a)

Dw
Dt

C Coriolis and metric terms D �
1

�

@p

@r
; (2.74b)

but that we do not know what form the Coriolis and metric terms take. To determine
that form, construct the kinetic energy equation by multiplying these equations by v
and w. Now, the metric terms must vanish when we sum the resulting equations, so that
(2.74a) must contain the Coriolis term 2˝u sin# as well as the metric term u2 tan#=r ,
and (2.74b) must contain a �2˝u cos� as well as the metric term u2=r . But if (2.74b)
contains the term u2=r it must also contain the term v2=r by isotropy, and therefore
(2.74a) must also contain the term vw=r . In this way, (2.47) is precisely reproduced,
although the skeptic might argue that the uniqueness of the form has not been proven.

A particular advantage of this approach arises in determining the appropriate mo-
mentum equations that conserve angular momentum and energy in the shallow-fluid
approximation. We begin with (2.70) and expand to obtain (2.50a). Multiplying by u

gives

u
Du

Dt
� 2˝uv sin# �

u2v tan#
a

D �
u

�a cos#
@p

@�
: (2.75)

Evidently, the meridional momentum equation must contain the Coriolis term 2˝u sin#
and the metric term u2 tan#=a, but the vertical momentum equation must have neither
of the metric terms appearing in (2.47c). Thus we deduce the following equations:

Du

Dt
�

�
2˝ sin# C

u tan#
a

�
v D �

1

�a cos#
@p

@�
(2.76a)

Dv
Dt

C

�
2˝ sin# C

u tan#
a

�
v D �

1

�a

@p

@#
(2.76b)

Dw
Dt

D �
1

�

@�

@r
� g: (2.76c)

This equation set, when used in conjunction with the thermodynamic and mass con-
tinuity equations, conserves appropriate forms of angular momentum and energy. In
the hydrostatic approximation the material derivative of w in (2.76c) is additionally
neglected. Thus, the hydrostatic approximation is mathematically and physically con-
sistent with the shallow-fluid approximation, but it is an additional approximation with
slightly different requirements that one may choose, rather than being required, to make.
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From an asymptotic perspective, the difference lies in the small parameter necessary for
either approximation to hold, namely

Shallow fluid and traditional approximations:  �
H

a
� 1 (2.77a)

Small aspect ratio for hydrostatic approximation: ˛ �
H

L
� 1: (2.77b)

where L is the horizontal scale of the motion and a is the radius of the earth. For
hemispheric or global scale phenomena L � a and the two approximations coincide.
(Requirement (2.77b) for the hydrostatic approximation is derived in section 2.7.)

2.3 CARTESIAN APPROXIMATIONS: THE TANGENT PLANE

2.3.1 The f-plane

Although the rotation of the earth is central for many dynamical phenomena, the spheric-
ity of the earth is not always so. This is especially true for phenomena on a scale some-
what smaller than global where the use of spherical coordinates becomes awkward, and
it is more convenient to use a locally Cartesian representation of the equations. Refer-
ring to Fig. 2.4 we will define a plane tangent to the surface of the earth at a latitude #0,
and then use a Cartesian coordinate system .x;y; z/ to describe motion on that plane.
For small excursions on the plane, .x;y; z/ � .a� cos#0; a.# � #0/; z/. Consistently,
the velocity is v D .u; v; w/, so that u,v and w are the components of the velocity in
the tangent plane. These are approximately in the east-west, north-south and vertical
directions, respectively.

The momentum equations for flow in this plane are then

@u

@t
C .v � r/u C 2˝yw � 2˝zv D �

1

�

@p

@x
; (2.78a)

@v

@t
C .v � r/v C 2˝zu D �

1

�

@p

@y
; (2.78b)

@w

@t
C .v � r/w C 2.˝xv �˝yu/ D �

1

�

@p

@z
� g; (2.78c)

where the rotation vector ˝ D ˝xi C˝yj C˝zk and ˝x D 0, ˝y D ˝ cos#0 and
˝z D ˝ sin#0. If we make the traditional approximation, and so ignore the compo-
nents of˝ not in the direction of the local vertical, then

Du

Dt
� f0v D �

1

�

@p

@x
; (2.79a)

Dv
Dt

C f0u D �
1

�

@p

@y
; (2.79b)

Dw
Dt

D �
1

�

@p

@z
� �g: (2.79c)
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where f0 D 2˝z sin#0. Defining the horizontal velocity vector u D .u; v; 0/, the first
two equations may also be written as

Du

Dt
C f0 � u D �

1

�
rzp; (2.80)

where Du=Dt D @u=@t C v � ru, f0 D 2˝ sin#0k D f0k, and k is the direction
perpendicular to the plane (it does not change its orientation with latitude). These equa-
tions are, evidently, exactly the same as the momentum equations in a system in which
the rotation vector is aligned with the local vertical, as illustrated in the right panel in
Fig. 2.4. They will describe flow on the surface of a rotating sphere to a good approxi-
mation provided the flow is of limited latitudinal extent so that the effects of sphericity
are unimportant. This is known as the f-plane approximation since the Coriolis param-
eter is a constant. We may in addition make the hydrostatic approximation, in which
case (2.79c) becomes the familiar @p=@z D ��g.

2.3.2 The beta-plane approximation

The magnitude of the vertical component of rotation varies with latitude, and this has
important dynamical consequences. We can approximate this effect by allowing the
effective rotation vector to vary. Thus, noting that, for small variations in latitude,

f D 2˝ sin# � 2˝ sin#0 C 2˝ cos#0.# � #0/; (2.81)

then on the tangent plane we may mimic this by allowing the Coriolis parameter to vary
as

f D f0 C ˇy ; (2.82)

where f0 D 2˝ sin#0 and ˇ D @f=@y D .2˝ cos#0/=a. This important approx-
imation is known as the beta-plane, or ˇ-plane, approximation. It captures the the
most important dynamical effects of sphericity, without the complicating geometric ef-
fects, which are not essential to describe many phenomena. The momentum equations
(2.79a), (2.79b) and (2.79c) (or its hydrostatic counterpart) are unaltered, save that f0

is replaced by f0 Cˇy to represent a varying Coriolis parameter. Thus, sphericity com-
bined with rotation is dynamically equivalent to a differentially rotating system. For
future reference, we write down the ˇ-plane horizontal momentum equations:

Du

Dt
C f � u D �

1

�
rzp; (2.83)

where f D .f0 C ˇy/yk. In component form this equation becomes

Du

Dt
� f v D �

1

�

@p

@x
;

Dv
Dt

C f u D �
1

�

@p

@y
; (2.84a,b)

The mass conservation, thermodynamic and hydrostatic equations in the ˇ-plane ap-
proximation are the same as the usual Cartesian (f -plane) forms of those equations.
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2.4 EQUATIONS FOR A STRATIFIED OCEAN: THE BOUSSINESQ APPROXIMA-
TION

The density variations in the ocean are quite small compared to the mean density, and
we may exploit this to derive somewhat simpler but still quite accurate equations of
motion. Let us first examine how much density does vary in the ocean.

2.4.1 Variation of density in the ocean

The variations of density in the ocean are due to three effects: the compression of water
by pressure (which we denote as�p�), the thermal expansion of water if its temperature
changes (�T �), and the haline contraction if its salinity changes (�S�). How big are
these? An appropriate equation of state to approximately evaluate these effects is the
linear one

� D �0

�
1 � ˇT .T � T0/C ˇS .S � S0/C

p

�0c2
s

�
; (2.85)

where ˇT � 2 � 10�4 K�1, ˇS � 10�3 psu�1 and cs � 1500 m s�1 (see the table on
page 39). The three effects are then:

Pressure compressibility: We have�p� � �p=c2 � �0gH=c2 where H is the depth
and the pressure change is quite accurately evaluated using the hydrostatic ap-
proximation. Thus,

j�p�j

�0

� 1 if
gH

c2
� 1; (2.86)

or if H � c2=g. The quantity c2=g � 200 km is the density scale height
of the ocean. Thus, the pressure at the bottom of the ocean (say H D 10 km
in the deep trenches), enormous as it is, is insufficient to compress the water
enough to make a significant change in its density. Changes in density due to
dynamical variations of pressure are small if the Mach number is small, and
this is also the case.

Thermal expansion: We have �T � � �ˇT �0�T and therefore

j�T �j

�0

� 1 if ˇT�T � 1: (2.87)

For �T D 20 K, ˇT�T � 4 � 10�3, and evidently we would require tem-
perature differences of order ˇ�1

T
, or 5000 K to obtain order one variations in

density.

Saline contraction: We have �S� � ˇS�0�S and therefore

j�S�j

�0

� 1 if ˇS�S � 1: (2.88)

As changes is salinity in the ocean rarely exceed 5 psu, for which ˇS�S D

5 � 10�3, the fractional change in the density of seawater is correspondingly
very small.
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Evidently, fractional density changes in the ocean are very small.

2.4.2 The Boussinesq equations

The Boussinesq equations are a set of equations that exploit the smallness of density
variations in many liquids.4 To set notation we write

� D �0 C ı�.x;y; z; t/ (2.89a)

D �0 C y�.z/C �0.x;y; z; t/ (2.89b)

D z�.z/C �0.x;y; z; t/ (2.89c)

where �0 is a constant and we assume that

jy�j; j�0
j; jı�j � �0: (2.90)

We need not assume that j�0j � jy�j, but this is often the case in the ocean. To obtain
the Boussinesq equations we will just use (2.89a), but (2.89c) will be useful for the
anelastic equations considered later.

Associated with the reference density is a reference pressure that is defined to be in
hydrostatic balance with it. That is,

p D p0.z/C ıp.x;y; z; t/ (2.91a)

D zp.z/C p0.x;y; z; t/; (2.91b)

where jıpj � p0, jp0j � zp and

dp0

dz
� �g�0;

d zp

dz
� �g z�: (2.92a,b)

Note that rzp D rzp0 D rzıp and that p0 � zp if jy�j � �0.

Momentum equations

To obtain the Boussinesq equations we use � D �0 C ı�, and assume ı�=�0 is small.
Without approximation, the momentum equation can be written as

.�0 C ı�/

�
Dv
Dt

C 2˝ � v

�
D �rıp �

@p0

@z
k � g.�0 C ı�/k; (2.93)

and using (2.92a) this becomes, again without approximation,

.�0 C ı�/

�
Dv
Dt

C 2˝ � v

�
D �rıp � gı�k: (2.94)

If density variations are small this becomes

�
Dv
Dt

C 2˝ � v

�
D �r� C bk ; (2.95)
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where � D ıp=�0 and b D �gı�=�0 is the buoyancy. Note that we should not and
do not neglect the term gı�, for there is no reason to believe it to be small (ı� may
be small, but g is big). Eq. (2.95) is the momentum equation in the Boussinesq ap-
proximation, and it is common to say that the Boussinesq approximation ignores all
variations of density of a fluid in the momentum equation, except when associated with
the gravitational term.

For most large-scale motions in the ocean the deviation pressure and density fields
are also approximately in hydrostatic balance, and in that case the vertical component
of (2.95) becomes

@�

@z
D b: (2.96)

A condition for (2.96) to hold is that vertical accelerations are small compared to
gı�=�0, and not compared to the acceleration due to gravity itself. For more discussion
of this point, see section 2.7.

Mass Conservation

The unapproximated mass conservation equation is

Dı�
Dt

C .�0 C ı�/r � v D 0: (2.97)

Provided that time scales advectively — that is to say that D=Dt scales in the same way
as v � r — then we may approximate this equation by

r � v D 0 ; (2.98)

which is the same as that for a constant density fluid. This absolutely does not allow
one to go back and use (2.97) to say that Dı�=Dt D 0; the evolution of density is
given by the thermodynamic equation in conjunction with an equation of state, and this
should not be confused with the mass conservation equation. Note that in eliminating
the time-derivative of density we eliminate the possibility of sound waves.

Thermodynamic equation and equation of state

The Boussinesq equations are closed by the addition of an equation of state, a thermo-
dynamic equation and, as appropriate, a salinity equation. Neglecting salinity for the
moment, a useful starting point is to write the thermodynamic equation, (1.120), as

D�
Dt

�
1

c2

Dp

Dt
D

PQ

.@�=@�/pT
� � PQ

�
�0ˇT

cp

�
(2.99)

using .@�=@�/p D .@�=@T /p.@T=@�/p � cp=.T�0ˇT /.
Given the expansions (2.89a) and (2.91a) this can be written as

Dı�
Dt

�
1

c2

Dp0

Dt
D � PQ

�
�0ˇT

cp

�
; (2.100)
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or, using (2.92a),
D
Dt

�
ı�C

�0g

c2
z
�

D � PQ

�
�0ˇT

cp

�
; (2.101)

as in (1.123). The severest approximation to this is to neglect the second term in brack-
ets, and noting that b D �gı�=�0 we obtain

Db

Dt
D Pb ; (2.102)

where Pb D gˇT
PQ=cp . The momentum equation (2.95), mass continuity equation (2.98)

and thermodynamic equation (2.102) then form a closed set, called the simple Boussi-
nesq equations.

A somewhat more accurate approach is to include the compressibility of the fluid
that is due to the hydrostatic pressure. Eq. (2.101) suggests that we define the poten-
tial density as ı�pot D ı� C �0gz=c2

s the potential buoyancy, the buoyancy based on
potential density, as

b� � �g
ı�pot

�0

D �
g

�0

�
ı�C

�0gz

c2
s

�
D b � g

z

H�

; (2.103)

where H� D c2
s =g. The thermodynamic equation, (2.101), may be written

Db�

Dt
D Pb� ; (2.104)

where Pb� D Pb. Buoyancy itself is obtained from b� by the ‘equation of state’, b D

b� C gz=H�.
In many applications we may need to use a still more accurate equation of state. In

that case (see section 1.5.5) we replace (2.102) by the thermodynamic equations

D�
Dt

D P�;
DS

Dt
D PS ; (2.105a,b)

where � is the potential temperature and S is salinity, along with an equation of state.
This has the the general form b D b.�;S;p/, but to be consistent with the level of
approximation in the other Boussinesq equations we should replace p by the hydrostatic
pressure calculated with the reference density, that is by ��gz, and the equation of state
takes the form

b D b.�;S; z/ : (2.106)

An example of (2.106) is (1.179) taken with the definition of buoyancy b D �gı�=�0.
The closed set of equations (2.95), (2.98), (2.105) and (2.106) are the general Boussi-
nesq equations. (If we were to use the equation of state b D b.�;S;p/, we might
call the resulting equations the ‘pseudo-Boussinesq’ set.) Using an accurate equation of
state and the Boussinesq approximation is the procedure used in many comprehensive
ocean general circulation models. The Boussinesq equations, which with the hydro-
static and traditional approximations are often considered to be the oceanic primitive
equations, are summarized in the shaded box.
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Summary of Boussinesq Equations

The simple Boussinesq equations are, for an inviscid fluid:

Momentum equations:
Dv
Dt

C f � v D �r� C bk (B.1)

Mass conservation: r � v D 0 (B.2)

Buoyancy equation:
Db

Dt
D Pb (B.3)

A more general form replaces the buoyancy equation by:

Thermodynamic equation:
D�
Dt

D P� (B.4)

Salinity equation:
DS

Dt
D PS (B.5)

Equation of state: b D b.�;S; z/ (B.6)

* Mean stratification and the buoyancy frequency

The processes that cause density to vary in the vertical often differ from those that
cause it to vary in the horizontal. For this reason it is sometimes useful to write � D

�0 C y�.z/ C �0.x;y; z; t/ and define zb.z/ � �g y�=�0 and b0 � �g�0=�0. Using the
hydrostatic equation to evaluate pressure, the thermodynamic equation (2.99) becomes,
to a good approximation,

Db0

Dt
C N 2w D 0; (2.107)

where

N 2.z/ D

 
dzb

dz
�

g2

c2
s

!
D

dzb�

dz
: (2.108)

where zb� D zb � gz=H�. The quantity N 2 is a measure of the mean stratification of the
fluid, and is equal to the vertical gradient of the mean potential buoyancy. N is known
as the buoyancy frequency, something we return to in section 2.9. Equations (2.107)
and (2.108) also hold in the simple Boussinesq equations, but with c2

s D 1.

2.4.3 Energetics of the Boussinesq system
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In a uniform gravitational field but with no other forcing or dissipation, we write the
simple Boussinesq equations as

Dv
Dt

C 2˝ � v D bk � r�; r � v D 0;
Db

Dt
D 0: (2.109a,b,c)

From (2.109a) and (2.109b) the kinetic energy density evolution (c.f., section 1.9) is
given by

1

2

Dv2

Dt
D bw � r � .�v/ (2.110)

where the constant reference density �0 is omitted. Let us now define the potential ˚
such that r˚ D �k (so ˚ D �z) and so

D˚
Dt

D r � .v˚/ D �w: (2.111)

Using this and (2.109c) gives
D
Dt
.b˚/ D �wb: (2.112)

Adding this to (2.110) and expanding the material derivative gives

@

@t

�
1

2
v2

C b˚

�
C r �

�
v

�
1

2
v2

C b˚ C �

��
D 0: (2.113)

This constitutes an energy equation for the Boussinesq system, and may be compared to
(1.194). (See also problem 2.12.) The energy density (divided by �0) is just v2=2Cb˚ .
What does the second term represent? Its integral, multiplied by �0, is the potential
energy of the flow minus that of the basic state, or

R
g.� � �0/z dz. If there were a

heating term on the right-hand side of (2.109c) this would directly provide a source of
potential energy, rather than internal energy as in the compressible system. Because the
fluid is incompressible, there is no conversion from kinetic and potential energy into
internal energy.

* Energetics with a general equation of state

Now consider the energetics of the general, adiabatic, Boussinesq equations. Suppose
first that we allow the equation of state to be a function of pressure; the equations are
motion are then (2.109) except that (2.109c) is replaced by

D�
Dt

D 0;
DS

Dt
D 0; b D b.�;S; �/: (2.114a,b,c)

A little algebraic experimentation will reveal that no energy conservation law of the
form (2.113) generally exists for this system! The problem arises because, by requiring
that the fluid be incompressible, we eliminate the proper conversion of internal energy
to kinetic energy. However, if we use the consistent approximation b D b.�;S; z/, the
system conserves an energy, as we now show.5

Define the potential, ˘ , by the integral of b at constant potential temperature and
salinity

˘.�;S; z/ � �

Z
b dz: (2.115)
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Taking its material derivative gives

D˘
Dt

D

�
@˘

@�

�
S;z

D�
Dt

C

�
@˘

@S

�
�;z

DS

Dt
C

�
@˘

@z

�
�;S

Dz

Dt
D �bw; (2.116)

using (2.114a,b). Combining (2.116) and (2.110) gives

@

@t

�
1

2
v2

C˘

�
C r �

�
v

�
1

2
v2

C˘ C �

��
D 0: (2.117)

Thus, energetic consistency is maintained with an arbitrary equation of state, provided
the pressure is replaced by a function of z. If b is not an explicit function of z in this
equation of state, the conservation law is identical to (2.113).

2.5 EQUATIONS FOR A STRATIFIED ATMOSPHERE: THE ANELASTIC APPROXI-
MATION

2.5.1 Preliminaries

In the atmosphere the density varies significantly, especially in the vertical. However
deviations of both � and p from a statically balanced state are often quite small, and
the relative vertical variation of potential temperature is also small. We can usefully
exploit these observations to give a somewhat simplified set of equations, useful both
for theoretical and numerical analysis because sound waves are eliminated by way of
an ‘anelastic’ approximation.6 To begin we set

� D z�.z/C ı�.x;y; z; t/; p D zp.z/C ıp.x;y; z; t/ (2.118)

where we assume that jı�j � jz�j and we define zp such that

@ zp

@z
� �g z�.z/: (2.119)

The notation is similar to that for the Boussinesq case except that, importantly, the den-
sity basic state is now a (given) function of vertical coordinate. As with the Boussinesq
case, the idea is to ignore dynamic variations of density (i.e., of ı�) except where as-
sociated with gravity. First recall a couple of ideal gas relationships involving potential
temperature, � , and entropy s (divided by cp , so s � log � ), namely

s � log � D log T �
R

cp

log p D
1


log p � log �; (2.120)

where  D cp=cv , implying

ıs D
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�
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�

1



ıp

zp
�
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z�
(2.121)

Further, if zs � �1 log zp � log z� then
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D �

g z�

 zp
�

1

z�

d z�

dz
: (2.122)

In the atmosphere, the left-hand side is, typically, much smaller than either of the two
terms on the right-hand side.
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2.5.2 The Momentum equation

The exact inviscid horizontal momentum equation is

.z�C �0/
Du

Dt
C f � u D �rzıp: (2.123)

Neglecting �0 where it appears with z� leads to

Du

Dt
C f � u D �rz�; (2.124)

where � D ıp=z�, and this is similar to the corresponding equation in the Boussinesq
approximation.

The vertical component of the inviscid momentum equation is, without approxima-
tion,

.z�C ı�/
Dw
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D �
@ zp

@z
�
@ıp

@z
� g z� � gı� D �

@ıp

@z
� gı�: (2.125)

using (2.118). Neglecting ı� on the left-hand-side we obtain
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: (2.126)

This is not a useful form for a gaseous atmosphere, since the variation of the mean
density cannot be ignored. However, we may eliminate ı� in favour of ıs using (2.121)
to give
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; (2.127)

and using (2.122) gives
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ıp

z�
: (2.128)

What have these manipulations gained us? Two things:
(i) The gravitational term now involves ıs rather than ı� which enables a more direct

connection with the thermodynamic equation.
(ii) The potential temperature scale height (� 100 km) in the atmosphere is much

larger than the density scale height (� 10 km), and so the last term in (2.128) is
small.

The second item thus suggests that we choose our reference state to be one of constant
potential temperature (see also problem 2.17). The term dzs=dz then vanishes and the
vertical momentum equation becomes

Dw
Dt

D gıs �
@�

@z
; (2.129)

where � D ıp=z�, ıs D ı�=z� and z� D �0, a constant. If we define a buoyancy by
ba � gıs D gı�=z� , then (2.124) and (2.129) have the same form as the Boussinesq
momentum equations, but with different definitions of b and �.
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2.5.3 Mass conservation

Using (2.118a) the mass conservation equation may be written, without approximation,
as

@ı�

@t
C r � Œ.z�C ı�/v� D 0: (2.130)

We neglect ı� where it appears with z� in the divergence term. Further, the local time
derivative will be small if time itself is scaled advectively (i.e., T � L=U and sound
waves do not dominate), giving

r � u C
1

z�

@

@z
.z�w/ D 0 (2.131)

It is here that the eponymous ‘anelastic approximation’ arises: the elastic compressibil-
ity of the fluid is neglected, and this serves to eliminate sound waves. For reference, in
spherical coordinates the equation is

1
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1

z�

@.wz�/

@z
D 0: (2.132)

In an ideal gas, the choice of constant potential temperature determines how the ref-
erence density z� varies with height. In some circumstances it is convenient to let z�

be a constant, �0 (effectively choosing a different equation of state), in which case the
anelastic equations become identical with the Boussinesq equations, although we may
continue to interpret the buoyancy in terms of potential temperature.

2.5.4 Thermodynamic equation

The thermodynamic equation for an ideal gas may be written

D ln �
Dt

D

PQ

T cp

: (2.133)

In the anelastic equations, � D z� C ı� where z� is constant, and the thermodynamic
equation is

Dıs
Dt

D

z�

T cp

PQ: (2.134)

Summarizing, the complete set of anelastic equations, with rotation but with no dissi-
pation or diabatic terms, is

Dv
Dt

C 2˝ � v D kba � r�

Dba

Dt
D 0

r � .z�v/ D 0

; (2.135)



82 Chapter 2. Effects of Rotation and Stratification

where ba D gıs D gı�=z� . The main difference between the anelastic and Boussinesq
sets of equations is in the mass continuity equation, and when z� D �0 D constant the
two equation sets are formally identical. However, whereas the Boussinesq approxima-
tion is a very good one for ocean dynamics, the anelastic approximation is much less so
for large-scale atmosphere flow: the constancy of the reference potential temperature
state is then not a particularly good approximation and so the deviations in density from
its reference profile are not especially small, leading to inaccuracies in the momentum
equation. Nevertheless, the anelastic equations have been used very productively in
limited area ‘large-eddy-simulations’ where one does not wish to make the hydrostatic
approximation but where sound waves are unimportant.7 The equations also provide a
good jumping-off point for theoretical studies and the still simpler models that will be
considered in the chapter 5.

2.5.5 * Energetics of the anelastic equations

Conservation of energy follows in much the same way as for the Boussinesq equations,
except that z� enters. Take the dot product of (2.135a) with z�v to obtain

z�
D
Dt

�1

2
v2
�

D �r � .� z�v/C ba z�w (2.136)

Now, define a potential ˚.z/ such that r˚ D �k, and so

z�
D˚
Dt

D �wz�: (2.137)

Combining this with the thermodynamic equation (2.135b) gives

z�
D.ba˚/

Dt
D �wba z�: (2.138)

Adding this to (2.136) gives
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or, expanding the material derivative,
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This equation has the form

@E

@t
C r � Œv.E C z��/� D 0 (2.141)

where E D z�.v2=2 C ba˚/ is the energy density of the flow. This is a consistent
energetic equation for the system, and when integrated over a closed domain the total
energy is evidently conserved. The total energy density comprises the kinetic energy
and a term z�ba˚ , which is analogous to the potential energy of a Boussinesq system.
However, it is not exactly equal to that because ba is the bouyancy based on potential
temperature, not density; rather, the term combines contributions from both the internal
energy and the potential energy.
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2.6 CHANGING VERTICAL COORDINATE

Although using z as a vertical coordinate is a natural choice given our Cartesian world-
view, it is not the only option, nor is it always the most useful one. Any variable
that has a one-to-one correspondence with z in the vertical, so any variable that varies
monotonically with z, could be used; pressure and, perhaps surprisingly, entropy, are
common choices. In the atmosphere pressure almost always falls monotonically with
height, and using it instead of z provides a useful simplification of the mass conserva-
tion and geostrophic relations, as well as a more direct connection with observations,
which are often taken at fixed values of pressure. (In the ocean pressure is almost the
same as height, because density is almost constant.) Entropy seems an exotic vertical
coordinate, but it is very useful in adiabatic flow, and we consider that in chapter 3.

2.6.1 Pressure coordinates

The primitive equations of motion for an ideal gas can be written,

Du

Dt
C f � u D �

1

�
rp; (2.142a)

@p

@z
D ��g; (2.142b)

D�
Dt

D 0; (2.142c)

D�
Dt

C �r � v D 0; (2.142d)

where p D �RT and � D T .pR=p/
R=cp , and pR is the reference pressure. These

equations can be put into a form similar to the Boussinesq equations by transforming
from Cartesian [i.e., .x;y; z/] to pressure coordinates, .x;y;p/. The analog of the
vertical velocity is ! � Dp=Dt , and the advective derivative itself is given by

D
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D
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@t
C u � rp C !

@

@p
: (2.143)

The horizontal and time derivatives are taken at constant pressure. However, x and
y are still purely horizontal coordinates, and u D ui C vj is still a strictly horizontal
velocity, perpendicular to the vertical (z) axis. The operator D=Dt is of course the same
in pressure or height coordinates because is simply the total derivative of some property
of a fluid parcel. However, the individual terms comprising it in general differ between
height and pressure coordinates.

To obtain an expression for the pressure force, first consider a general vertical co-
ordinate, �. Then the chain rule gives�
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Now let � D p and apply the relationship to p itself to give
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; (2.145)
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which, using the hydrostatic relationship, gives�
@p

@x

�
z

D �

�
@˚

@x

�
p

; (2.146)

where ˚ D gz is the geopotential. Thus, the horizontal pressure force in the momen-
tum equations is

1

�
rzp D rp˚; (2.147)

where the subscripts on the gradient operator indicate that the horizontal derivatives are
taken at constant z or constant p. Also, from (2.142b), the hydrostatic equation is just

@˚

@p
D �˛: (2.148)

Mass continuity

The mass conservation equation simplifies attractively in pressure coordinates, if the
hydrostatic approximation is used. Recall that the mass conservation equation can be
derived from the Lagrangian form

D
Dt
�ıV D 0; (2.149)

where ıV D ıxıyız is a volume element. But by the hydrostatic relationship �ız D

.1=g/ıp and thus
D
Dt
.ıxıyıp/ D 0: (2.150)

This is completely analogous to the expression for the Lagrangian conservation of vol-
ume in an incompressible fluid, (1.15). Thus, without further ado, we write the mass
conservation in pressure coordinates as

rp � u C
@!

@p
D 0; (2.151)

where the horizontal derivative is taken at constant pressure. (See also problem 2.20.)
The primitive equations in pressure coordinates are thus:
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where D=Dt is given by (2.143). The equation set is completed with the addition of
the ideal gas equation and the definition of potential temperature. These are not quite
isomorphic to the Boussinesq equations, because the hydrostatic equation is @˚=@p D

�˛ D �.�R=pR/.pR=p/
1= and not, as we would require, @˚=@p D �� .

The main practical difficulty with these equations is the lower boundary condition.
Using

w �
Dz

Dt
D
@z

@t
C u � rpz C !

@z

@p
; (2.153)

and (2.148), the boundary condition of w D 0 at z D zs becomes

@˚

@t
C u � rp˚ � ˛! D 0 (2.154)

at p.x;y; zs; t/. In theoretical studies, it is common to assume that the lower bound-
ary is in fact a constant pressure surface and simply assume that ! D 0, or sometimes
the condition ! D �˛�1@˚=@t is used. For realistic studies (with general circulation
models, say) the fact that the level z D 0 is not a coordinate surface must be properly
accounted for. For this reason, and especially if the lower boundary is uneven be-
cause of the presence of topography, so-called sigma coordinates are sometimes used,
in which the vertical coordinate is chosen so that the lower boundary is a coordinate
surface. Sigma coordinates may use height itself as a measure of displacement (typical
in oceanic applications) or use pressure (typical in atmospheric applications). In the lat-
ter case the vertical coordinate is � D p=ps where ps.x;y; t/ is the surface pressure.
The difficulty of applying (2.154) is replaced by a prognostic equation for the surface
pressure, which is derived from the mass conservation equation (problem 2.21).

Log-pressure coordinates

A variant of pressure coordinates is log-pressure coordinates, in which the vertical co-
ordinate is Z D �H ln.p=pR/ where pR is a reference pressure (say 1000 mb) and
H a constant (for example the scale height RTs=g) so that Z has units of length. The
‘vertical velocity’ for the system is now

W �
DZ

Dt
(2.155)

and the advective derivative is now
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(Capital letters are conventionally used for some variables in log-pressure coordinates,
and these are not to be confused with scaling parameters.) It is straightforward to show
(problem 2.22) that the primitive equations of motion in these coordinates are:

Du
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C f � u D �rZ˚ (2.157a)
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D�
Dt

D 0 (2.157c)
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The last equation may be written rZ �uC��1
� @.��W /=@z D 0, where �� D exp.�z=H /,

a form similar to the mass conservation equation in the anelastic equations.

2.7 HYDROSTATIC BALANCE

In this section and the next we consider two of the most fundamental balances in geo-
physical fluid dynamics — hydrostatic balance and geostrophic balance. Neither are
exact, but their approximate satisfaction has profound consequences on the behaviour
of the atmosphere and ocean.

2.7.1 Preliminaries

Consider the relative sizes of terms in (2.78c),
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T
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U W

L
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W 2

H
C˝U �

1

�

@p

@z
� g (2.158)

For most large-scale motion in the atmosphere and ocean the terms on the right-hand
side are orders of magnitude larger than those on the left, and therefore must be ap-
proximately equal. Explicitly, suppose W � 1 cm s�1, L � 105 m, H � 103 m,
U � 10 m s�1, T D L=U . Then by substituting into (2.158) it seems that the pressure
term is the only one which could balance the gravitational term, and we are led to the
following vertical momentum equation,

@p

@z
D ��g; (2.159)

otherwise known as hydrostatic balance.
However, (2.159) is not necessarily a useful equation! Let us suppose that the

density is a constant, �0 ; we can then write the pressure as

p.x;y; z; t/ D p0.z/C p0.x;y; z; t/; (2.160)

where
@p0

@z
� ��0g: (2.161)

That is, p0 and �0 are in hydrostatic balance. The vertical momentum equation be-
comes, without approximation,

Dw
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2w: (2.162)

Thus, for constant density fluids, the gravitational term has no dynamical effect: there
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is no buoyancy force, and the pressure term in the horizontal momentum equations can
be replaced by p0. Hydrostatic balance, and in particular (2.161), is certainly not an
appropriate vertical momentum equation in this case. If the fluid is stratified, we should
therefore subtract off the hydrostatic pressure associated with the mean density before
we can determine whether hydrostasy is a useful dynamical approximation, accurate
enough to determine the horizontal pressure gradients. This is automatic in the Boussi-
nesq equations, where the vertical momentum equation is

Dw
Dt

D �
@�

@z
C b: (2.163)

and the hydrostatic balance of the basic state is already subtracted out. In the more
general equation,

Dw
Dt
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�
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@z
� g; (2.164)

we need to compare the advective term on the left-hand side with the pressure variations
arising from horizontal flow in order to determine whether hydrostasy is an appropriate
vertical momentum equation. Of course, if we simply need to determine the pressure for
use in an equation of state then we simply need to compare the sizes of the dynamical
terms in (2.78c) with g itself in order to determine whether a hydrostatic approximation
will suffice.

2.7.2 Scaling and the aspect ratio

In a non-rotating Boussinesq fluid the horizontal momentum equation Du=Dt D �r�

implies the scaling
� � U 2 (2.165)

If we now use mass conservation to scale vertical velocity, so that

W

H
�

U

L
(2.166)

then the advective terms in the vertical momentum equation all scale as

Dw
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U W

L
D

U 2H

L2
(2.167)

Using (2.165) and (2.167) the ratio of the advective term to the pressure gradient term
in the vertical momentum equations then scales as

jDw=Dt j

j.1=�/@�=@z j
�

U 2H=L2

U 2=H
�

�
H

L

�2

: (2.168)

Thus, the condition for hydrostasy is:

˛2
�

�
H

L

�2

� 1 ; (2.169)

in which case the advective term in the vertical momentum is small. Thus, hydrostasy
is an aspect ratio approximation; it holds when the aspect ratio ˛ � H=L is small.



88 Chapter 2. Effects of Rotation and Stratification

Effects of rotation

In the presence of rapid rotation geostrophic-balance suggests the pressure scaling � �

f UL holds and we obtain

jDw=Dt j

j.1=�/@p=@z j
�

WH

fL2
D Ro

WH

UL
: (2.170)

Furthermore, in geostrophic balance the horizontal flow may be nearl non-divergent (as
we see in the next section), so that W � UH=L is an overestimate of the magnitude of
the vertical velocity. Let us thus write W � �UH=L where � � 1. (Later on we’ll see
that � is in fact related to the Rossby number.) Using this in (2.170) gives

jDw=Dt j

j.1=�/@p=@z j
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�
H

L

�2

; (2.171)

which is evidently very small for the large-scale flow. In particular, because �Ro � 1,
rotation tends to weaken further the conditions needed for hydrostasy; that is, a rapidly
rotating fluid is more likely to be in hydrostatic balance than a non-rotating fluid, other
conditions being equal.

* Effects of stratification

The above results say little about the dynamics that might give rise to hydrostatic or
non-hydrostatic flow. Our intuition suggests that hydrostatic balance might be ques-
tionable in small-scale convective activity where the vertical velocity is high, and most
applicable in highly stratified flow for then vertical velocity is diminished. But in highly
stratified flow the estimate of W from (2.167) may be too restrictive. Furthermore, the
vertical scale H is not always known a priori, for it need not be the domain scale. In a
laboaratory rotating tank, for example, the aspect ratio of the fluid is O.1/, but the ver-
tical scale of the motion is much smaller. We thus give another estimate of the vertical
velocity that takes explicit account of known stratification and use it to derive a slightly
weaker condition for hydrostasy.

To obtain an estimate of the vertical velocity, we use the Boussinesq approximation
with a vertical momentum equation:

Dw
Dt

D �
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@z
C b: (2.172)

For hydrostatic balance we demand

U W

L
� �b; (2.173)

where �b is the scaling magnitude for b. It is only the horizontal variations of b that
matter, so let us assume that the magnitude for w is given by the thermodynamic equa-
tion written in the form

Db0

Dt
C N 2w D 0; (2.174)
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where the mean stratification (N 2) is given — determined, for example, by the larger
scale circulation. Then,

W �
U�b

LN 2
(2.175)

This implies that W =H D .U=L/�b=.HN 2/, and, assuming that �b=H � N 2, that
W =H � U=L and horizontal advection dominates vertical advection of the buoyancy
anomaly. Using (2.175), the condition for hydrostatic balance, (2.173), becomes

U 2

L2N 2
� 1 : (2.176)

Since the buoyancy frequency N is a measure of stratification (the higher the frequency,
the more stratified the fluid), (2.176) formalizes our intuitive expectation that the more
stratified a fluid the more vertical motion is suppressed and the more likely hydrostatic
balance is to hold.

The Froude number may be defined by

F �
U

NH
: (2.177)

Then
U 2

L2N 2
D F2 H 2

L2
; (2.178)

and using (2.176) the hydrostatic condition is

F2˛2
� 1 ; (2.179)

where ˛ D H=L is the aspect ratio of the motion. Thus, for a given Froude number
a small aspect ratio will favor hydrostasy. This derivation differs from that leading to
(2.169) in its use of the thermodynamic equation, rather than the mass conservation
equation, to give an estimate of the vertical velocity.

Why bother with any of this scaling? Why not just say that hydrostatic balance
holds when jDw=Dt j � jbj? One reason is that don’t really have a good idea of
the value of W from direct measurements, and it may change significantly in different
oceanic and atmospheric parameter regimes. On the other hand the Froude number and
the aspect ratio are familiar nondimensional parameters with a wide applicability in
other contexts, and which we can control in a laboratory setting or estimate more easily
in the ocean or atmosphere. Still, as in most scaling theory, deciding which parameters
are given and which should be derived is often a choice, rather than being set a priori.

Hydrostatic balance in waves

If the motion is predominantly wavelike, rather than advective, then the advective
derivative scales like a frequency: D=Dt � !. Using the vertical momentum equa-
tion we then require

!w � b; (2.180)
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and the thermodynamic equation has the scaling

!b � N 2w: (2.181)

These together demand that
!2

� N 2 (2.182)

for hydrostatic balance to hold. Buoyancy oscillations have ! � N and are essentially
non-hydrostatic.

Oceanic applicability

For the large scale ocean circulation, let N � 10�2 s�1, U � 0:1 m s�1 and H � 1 km.
Then

F D
U

NH
� 10�2

� 1 (2.183)

Thus, F2 2 � 1 even for unit aspect-ratio motion. For gyre scale flow L � 106 m and
F2 2 � 10�10 and hydrostatic balance is a very good approximation indeed.

For intense convection, for example in the Labrador Sea, the hydrostatic approxima-
tion may be less appropriate. The intense descending plumes may have an aspect ratio
.H=L/ of one or greater and the stratification is very weak: the hydrostatic condition is
then simply a requirement that stratification is sufficiently strong that the Froude num-
ber is small. Representative orders of magnitude are U � W � 0:1 m s�1, H � 1 km
and N � 10�3 s�1–10�4 s�1. For these values F ranges between 0.1 and 1, and at the
upper end of this range hydrostatic balance is violated.

Atmospheric applicability

Similar considerations apply to the atmosphere, although the details differ. Over much
of the lower atmosphere N � 10�2 s�1 so that with U D 10 m s�1 and H D 1 km for
large-scale flow F � 1. Hydrostasy is then maintained because the aspect ratio H=L is
much less than unity. For smaller scale atmospheric motion associated with fronts and,
especially, convection, there can be little expectation that hydrostatic balance will be a
good approximation.

2.8 GEOSTROPHIC AND THERMAL WIND BALANCE

We now consider the dominant dynamical balance in the horizontal components of the
momentum equation. In the horizontal plane (meaning along geopotential surfaces) we
find that the Coriolis term is much larger than the advective terms and the dominant bal-
ance is between it and the horizontal pressure force. This balance is called geostrophic
balance, and it occurs when the Rossby number is small, as we now investigate.

2.8.1 The Rossby Number

The Rossby number characterizes the importance of rotation in a fluid.8 It is, essentially,
the ratio of the magnitude of the relative acceleration to the Coriolis acceleration, and
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Variable Scaling Meaning Atmos. value Ocean value
Symbol

.x;y/ L Horizontal length 106 m 105 m
t T Timescale 1 day (105 s) 10 days (106 s)

.u; v/ U Horizontal velocity 10 m s�1 0:1 m s�1

Ro Rossby number, U=fL 0:1 0:01

Table 2.1 Scales of large-scale flow in atmosphere and ocean. The choices
given are representative of large-scale eddying motion in both systems.

it is of fundamental importance in geophysical fluid dynamics. It arises from a simple
scaling of horizontal momentum equation, namely

@u

@t
C.v � r/u C f � u D �

1

�
rzp; (2.184a)

U 2=L f U (2.184b)

where U is the approximate magnitude of the horizontal velocity and L is a typical
lengthscale over which that velocity varies. (We assume that W =H . U=L, so that
vertical advection does not dominate the advection.) The ratio of the sizes of the advec-
tive and Coriolis terms is defined to be the Rossby number,

Ro �
U

fL
: (2.185)

If the Rossby number is small then rotation effects are important, and as the values in
table 2.1 indicate this is the case for large-scale flow in both ocean and atmosphere.

Another intuitive way to think about the Rossby number is in terms of timescales.
The Rossby number based on a timescale is

Rot �
1

f T
(2.186)

where T is a timescale associated with the dynamics at hand. If the timescale is an
advective one, meaning that T � L=U , then this definition is equivalent to (2.185).
Now, f D 2˝ sin# , where˝ is the angular velocity of the rotating frame and equal to
2  sin#=Tp where Tp is the period of rotation (24 hours). Thus,

Rot D
Tp

4 T sin#
D

Ti

T
(2.187)

where Ti D 1=f is the ‘inertial timescale’, about three hours in midlatitudes. Thus,
for phenomena with timescales much longer than this, such as the motion of the Gulf
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Stream or a mid-latitude atmospheric weather system, the effects of the earth’s rotation
can be expected to be important, whereas a short-lived phenomena, such as a cumu-
lus cloud or tornado, may be oblivious to such rotation. The expressions (2.185) and
(2.186) of course, just approximate measures of the importance of rotation.

2.8.2 Geostrophic Balance

If the Rossby number is sufficiently small in (2.184a) then the rotation term will domi-
nate the nonlinear advection term, and if the time period of the motion scales advectively
then the rotation term also dominates the local time derivative. The only term which
can then balance the rotation termis the pressure term, and therefore we must have

f � u � �
1

�
rzp; (2.188)

or, in Cartesian component form

f u � �
1

�

@p

@y
; f v �

1

�

@p

@x
: (2.189)

This balance is known as geostrophic balance, and its consequences are profound, giv-
ing geophysical fluid dynamics a special place in the broader field of fluid dynamics.
We define the geostrophic velocity by

f ug � �
1

�

@p

@y
; f vg �

1

�

@p

@x
; (2.190)

and for low Rossby number flow u � ug and v � vg. In spherical coordinates the
geostrophic velocity is

f ug D �
1

�a

@p

@#
; f vg D

1

a� cos#
@p

@�
; (2.191)

where f D 2˝ sin# . Geostrophic balance has a number of immmediate ramifications:

? Geostrophic flow is parallel to lines of constant pressure (isobars). If f > 0 the
flow is anti-clockwise round a region of low pressure and clokwise around a region
of high pressure (see Fig. 2.5).

? If the Coriolis force is constant and if the density does not vary in the horizontal
the geostrophic flow is horizontally non-divergent and

rz � ug D
@ug

@x
C
@vg

@y
D 0 : (2.192)
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Fig. 2.5 Schematic of geostrophic flow with a positive value of the Coriolis
parameter f . Flow is parallel to the lines of constant pressure (isobars).
Cyclonic flow is anticlockwise around a low pressure region and anticyclonic
flow is clockwise around a high. If f were negative, as in the Southern
hemisphere, (anti-)cyclonic flow would be (anti-)clockwise.

We may define the streamfunction,  , by

 �
p

f0�0

; (2.193)

whence

ug D �
@ 

@y
; vg D

@ 

@x
: (2.194)

The vertical component of vorticity, �, is then given by

� D k � r � v D
@v

@x
�
@u

@y
D r

2
z : (2.195)

? If the Coriolis parameter is not constant, then cross-differentiating (2.190) gives,
for constant density geostrophic flow,

vg

@f

@y
C f rz � ug D 0; (2.196)

which implies, using mass continuity,

ˇvg D f
@w

@z
: (2.197)

where ˇ � @f=@y D 2˝ cos#=a. This geostrophic vorticity balance is some-
times known as Sverdrup balance, although that expression is better restricted to
the case when the vertical velocity results from external agents, and specifically a
wind stress, as considered in chapter 14.
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2.8.3 Taylor-Proudman effect

If ˇ D 0, then (2.197) implies that the vertical velocity is not a function of height. In
fact, in that case none of the components of velocity vary with height if density is also
constant. To show this, in the limit of zero Rossby number we first write the three-
dimensional momentum equation as

f0 � v D �r� � r�; (2.198)

where f0 D 2˝ D 2˝k, � D p=�0, and r� represents other potential forces. If
� D gz then the vertical component of this equation represents hydrostatic balance,
and the horizontal components represent hydrostatic balance. On taking the curl of this
equation, the terms on the right-hand side vanish and the left-hand side becomes

.f0 � r/v � f0r � v � .v � r/f0 C vr � f0 D 0: (2.199)

But r�v D 0 by mass conservation, and because f0 is constant both r�f0 and .v �r/f0

vanish. Thus
.f0 � r/v D 0; (2.200)

which, since f0 D f0k, implies f0@v=@z D 0, and in particular we have

@u

@z
D 0;

@v

@z
D 0;

@w

@z
D 0: (2.201)

A different presentation of this argument proceeds as follows. If the flow is exactly
in geostrophic and hydrostatic balance then

v D
1

f0

@�

@x
; u D �

1

f0

@�

@y
;

@�

@z
D �g (2.202a,b,c)

Differentiating (2.202a,b) with respect to z, and using (2.202c) yields

@v

@z
D

�1

f0

@g

@x
D 0;

@u

@z
D

1

f0

@g

@y
D 0; (2.203)

Noting that the geostrophic veclocities are horizontally non-divergent (rz � u D 0), and
using mass continuity then gives @w=@z D 0, as before.

If there is a solid horizontal boundary anywhere in the fluid, for example at the sur-
face, then w D 0 at that surface and thus w D 0 everywhere. Hence the motion occurs
in planes that lie perpendicular to the axis of rotation, and the flow is ‘two-dimensional.’
This result is known as the Taylor-Proudman effect, namely that for constant density
flow in geostrophic and hydrostatic balance the vertical derivatives of the horizontal
and the vertical velocities are zero.9 At zero Rossby number, if the vertical velocity is
zero somewhere in the flow, it is zero everywhere in that vertical column; furthermore,
the horizontal flow has no vertical shear, and the fluid moves like a slab. The effects of
rotation have provided a stiffening of the fluid in the vertical.

In neither the atmosphere nor the ocean do we observe precisely such vertically
coherent flow, mainly because of the effects of stratification. However, it is typical of
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geophysical fluid dynamics that the assumptions underlying a derivation are not fully
satisfied, yet there are manifestations of it in real flow. Thus, one might have naïvely
expected, because @w=@z D �rz � u, that the scales of the various variables would
be related by W =H � U=L. However, if the flow is rapidly rotating we expect that
the horizontal flow will be in near geostrophic balance and therefore nearly divergence
free; thus rz � u � U=L, and W � H U=L.

2.8.4 Thermal wind balance

Thermal wind balance arises by combining the geostrophic and hydrostatic approxi-
mations, and this is most easily done in the context of the anelastic (or Boussinesq)
equations, or in pressure coordinates. For the anelastic equations, in spherical coordi-
nates geostrophic balance may be written

�f vg D �
@�

@x
D �

1

a cos#
@�

@�
(2.204a)

f ug D �
@�

@y
D �

1

a

@�

@#
(2.204b)

Combining these with hydrostatic balance, @�=@z D b, gives

�f
@vg

@z
D �

@b

@x
D �

1

a cos�
@b

@�

f
@ug

@z
D �

@b

@y
D �

1

a

@b

@#

: (2.205a,b)

These equations are known as thermal wind balance, and the vertical derivative of the
geostrophic wind is the thermal wind. In terms of the zonal angular momentum, the
second of these equations may be written

@mg

@z
D �

a

2˝ tan#
@b

@y
; (2.206)

where mg D .ug C ˝a cos#/a cos# . Potentially more accurate than geostrophic
balance is the so-called cyclostrophic or gradient-wind balance

2u˝ sin# C
u2

a
tan# � �

@�

@y
D �

1

a

@�

@#
: (2.207)

For large-scale flow this differs significantly from geostrophic balance only very close
to the equator. Combining cyclostrophic and hydrostatic balance gives a modified ther-
mal wind relation, and this takes a simple form when expressed in terms of angular
momentum, namely

@m2

@z
� �

a3 cos3 #

sin#
@b

@y
: (2.208)

If the density or buoyancy is constant then there is no shear and (2.205) or (2.208)
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reduce to the Taylor-Proudman result. But suppose that the temperature falls in the
polewards direction. Then thermal wind balance implies that the (eastwards) wind will
increase with height — just as is observed in the atmosphere! In general a vertical shear
of the horizontal wind is associated with a horizontal temperature gradient, and this is
one of the most simple and far-reaching effects in geophysical fluid dynamics.

Pressure coordinates

In pressure coordinates geostrophic balance is just

f � ug D �rp˚ (2.209)

where ˚ is the geopotential and rp is the gradient operator taken at constant pressure.
If f if constant, it follows from (2.209) that the geostrophic wind is non-divergent on
pressure surfaces. Taking the vertical derivative of (2.209) (that is, its derivative with
respect to p) and using the hydrostatic equation, @˚=@p D �˛, gives the thermal wind
equation

f �
@ug

@p
D rp˛ D

R

p
rpT; (2.210)

where the last equality follows using the ideal gas equation and because the horizontal
derivative is at constant pressure. In component form this is

� f
@vg

@p
D �

R

p

@T

@x
; f

@ug

@p
D �

R

p

@T

@y
: (2.211)

In log-pressure coordinates, with Z D �H ln.p=pR/, thermal wind is simply:

f �
@ug

@Z
D �

R

H
rZ T; (2.212)

2.9 STATIC INSTABILITY AND THE PARCEL METHOD

In this and the next couple of sections we consider how a fluid might oscillate if it were
perturbed away from a resting state. Our focus is on vertical displacements, and the
restoring force is gravity, and we will neglect the effects of rotation, and indeed initially
we will neglect horizontal motion entirely. Given that, the simplest and most direct way
to approach the problem is to consider from first principles the pressure and gravita-
tional forces on a dispaced parcel. To this end, consider a fluid at rest in a constant
gravitational field, and therefore in hydrostatic balance. Suppose that a small parcel of
the fluid is adiabatically displaced upwards by the small distance ız, without altering
the overall pressure field — that is, the fluid parcel instantly assumes the pressure of
its environment. If after the displacement the parcel is lighter than its environment,
it will accelerate upwards, because the upward pressure gradient force is now greater
downwards gravity force on the parcel — that is, the parcel is buoyant (a manifestation
of Archimedes’ principle) and the fluid is statically unstable. If on the other hand the
fluid parcel finds itself heavier than its surroundings, the downward gravitational force
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will be greater than the upward pressure force and the fluid will sink back towards its
original position and an oscillatory motion will develop. Such an equilibrium is stati-
cally stable. Using such simple ‘parcel’ arguments we will now develop criteria for the
stability of the environmental profile.

2.9.1 A simple special case: a density-conserving fluid

Consider first the simple case of an incompressible fluid in which the density of the
displaced parcel is conserved, that is D�=Dt D 0 (and refer to Fig. 2.6 setting �� D �).
If the environmental profile is z�.z/ and the density of the parcel is � then a parcel
displaced from a level z [where its density is z�.z/] to a level z C ız [where the parcel’s
density is still z�.z/] will find that its density then differs from its surroundings by the
amount

ı� D �.z C ız/ � z�.z C ız/ D z�.z/ � z�.z C ız/ D �
@ z�

@z
ız: (2.213)

The parcel will be heavier than its surroundings, and therefore the parcel displacement
will be stable, if @ z�=@z < 0. Similarly, it will be unstable if @ z�=@z > 0. The upward
force (per unit volume) on the displaced parcel is given by

F D �gı� D g
@ z�

@z
ız; (2.214)

and thus Newton’s second law implies that the motion of the parcel is determined by

�.z/
@2ız

@t2
D g

@ z�

@z
ız; (2.215)

or
@2ız

@t2
D

g

z�

@ z�

@z
ız D �N 2ız; (2.216)

where

N 2
D �

g

z�

@ z�

@z
(2.217)

is the buoyancy frequency, or the Brunt-Väisälä frequency, for this problem. If N 2 > 0

then a parcel displaced upward is heavier than its surroundings, and thus experiences a
restoring force; the density profile is said to be stable and N is the frequency at which
the fluid parcel oscillates. If N 2 < 0, the density profile is unstable and the parcel
continues to ascend and convection ensues. In liquids it is often a good approximation
to replace z� by �0 in the demoninator of (2.217).

2.9.2 The general case: using potential density

More generally, in an adiabatic displacement it is potential density, �� , and not density
itself that is materially conserved. Consider a parcel that is displaced adiabatically a
vertical distance from z to z C ız; the parcel preserves its potential density, and let us
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Figure 2.6 A parcel is adiabati-
cally displaced upward from level z

to z C ız. If the resulting density
difference, ı�, between the parcel
and its new surroundings is positive
the displacement is stable, and con-
versely. If z� is the environmental val-
ues, and �� is potential density, we
see that ı� D z�� .z/ � z�� .z C ız/

z

z C ız

�� .z/

Q�.z C ız/ D Q�� .z C ız/
�

�
.z C ız/

D �
�
.z/

�
�
.z/ D Q�

�
.z/

use the pressure at level z Cız as the reference level. The in situ density of the parcel at
z C ız, namely �.z C ız/, is then equal to its potential density �� .z C ız/ and, because
�� is conserved, this is equal to the potential density of the environment at z, z�� .z/.
The difference in in situ density between the parcel and the environment at z C ız, ı�,
is thus equal to the difference between the potential density of the environment at z and
at z C ız. Putting this together (and see Fig. 2.6) we have

ı� D �.z C ız/ � z�.z C ız/ D �� .z C ız/ � z�� .z C ız/

D �� .z/ � z�� .z C ız/ D z�� .z/ � z�� .z C ız/;
(2.218)

and therefore

ı� D �
@ z��

@z
ız: (2.219)

where the right-hand side is the environmental gradient of potential density. If the right-
hand-side is positive, the parcel is heavier than its surroundings and the displacement is
stable. Thus, the conditiona for stability are:

Stability W
@ z��

@z
< 0 (2.220a)

Instability W
@ z��

@z
> 0 (2.220b)

The equation of motion of the fluid parcel is

@2ız

@t2
D

g

�

�
@z��

@z

�
ız D �N 2ız (2.221)

where, noting that �.z/ D z�� .z/ to within O.ız/,

N 2
D �

g

z��

�
@z��

@z

�
: (2.222)

This is a general expression for the buoyancy frequency, true in both liquids and gases.
It is important to realize that the quantity z�� is the locally-referenced potential density
of the environment, as will become more clear below.
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An ideal gas

In the atmosphere potential density is related to potential temperature by �� D pR=.�R/.
Using this in (2.222) gives

N 2
D

g

z�

 
@z�

@z

!
; (2.223)

where z� refers to the environmental profile of potential temperature. The reference
value pR does not appear, and we are free to choose this value arbitrarily — the surface
pressure is a common choice. In the troposphere (the lowest several kilometers of the
atmosphere) N is about 0:01 s�1, with a corresponding period, .2 =N /, of about 10
minutes. In the stratosphere (which lies above the troposphere) N 2 is a few times higher
than this.

A liquid ocean

No simple, accurate, analytic expression is available for computing static stability in
the ocean. If the ocean had no salt, then the potential density referenced to the sur-
face would generally be a measure of the sign of stability of a fluid column, if not of
the buoyancy frequency. However, in the presence of salinity, the surface-referenced
potential density is not necessarily even a measure of the sign of stability, because the
coefficients of compressibility ˇT and ˇS vary in different ways with pressure. To see
this, suppose two neighbouring fluid elements at the surface have the same potential
density, but different salinities and temperatures. Displace them both adiabatically to
the deep ocean. Although their potential densities (referenced to the surface) are still
equal, we can say little about their actual densities, and hence their stability relative to
each other, without doing a detailed calculation because they will each have been com-
pressed by different amounts. It is the profile of the locally-referenced potential density
that determines the stability.

A sometimes-useful expression for stability arises by noting that in an adiabatic
displacement

ı�� D ı� �
1

c2
s

ıp D 0: (2.224)

If the fluid is hydrostatic ıp D ��gız so that if a parcel is displaced adiabatically its
density changes according to �

@�
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�
��

D �
�g

c2
s

: (2.225)

If a parcel is displaced a distance ız upwards then the density difference between it and
its new surroundings is

ı� D �

"�
@�

@z

�
��

�

�
@z�

@z

�#
ız D

�
�g

c2
s

C

�
@z�

@z

��
ız; (2.226)

where the tilde again denotes the environmental field. It follows that the stratification is
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given by

N 2
D �g

�
g

c2
s

C
1

z�

�
@z�

@z

��
: (2.227)

This expression holds for both liquids and gases, and for ideal gases it is precisely the
same as (2.223) (problem 2.8). In liquids, a good approximation is to use a reference
value �0 for the undifferentiated density in the denominator, whence it becomes equal
to the Boussinesq expression (2.108). Typical values of N in the upper ocean where the
density is changing most rapidly (i.e., in the pycnocline — ‘pycno’ for density, ‘cline’
for changing) are about 0:01 s�1, falling to 0:001 s�1 in the more homogeneous abyssal
ocean. These correspond to periods of about 10 and 100 minutes, respectively.

* Cabbeling

Cabbeling is an instability that arises because of the nonlinear equation of state of sea-
water. From Fig. 1.3 we see that the contours are slightly convex, bowing upward,
especially in the plot at sea level. Suppose we mix two parcels of water, each with the
same density (�� D 28, say), but with different initial values of temperature and salin-
ity. Then the resulting parcel of water will have a temperature and a salinity equal to the
average of the two parcels, but its density will be higher than either of the two original
parcels. In the appropriate circumstances such mixing may thus lead to a convective
instability; this may, for example, be an important source of ‘bottom water’ formation
in the Weddell Sea, off Antarctica.10

2.9.3 Lapse rates in dry and moist atmospheres

A dry ideal gas

The negative of the rate of change of the temperature in the vertical is known as the tem-
perature lapse rate, or often just the lapse rate, and the rate corresponding to @�=@z D 0

is called the dry adiabatic lapse rate. Using � D T .p0=p/
R=cp and @p=@z D ��g we

find that the lapse rate and the potential temperature lapse rate are related by

@ zT

@z
D

zT

z�

@z�

@z
�

g

cp

; (2.228)

so that the dry adiabatic lapse rate is given by

�d D
g

cp

; (2.229)

as in (1.138). (We use the subscript d , for dry, to differentiate it from the moist lapse
rate considered below.) The conditions for static stability of the environmental profiles
are thus:

Stability W
@z�

@z
> 0I �

@ zT

@z
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g

cp

; (2.230a)
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Instability W
@z�

@z
< 0I �

@ zT

@z
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g

cp

: (2.230b)

The atmosphere is in fact generally stable by this criterion: the observed lapse rate,
corresponding to an observed buoyancy frequency of about 10�2 s�1, is often about
7 K km�1, compared to a dry adiabatic lapse rate of about 10 K km�1. Why the discrep-
ancy? One reason, particularly important in the tropics, is that the atmosphere contains
water vapour.

* Effects of water vapour on the lapse rate of an ideal gas

The amount of water vapour that can be contained in a given volume is an increasing
function of temperature, with the presence or otherwise of dry air in that volume being
largely irrelevant. Thus, if a parcel of water vapour is cooled, it will eventually become
saturated and water vapour will condense into liquid water. A measure of the amount
of water vapour in a unit volume is its partial pressure, and the partial pressure of water
vapour at saturation, es , is given by the Clausius-Clapeyron equation,

des

dT
D

Lces

RvT 2
; (2.231)

where Lc is the latent heat of condensation or vapourization (per unit mass) and Rv is
the gas constant for water vapour. If a parcel rises adiabatically it will cool, and at some
height (known as the ‘lifting condensation level’, a function of its initial temperature
and humidity only) the parcel will become saturated and any further ascent will cause
the water vapour to condense. The ensuing condensational heating causes the parcel’s
temperature, and buoyancy, to increase; the parcel thus rises further, causing more water
vapour to condense, and so on, and the consequence of this is that an environmental
profile that is stable if it is dry may be unstable if it is saturated. Let us now derive an
expression for the lapse rate of a saturated parcel that is ascending adiabatically apart
from the affects of condensation.

Let w denote the mass of water vapour per unit mass of dry air, the mixing ratio,
and let ws be the saturation mixing ratio. (ws D ˛es=.p � es/ � ˛wes=p where
˛w D 0:62, the ratio of the mass of a water molecule to one of dry air.) The diabatic
heating associated with condensation is then given by

Qcond D �Lc

Dws

Dt
; (2.232)

so that the thermodynamic equation is
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D �
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; (2.233)

or, in terms of p and and T

cp

D ln T

Dt
� R

D ln P

Dt
D �
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Dws

Dt
: (2.234)
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If these material derivatives are due to the parcel ascent then

d ln T

dz
�
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cp

d ln p

dz
D �
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T cp

dws

dz
; (2.235)

and using the hydrostatic relationship and the fact that ws is a function of T and p we
obtain
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Solving for dT=dz , the lapse rate, �s , of an ascending saturated parcel is given by

�s D �
dT

dz
D

g

cp

1 � �Lc.@ws=@p/T

1 C .Lc=cp/.@ws=@T /p
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g
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1 C Lcws=.RT /

1 C L2
cws=.cpRT 2/

: (2.237)

where the last near-equality follows with use of the Clausius-Clapeyron relation. This
(�s) is variously called the pseudoadiabatic or moist adiabatic or saturated adiabatic
lapse rate. Because g=cp is the dry adiabatic lapse rate �d , �s < �d , and values of
�s are typically around 6 K km�1 in the lower atmosphere, and because dws=dT is an
increasing function of T , �s decreases with increasing temperature and can be as low
as 3:5 K km�1. For a saturated parcel, the stability conditions analogous to (2.230) are

Stability W �
@ zT

@z
< �s; (2.238a)

Instability W �
@ zT

@z
> �s: (2.238b)

where zT is the environmental temperature. The observed environmental profile in con-
vecting situations is often a combination of the dry adiabatic and moist adiabatic pro-
files: an unsaturated parcel that is is unstable by the dry criterion will rise and cool fol-
lowing a dry adiabat, �d , until it becomes saturated at the ‘lifting condensation level’,
above which it will rise following a saturation adiabat, �s . Such convection will pro-
ceed until the atmospheric column is stable and, especially in low latitudes, the lapse
rate of the atmosphere is largely determined by such convective processes.

* Equivalent potential temperature

Suppose that all the moisture in a parcel of air condenses, and that all the heat released
goes into heating the parcel. The equivalent potential temperature, �eq is the potential
temperature that the parcel then achieves. We may obtain an approximate analytic ex-
pression for it by noting that the first law of thermodynamics, dQ D T d�, then implies,
by definition of potential temperature,

� Lcdw D cpT d ln � (2.239)

where dw is the change in water vapour mixing ratio, so that a reduction of w via
condensation leads to heating. Integrating gives, by definition of equivalent potential
temperature,

�

Z 0

w

Lcw

cpT
dw D

Z �eq

�

d ln �; (2.240)
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and so, if T and Lc are assumed constant,

�eq D � exp
�

Lcw

cpT

�
: (2.241)

The equivalent potential temperature so defined is approximately conserved during con-
densation, the approximation arising going from (2.240) to (2.241). It is a useful ex-
pression for diagnostic purposes, and in constructing theories of convection, but it is
not accurate enough to use as a prognostic variable in a putatively realistic numerical
model. The ‘equivalent temperature’ may be defined in terms of the equivalent potential
temperature by

Teq D �eq

�
p

pR

��
: (2.242)

2.10 GRAVITY WAVES

The parcel approach to oscillations and stability, while simple and direct, is divorced
from the fluid-dynamical equations of motion, making it hard to include other effects
such as rotation, or to explore the effects of possible differences between the hydrostatic
and non-hydrostatic cases. To remedy this, we now use the equations of motion to
analyze the motion resulting from a small disturbance.

2.10.1 Gravity waves and convection in a Boussinesq fluid

Let us consider a Boussineq fluid, at rest, in which the buoyancy varies linearly with
height and the bouyancy frequency, N , is a constant. Linearizing the equations of
motion about this basic state we obtain

@u0

@t
D �

@�0

@x
; (2.243a)

@w0

@t
D �

@�0

@z
C b0; (2.243b)

@u0

@x
C
@w0

@z
D 0; (2.243c)

@b0

@t
C w0N 2

D 0; (2.243d)

where for simplicity we assume that the flow is a function only of x and z. A little
algebra gives a single equation for w0,��

@2

@x2
C

@2

@z2

�
@2

@t2
C N 2 @

2

@x2

�
w0

D 0: (2.244)

Seeking solutions of the form w0 D Re W expŒi.kx C mz � !t/� (where Re denotes
the real part) yields the important dispersion relationship for gravity waves:

!2
D

k2N 2

k2 C m2
: (2.245)
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Figure 2.7 Scaled frequency,
!=N , plotted as a function of
scaled horizontal wavenumber,
k=m, using the full dispersion
relation of (2.245) (solid line,
asymptoting to unit value for
large k=m) and with the hydro-
static dispersion relation (2.249)
(dashed line, tending to 1 for
large k=m).
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The frequency (see Fig. 2.7) is thus always less than N , approaching N for small hor-
izontal scales, k � m. If we explicitly neglect pressure perturbations, as in the parcel
argument, then the two equations,

@w0

@t
D b0;

@b0

@t
C w0N 2

D 0; (2.246)

form a closed set, and give !2 D N 2.
If the basic state density increases with height then N 2 < 0 and we expect this state

to be unstable. Indeed, (2.245) then gives

� D
˙k zN

.k2 C m2/1=2
; (2.247)

where zN 2 D �N 2, and the disturbance grows exponentially according to exp.� t/.
Most convective activity in the ocean and atmosphere is, ultimately, related to an in-
stability of this form, although of course there are many complicating issues — water
vapour in the atmosphere, salt in the ocean, the effects of rotation and so forth.

Hydrostatic gravity waves and convection

Let us now suppose that the fluid satisfies the hydrostatic Boussinesq equations. The
linearized two-dimensional equations of motion become

@u0

@t
D �

@�0

@x
; 0 D �

@�0

@z
C b0; (2.248a)

@u0

@x
C
@w0

@z
D 0; (2.248b)

@b0

@t
C w0N 2

D 0; (2.248c)

being the horizontal and vertical momentum equations, mass continuity, and the ther-
modynamic equation respectively. Then a little algebra gives the dispersion relation,

!2
D

k2N 2

m2
: (2.249)
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The frequency and, if N 2 is negative the growth rate, is unbounded for as k=m !

1, and the hydrostatic approximation thus has quite unphysical behaviour for small
horizontal scales (see also problem 2.10).11

2.11 * ACOUSTIC-GRAVITY WAVES IN AN IDEAL GAS

We now consider wave motion in a stratified, compressible fluid such as the earth’s at-
mosphere. The complete problem is complicated and uninformative; we will specialize
to the case of an isothermal, stationary atmosphere and ignore the effects of rotation
and sphericity, but otherwise we will make few approximations. In this section we will
denote the unperturbed state with a subscript 0 and the perturbed state with a prime .0/.
Because it is at rest, the basic state is in hydrostatic balance,

@p0

@z
D ��0.z/g (2.250)

Ignoring variations in the y-direction for algebraic simplicity, the linearized equa-
tions of motion are:

u-momentum: �0

@u0

@t
D �

@p0

@x
(2.251a)

w-momentum: �0

@w0

@t
D �

@p0

@z
� �0g (2.251b)

mass conservation:
@�0

@t
C w0 @�0

@z
D ��0

�
@u0

@x
C
@w0

@z

�
(2.251c)

thermodynamic:
@� 0

@t
C w0 @�0

@z
D 0 (2.251d)

equation of state:
� 0

�0

C
�0

�0

D
1



p0

p0

: (2.251e)

For an isothermal basic state we have p0 D �0RT0 where T0 is a constant, so that
�0 D �se

�z=H and p0 D pse
�z=H where H D RT0=g. Further, using � D T .ps=p/

�

where � D R=cp , we have that �0 D T0e�z=H and so N 2 D �g=H . Using these then,
after a little algebra, the set of equations (2.251) becomes�

@2

@t2
� c2 @

2

@x2

�
u0

D c2

�
@

@z
�

1

H

�
@

@z
w0 (2.252a)

and �
@2

@t2
� c2

�
@2

@x2
�

1

H

@

@z

��
w0

D c2

�
@

@z
�
�

H

�
@u0

@x
; (2.252b)

where c2 D @.=@p=�/� D RT0 is the square of the speed of sound. These two
equations in turn combine to give

@4w0

@t4
� c2 @

2

@t2

�
@2

@x2
C

@2

@z2
�

1

H

@

@z

�
w0

� c2 �g

H

@2w0

@x2
D 0: (2.253)
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If we set w0 D W .x; z; t/ez=.2H / (so that W D .�0=�s/
1=2w) then the term with the

single z-derivative is eliminated, giving

@4W

@t4
� c2 @

2

@t2

�
@2

@x2
C

@2

@z2
�

1

4H 2

�
W � c2 �g

H

@2w0

@x2
D 0: (2.254)

Although superficially complicated, this equation has constant coefficients and we may
seek wavelike solutions of the form

W D Re zW ei.kxCmz�!t/; (2.255)

where zW is the complex amplitude, and this leads to the dispersion relation for acoustic-
gravity waves, namely

!4
� c2!2

�
k2

C m2
C

1

4H 2

�
C c2N 2k2

D 0; (2.256)

with solution

!2
D

1

2
c2K2

"
1 ˙

�
1 �

4N 2k2

c2K4

�1=2
#
; (2.257)

where K2 D k2 C m2 C 1=.4H 2/. (The factor Œ1 � 4N 2k2=.c2K4/� is always positive
— see problem 2.23.) For an isothermal, ideal-gas, atmosphere 4N 2H 2=c2 � 0:8 and
so this may be written

!2

N 2
� 2:5 yK2

241 ˙

 
1 �

0:8yk2

yK4

!1=2
35 ; (2.258)

where yK2 D yk2 C ym2 C 1=4, and .yk; ym/ D .kH;mH /.

2.11.1 Interpretation

Acoustic and gravity waves

There are two branches of roots in (2.257), corresponding to acoustic waves (using the
plus sign in the dispersion relation) and internal gravity waves (using the minus sign).
These (and the Lamb wave, described below) are plotted in Fig. 2.8. If 4N 2k2=c2K4 �

1 then the two sets of waves are well separated. From (2.257) this is satisfied when

4�


.kH /2 � 0:8.kH /2 �

h
.kH /2 C .mH /2 C

1
4

i2

I (2.259)

that is, when either mH � 1 or kH � 1. The two roots of the dispersion relation are
then

!2
a � c2K2

D c2
�
k2

C m2
C

1

4H 2

�
(2.260)
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Fig. 2.8 Dispersion diagram for acoustic gravity waves in an isothermal
atmosphere, calculated using (2.258). The frequency is given in units of the
the buoyancy frequency N , and the wavenumbers are non-dimensionalized
by the inverse of the scale height, H . The solid curves indicate acoustic
waves, whose frequency is always higher than that of the corresponding
Lamb wave at the same wavenumber (i.e. ck), and of the base acoustic
frequency � 1:12N . The dashed curves indicate internal gravity waves,
whose frequency asymptotes to N at small horizontal scales.

and

!2
g �

N 2k2

k2 C m2 C 1=.4H 2/
: (2.261)

corresponding to acoustic and gravity waves, respectively. The acoustic waves owe
their existence to the presence of compressibility in the fluid, and they have no coun-
terpart in the Boussinesq system. On the other hand, the internal gravity waves are
just modified forms of those found in the Boussinesq system, and if we take the limit
.kH;mH / ! 1 then the gravity wave branch reduces to !2

g D N 2k2=.k2 C m2/,
which is the dispersion relationship for gravity waves in the Boussinesq approxima-
tion. We may consider this to be the limit of infinite scale height or (equivalently) the
case in which wavelengths of the internal waves are sufficiently small that the fluid is
essentially incompressible.
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Vertical structure

Recall that w0 D W .x; z; t/ez=.2H / and, by inspection of (2.252), u0 has the same
vertical structure. That is,

w0
/ ez=.2H /; u0

/ ez=.2H /; (2.262)

the amplitude of the velocity field internal waves increasing with height. The pressure
and density perturbation amplitudes fall off with height, varying like

p0
/ e�z=.2H /; �0

/ e�z=.2H /: (2.263)

The kinetic energy of the perturbation, �0.u
02 C w02/ is constant with height, because

�0 D �se
�z=H .

Hydrostatic approximation and Lamb waves

Equations (2.252) also admit to a solution with w0 D 0. We then have�
@2

@t2
� c2 @

2

@x2

�
u0

D 0 and
�
@

@z
�
�

H

�
@u0

@x
D 0 (2.264)

and these have solutions of the form

u0
D Re zU e�z=H ei.kx�!t/; ! D ck; (2.265)

where zU is a constant, complex, amplitude. These are horizontally propagating sound
waves, known as Lamb waves after the hydrodynamicist Horace Lamb. Their velocity
perturbation amplitude increases with height, but the pressure perturbation falls with
height; that is

u0
/ e�z=H

� e2z=.7H /; p0
/ e.��1/z=H

� e�5z=.7H /: (2.266)

Their kinetic energy density �0u02 varies as

K:E: / e�z=H C2�z=H
D e.2R�cp/z=.cpH /�

D e.R�cv/z=.cpH /
� e�3z=.7H / (2.267)

for an ideal gas. (In a simple ideal gas, cv D nR=2 where n is the number of excited
degrees of freedom, 5 for a diatomic molecule.) In this sense Lamb waves are trapped
at the surface and are an example of edge waves or surface waves.

Consider now the slightly more general case, in which we make the hydrostatic ap-
proximation ab initio, but do not restrict the perturbation to havew0 D 0. The linearized
equations are identical to (2.251), except that (2.251b) is replaced by

@p0

@z
D ��0g (2.268)

It is left as a problem for the reader to show that the dispersion relation is now

!2
D

N 2k2

m2 C 1=.4H 2/
: (2.269)

This may be compared with the corresponding Boussinesq result (2.249). Again, the
frequency increases without bound as the horizontal wavelength diminishes.
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Figure 2.9 A schematic of a boundary
layer. The values of a field, such as veloc-
ity, U , may vary rapidly in a boundary in
order to satisfy the boundary conditions at
a rigid surface. The parameter ı is a mea-
sure of the boundary layer thickness, and
H is a typical scale of variation away from
the boundary.

2.12 THE EKMAN LAYER

In the final topic of this chapter, we return to geostrophic flow and consider the effects
of friction. The fluid fields in the interior of a domain are often set by different physical
processes than those occuring at a boundary, and consequently often change rapidly in
a thin boundary layer, as in Fig. 2.9. Such boundary layers nearly always involve one or
both of viscosity and diffusion, because these appear in the terms of highest differential
order in the equations of motion, and so are responsible for the number and type of
boundary conditions that the equations must satisfy — for example, the presence of
molecular viscosity leads to the condition that the tangential flow (as well as the normal
flow) must vanish at a rigid surface.

In many boundary layers in non-rotating flow the dominant balance in the momen-
tum equation is between the advective and viscous terms. In some contrast, in large-
scale atmospheric and oceanic flow the effects of rotation are large, and this results
in a boundary layer, known as the Ekman layer, in which the dominant balance is be-
tween Coriolis and frictional terms.12 Now, the direct effects of molecular viscosity and
diffusion are nearly always negligible at distances more than a few millimeters away
from a solid boundary, but it is inconceivable that the entire boundary layer between the
free atmosphere (or ocean) and the surface is only a few millimeters thick. Rather, in
practice a balance occurs between the Coriolis terms and the stress due to small-scale
turbulent motion, and this gives rise to a boundary layer that has a typical depth of
tens to hundreds of meters. Because the stress arises from the turbulence we cannot
with confidence determine its precise form; thus, we should try to determine what gen-
eral properties Ekman layers may have that are independent of the precise form of the
friction.

The atmospheric Ekman layer occurs near the ground, and the stress at the ground
itself is due to the surface wind (and its vertical variation). In the ocean the main Ekman
layer is near the surface, and the stress at ocean surface is largely due to the presence
of the overlying wind. There is also a weak Ekman layer at the bottom of the ocean,
analogous to the atmospheric Ekman layer. To analyze all these layers, let us assume
that:
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? The Ekman layer is Boussinesq. This is a very good assumption for the ocean, and
a reasonable one for the atmosphere if the boundary layer is not too deep.

? The Ekman layer has a finite depth that is less than the total depth of the fluid,
this depth being given by the level at which the frictional stresses essentially van-
ish. Within the Ekman layer, frictional terms are important, whereas geostrophic
balance holds beyond it.

? The nonlinear and time dependent terms in the equations of motion are negligible,
hydrostatic balance holds in the vertical, and buoyancy is constant, not varying in
the horizontal.

? As needed, we shall assume that friction can be parameterized by a viscous term
of the form ��1

0
@�=@z D A@2u=@z2, where A is constant and � is the stress. In

laboratory settings A may be the molecular viscosity, whereas in the atmosphere
and ocean it is a so-called eddy viscosity. (In turbulent flows momentum is trans-
ferred by the near-random motion of small parcels of fluid and, by analogy with
the motion of molecules that produces a molecular viscosity, the associated stress
is approximately represented, or parameterized, using a turbulent or eddy viscosity
that may be orders of magnitude larger than the molecular one.) In all cases it is
the vertical derivative of the stress that dominates.

2.12.1 Equations of motion and scaling

Frictional-geostrophic balance in the horizontal momentum equation is:

f � u D �rz� C
@z�

@z
: (2.270)

where z� � �=�0 is the kinematic stress (and � is the stress itself), and f is allowed to
vary with latitude. If we model the stress with an eddy viscosity (2.270) becomes

f � u D �rz� C A
@2u

@z2
: (2.271)

The vertical momentum equation is hydrostatic balance, @�=@z D b, and, because
buoyancy is constant, we may without loss of generality write this as

@�

@z
D 0: (2.272)

The equation set is completed by the mass continuity equation r � v D 0.

The Ekman number

We non-dimensionalize the equations by setting

.u; v/ D U.yu; yv/; .x;y/ D L.yx; yy/; f D f0
yf ; z D Hyz; � D ˚ y�; (2.273)

where hatted variables are non-dimensional. H is a scaling for the height, and at this
stage we will suppose it to be some height scale in the free atmosphere or ocean, not
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the height of the Ekman layer itself. Geostrophic balance suggests that ˚ D f0UL.
Substituting (2.273) into (2.271) we obtain

yf � yu D �yr y� C Ek
@2yu

@yz2
; (2.274)

where the parameter

Ek �

�
A

f0H 2

�
; (2.275)

is the Ekman number, and it determines the importance of frictional terms in the hor-
izontal momentum equation. If Ek � 1 then the friction is small in the flow interior
where yz D O.1/. However, the friction term cannot necessarily be neglected in the
boundary layer because it is of the highest differential order in the equation, and so
determines the boundary conditions; if Ek is small the vertical scales become small and
the second term on the right-hand side of (2.274) remains finite. The case when this
term is simply omitted from the equation is therefore a singular limit, meaning that it
differs from the case with Ek ! 0. If Ek � 1 friction is important everywhere, but it is
usually the case that Ek is small for atmospheric and oceanic large-scale flow, and the
interior flow is very nearly geostrophic. (In part this is because A itself is only large
near a rigid surface where the presence of a shear creates turbulence and a significant
eddy viscosity.)

Momentum balance in the Ekman layer

For definiteness, suppose the fluid lies above a rigid surface at z D 0. Sufficiently far
away from the boundary the velocity field is known, and we suppose this flow to be in
geostrophic balance. We then write the velocity field and the pressure field as the sum
of the interior geostrophic part, plus a boundary layer correction:

yu D yug C yuE ; y� D y�g C y�E ; (2.276)

where the Ekman layer corrections, denoted with a subscript E, are negligible away
from the boundary layer. Now, in the fluid interior we have, by hydrostatic balance,
@ y�g=@yz D 0. In the boundary layer we have still @ y�g=@yz D 0 so that, to satisfy
hydrostasy, @ y�E=@yz D 0. But because y�E vanishes away from the boundary we have
y�E D 0 everywhere. This is an important result: there is no boundary layer in the
pressure field. Note that this is a much stronger result than saying that pressure is
continuous, which is nearly always true in fluids; rather, it is a special result about
Ekman layers. (See also problem 2.25.)

Using (2.276) with y�E D 0, the dimensional horizontal momentum equation (2.270)
becomes, in the Ekman layer,

f � uE D
@z�

@z
: (2.277)

The dominant force balance in the Ekman layer is thus between the Coriolis force and
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the friction. We can determine the thickness of the Ekman layer if we model the stress
with an eddy viscosity so that

f � uE D A
@2uE

@z2
(2.278)

or, non-dimensionally,

yf � yuE D Ek
@2yuE

@yz2
(2.279)

It is evident this equation can only be satisfied if yz ¤ O.1/, implying that H is not a
proper scaling for z in the boundary layer. Rather, if the vertical scale in the Ekman
layer is yı (meaning yz � yı) we must have yı � Ek1=2. In dimensional terms this means
the thickness of the Ekman layer is

ı D H yı D HEk1=2 (2.280)

or

ı D

�
A

f0

�1=2

: (2.281)

[This estimate also emerges directly from (2.278).] Note that (2.280) can be written as

Ek D

�
ı

H

�2

: (2.282)

That is, the Ekman number is equal to the square of the ratio of the depth of the Ekman
layer to an interior depth scale of the fluid motion. In laboratory flows where A is the
molecular viscosity we can thus estimate the Ekman layer thickness, and if we know
the eddy viscosity of the ocean or atmosphere we can estimate the thickness of their
respective Ekman layers. We can invert this argument and obtain an estimate of A if we
know the Ekman layer depth. In the atmosphere, deviations from geostrophic balance
are very small in the atmosphere above 1 km, and using this gives A � 102 m2 s�1. In
the ocean Ekman depths are about 50 m or less, and eddy viscosities about 0:1 m2 s�1.

2.12.2 Integral properties of the Ekman layer

What can we deduce about the Ekman layer without specifying the detailed form of
the frictional term? Reverting to dimensional notation, we recall frictional-geostrophic
balance,

f � u D �r� C
@z�

@z
(2.283)

where z� is zero at the edge of the Ekman layer. In the Ekman layer itself we have

f � uE D
@z�

@z
: (2.284)
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Consider either a top or bottom Ekman layer, and integrate over its thickness. From
(2.284) we obtain

f � ME D z�t � z�b (2.285)

where
ME D

Z
Ek

uE dz (2.286)

is the ageostrophic transport in the Ekman layer, and where z�t and z�b is the stress at
the top and the bottom of the layer. The former (latter) will be zero in a bottom (top)
Ekman layer. We can rewrite (2.285) as:

Top Ekman Layer: ME D �
1

f
k � z�t (2.287)

Bottom Ekman Layer: ME D
1

f
k � z�b (2.288)

The transport in the Ekman layer is thus at right-angles to the stress at the surface. This
has a simple physical explanation: integrated over the depth of the Ekman layer the
surface stress must be balanced by the Coriolis force, which in turn acts at right angles
to the mass transport. This result is particularly useful in the ocean, where the stress at
the upper surface is primarily due to the wind, and can be regarded as independent of the
interior flow. If f is positive, as in the Northern hemisphere, then an Ekman transport
is induced 90° to the right of the direction of the wind stress. This has innumerable
important consequences — for example, in inducing coastal upwelling when, as is not
uncommon, the wind blows parallel to the coast. Upwelling off the coast of California
is one example. In the atmosphere, however, the stress arises as a consequence of the
interior flow, and we need to parameterize the stress in terms of the flow in order to
calculate the surface stress.

Finally, we obtain an expression for the vertical velocity induced by an Ekman
layer. The mass conservation equation is

@u

@x
C
@v

@y
C
@w

@z
D 0: (2.289)

Integrating this over an Ekman layer gives

r � Mt D �.wt � wb/ (2.290)

where Mt is the total (Ekman plus geostrophic) transport in the Ekman layer,

Mt D

Z
Ek

u dz D

Z
Ek
.ug C uE/ dz � Mg C ME ; (2.291)

and wt and wb are the vertical velocities at the top and bottom of the Ekman layer; the
former (latter) is zero in a top (bottom) Ekman layer. From (2.285)

k � .Mt � Mg/ D
1

f
.z�t � z�b/: (2.292)
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Taking the curl of this (i.e., cross-differentiating) gives

r � .Mt � Mg/ D curlz Œ.z�t � z�b/=f � (2.293)

where the curlz operator on a vector A is defined by curlzA � @xAy � @yAx . Using
(2.290) we obtain, for bottom and top Ekman layers respectively,

wb D curlz
z�t

f
C r � Mg; wt D curlz

z�b

f
� r � Mg ; (2.294a,b)

where r � Mg D �ˇMg=f is the divergence of the geostrophic transport in the Ekman
layer, which is often small compared to the other terms in these equations. Thus, friction
induces a vertical velocity at the edge of the Ekman layer, proportional to the curl of
the stress at the surface, and this is perhaps the most used result in Ekman layer theory.
Numerical models sometimes do not have the vertical resolution to explicitly resolve
an Ekman layer, and (2.294) provides a means of parameterizing the Ekman layer in
terms of resolved or known fields. It is particularly useful for the top Ekman layer in
the ocean, where the stress can be regarded as a given function of the overlying wind.

2.12.3 Explicit solutions. I: A bottom boundary layer

We now assume that the frictional terms can be parameterized as an eddy viscosity
and calculate the explicit form of the solution in the boundary layer. The frictional-
geostrophic balance may be written as

f � .u � ug/ D A
@2u

@z2
(2.295a)

where

f .ug; vg/ D

�
�
@�

@y
;
@�

@x

�
: (2.295b)

We continue to assume there are no horizontal gradients of temperature, so that, via
thermal wind, @ug=@z D @vg=@z D 0.

Boundary conditions and solution

Appropriate boundary conditions for a bottom Ekman layer are:

At z D 0 W u D 0; v D 0 (the no slip condition) (2.296a)

As z ! 1 W u D ug; v D vg (a geostrophic interior). (2.296b)

Let us seek solutions to (2.295a) of the form

u D ug C A0e˛z; v D vg C B0e˛z (2.297)

where A0 and B0 are constants. Substituting into (2.295a) gives two homogeneous
algebraic equations

A0f � B0A˛2
D 0 (2.298a)
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Figure 2.10 The ide-
alised Ekman layer so-
lution in the lower at-
mosphere, plotted as a
hodograph of the wind
components: the arrows
show the velocity vectors
at a particular heights,
and the curve traces out
the continuous variation
of the velocity. The val-
ues on the curve are of
the nondimensional vari-
able z=d , where d D

.2A=f /1=2, and vg is cho-
sen to be zero.

�A0A˛2
� B0f D 0 (2.298b)

and thus the solvability condition ˛4 D �f 2=A2, from which we find ˛ D ˙.1 ˙

i/
p
f=2A. Using the boundary conditions we then obtain the solution

u D ug � e�z=d
�
ug cos.z=d/C vg sin.z=d/

�
(2.299a)

v D vg C e�z=d
�
ug sin.z=d/ � vg cos.z=d/

�
(2.299b)

where d D
p

2A=f ; this is, within a constant factor, the depth of the Ekman layer
obtained from scaling considerations. The solution decays exponentially from the sur-
face with this e-folding scale, so that d is a good measure of the Ekman layer thickness.
Note that the boundary layer correction depends on the interior flow, since the boundary
layer serves to bring the flow to zero at the surface.

To illustrate the solution, suppose that the pressure force is directed in the y-
direction (northward), so that the geostrophic current is eastward. Then the solution,
the now-famous Ekman spiral, is plotted in Fig. 2.10 and Fig. 2.11). The wind falls to
zero at the surface, and its direction just above the surface is northeastward; that is, it is
rotated by 45° to the left of its direction in the free atmosphere. Although this result is
independent of the value of the frictional coefficients, it is dependent on the form of the
friction chosen. The force balance in the Ekman layer is between the Coriolis force, the
stress, and the pressure force. At the surface the Coriolis force is zero, and the balance
is entirely between the northward pressure force and the southwards stress force.

Mass transport, force balance and vertical velocity

The cross-isobaric flow is given by (for vg D 0)

V D

Z 1

0

v dz D

Z 1

0

uge�z=d sin.z=d/ dz D
ugd

2
(2.300)
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Figure 2.11
Solutions for a
bottom Ekman layer
with a given flow
in the fluid interior
(left), and for a top
Ekman layer with a
given surface stress
(right), both with
d D 1. On the left we
have ug D 1, vg D 0.
On the right we have
ug D vg D 0, z�y D 0

and
p

2z�x=.fd/ D 1.
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For positive f , this is to the left of the geostrophic flow — that is, down the pressure
gradient. In the general case (vg ¤ 0) we obtain

V D

Z 1

0

.v � vg/ dz D
d

2
.ug � vg/ (2.301)

Similarly, the additional zonal transport produced by frictional effects are, for vg D 0,

U D

Z 1

0

.u � ug/ dz D �

Z 1

0

e�z=d sin.z=d/ dz D �
ugd

2
(2.302)

and in the general case

U D

Z 1

0

.u � ug/ dz D �
d

2
.ug C vg/ (2.303)

So the total transport caused by frictional forces is

ME D
d

2

�
�i.ug C vg/C j.ug � vg/

�
: (2.304)

The total stress at the bottom surface z D 0 induced by frictional forces is

z�b D A
@u

@z

ˇ̌̌̌
zD0

D
A

d

�
i.ug � vg/C j.ug C vg/

�
; (2.305)

using the solution (2.299). Thus, using (2.304), (2.305) and d2 D 2A=f , we see that
the total frictionally induced transport in the Ekman layer is related to the stress at the
surface by ME D .k� z�b/=f , reprising the result of the more general analysis, (2.288).
From (2.305), the stress is at an angle of 45° to the left of the velocity at the surface.
(However, this result is not generally true for all forms of stress.) These properties are
illustrated in Fig. 2.12.
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Figure 2.12 A bottom Ekman
layer, generated from an east-
wards geostrophic flow above. An
overbar denotes a vertical integral
over the Ekman layer, so that �f �

uE is the Coriolis force on the
vertically integrated Ekman veloc-
ity. ME is the frictionally induced
boundary layer transport, and � is
the stress.

The vertical velocity at the top of the Ekman layer, wE , is obtained using (2.304)
and (2.305). If f if constant we obtain

wE D �r � ME D
1

f0

curlz z�b D Vx � Uy D
d

2
�g (2.306)

where �g is the vorticity of the geostrophic flow. Thus, the vertical velocity at the top
of the Ekman layer, which arises because of the frictionally-induced divergence of the
cross-isobaric flow in the Ekman layer, is proportional to the geostrophic vorticity in
the free fluid and is proportional to the Ekman layer height

p
2A=f0.

Another bottom boundary condition

In the analysis above we assumed a no slip condition at the surface, namely that the
velocity tangential to the surface vanishes. This is certainly appropriate if A is a molec-
ular velocity, but in a turbulent flow, where A is interpreted as an eddy viscosity, the
flow very close to the surface may be far from zero. Then, unless we wish to explicitly
calculate the flow in an additional very thin viscous boundary layer the no-slip condi-
tion may be inappropriate. A slightly more general boundary condition is to suppose
that the stress at the surface is given by

� D �0C u (2.307)

where C is a constant. The surface boundary condition is then

A
@u

@z
D C u: (2.308)

If C is infinite we recover the no-slip condition. If C D 0, we have instead a condition
of no stress at the surface, also known as a free slip condition. For intermediate values
of C the boundary condition is known as a ‘mixed condition’. Evaluating the solution
in these cases is left as an exercise for the reader (problem 2.27).

2.12.4 Explicit solutions. II: The upper ocean

Boundary conditions and solution
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Figure 2.13 An idealized Ek-
man spiral in a Southern Hemi-
sphere ocean, driven by an im-
posed wind-stress. A Northern
Hemisphere spiral would be the
reflection of this about the ver-
tical axis. Such a clean spiral
is rarely observed in the real
ocean. The net transport is at
right angles to the wind, inde-
pendent of the detailed form of
the friction. The angle of the
surface flow is 45° to the wind
only for a Newtonian viscosity.

The wind provides a stress on the upper ocean, and the Ekman layer serves to commu-
nicate this to the oceanic interior. Appropriate boundary conditions are thus:

At z D 0 W A
@u

@z
D z�x; A

@v

@z
D z�y (a given surface stress) (2.309a)

As z ! �1 W u D ug; v D vg (a geostrophic interior) (2.309b)

where z� is the given (kinematic) wind stress at the surface. Solutions to (2.295a) with
(2.309) are found by the same methods as before, and are

u D ug C

p
2

fd
ez=d Œz�x cos.z=d �  =4/ � z�y sin.z=d �  =4/� ; (2.310)

and

v D vg C

p
2

fd
ez=d Œz�x sin.z=d �  =4/C z�y cos.z=d �  =4/� : (2.311)

Note that the boundary layer correction depends only on the imposed surface stress,
and not the interior flow itself. This is a consequence of the type of boundary condi-
tions chosen, for in the absence of an imposed stress the boundary layer correction is
zero — the interior flow already satisfies the gradient boundary condition at the top
surface. Similar to the bottom boundary layer the velocity vectors of the solution trace
a diminishing spiral as they descend into the interior (Fig. 2.13, which is drawn for the
Southern Hemisphere).

Mass flux, surface flow and vertical velocity

The mass flux induced by the surface stress is obtained by integrating (2.310) and
(2.311) from the surface to �1. We explicitly find

U D

Z 0

�1

.u � ug/ dz D
z�y

f
; V D

Z 0

�1

.v � vg/ dz D �
z�x

f
(2.312)
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Fig. 2.14 Upper and lower Ekman layers. The upper Ekman layer in the
ocean is primarily driven by an imposed wind stress, whereas the lower
Ekman layer in the atmosphere or ocean largely results from the interaction
of interior geostrophic velocityand a rigid lower surface. The upper part
of figure shows the vertical Ekman ‘pumping’ velocities that result from
the given wind stress, and the lower part of the figure shows the Ekman
pumping velocities given the interior geostrophic flow.

which indicates that the ageostrophic mass transport is perpendicular to the wind-stress,
as noted previously from more general considerations.

Suppose that the surface wind is eastward. Then z�y D 0 and the solutions immedi-
ately give

u.0/ � ug D .z�x=fd/ cos. =4/; v.0/ � vg D .z�x=fd/ sin. =4/: (2.313)

Therefore the magnitudes of the frictional flow in the x and y directions are equal to
each other, and the flow is 45° to the right (for f > 0) of the wind. This result is
dependent on the form of the frictional parameterization chosen, but not on the size of
the viscosity.

At the edge of the Ekman layer the vertical velocity is given by (2.294), and so
is proportional to the curl of the wind-stress. (The second term on the right-hand side
of (2.294) is the vertical velocity due to the divergence of the geostrophic flow, and is
usually much smaller than the first term.) The production of a vertical velocity at the
edge of the Ekman layer is one of most important effects of the layer, especially with
regard to the large-scale circulation, for it provides an efficient means whereby surface
fluxes are communicated to the interior flow (see Fig. 2.14).

2.12.5 Observations

Ekman layers are quite hard to observe, in either ocean or atmosphere, largely be-
cause of a signal-to-noise problem — the noise largely coming from inertial and grav-
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ity waves (section 2.10) and, especially in the atmosphere, the effects of stratification
and buoyancy-driven turbulence. As regards oceanography, from about 1980 onwards
improved instruments have made it possible to observe the vector current with depth,
and to average that current and correlate it with the overlying wind, and a number of
observations consistent with Ekman dynamics have emerged.13 The main differences
between observations and theory can be ascribed to the effects of stratification (which
causes a shallowing and flattening of the spiral), and the interaction of the Ekman spiral
with turbulence (and the inadequacy of the eddy-diffusivity parameterization). In spite
of these differences of detail, Ekman layer theory remains a remarkable and enduring
foundation of geophysical fluid dynamics.

2.12.6 Frictional parameterization

[Some readers will be reading these sections on Ekman layers after having been intro-
duced to quasi-geostrophic theory; this section is for them. Other readers may return to
this section after reading chapter 5, or take (2.314) on faith.]

Suppose that the free atmosphere is described by the quasi-geostrophic vorticity
equation,

D�g

Dt
D f0

@w

@z
(2.314)

where �g is the geostrophic relative vorticity. Let us further model the atmosphere as
a single homogeneous layer of thickness H lying above an Ekman layer of thickness
d � H . If the vertical velocity is negligible at the top of the layer (at z D H C d ) the
equation of motion becomes

D�g

Dt
D
f0Œw.H C d/ � w.d/�

H
D �

f0d

2H
�g (2.315)

using (2.306). This equation shows that the Ekman layer acts as a linear drag on the
interior flow, with a drag coefficient r equal to f0d=2H and with associated timescale
TEk given by

TEk D
2H

f0d
D

2Hp
2f0A

(2.316)

In the oceanic case the corresponding vorticity equation for the interior flow is

D�g

Dt
D

1

H
curlz�s (2.317)

where �s is the surface stress. The surface stress thus acts as if it were a body force on
the interior flow, and neither the Coriolis parameter nor the depth of the Ekman layer
explicitly appear in this formula.

The Ekman layer is actually a very efficient way of communicating surface stresses
to the interior. To see this, suppose that eddy mixing were the sole mechanism of
transferring stress from the surface to the fluid interior, and there were no Ekman layer.
Then the timescale of spindown of the fluid would be given by using

d�
dt

D A
@2�

@z2
(2.318)
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implying a turbulent spindown time, Tturb of

Tturb �
H 2

A
(2.319)

where H is the depth over which we require a spin-down. This is much longer than the
spin-down of a fluid that has an Ekman layer, for we have

Tturb

TEk
D

.H 2=A/

.2H=f0d/
D

H

d
� 1; (2.320)

using d D
p

2A=f0. The effects of friction are evidently enhanced because of the
presence of a secondary circulation confined to the Ekman layers (as in Fig. 2.14) in
which the vertical scales are much smaller than those in the fluid interior and so where
viscous effects become significant, and these frictional stresses are then communicated
to the fluid interior via the induced vertical velocities at the edge of the Ekman layers.

Notes

1 The distinction between Coriolis force and acceleration has not always been made
in the literature. For a fluid in geostrophic balance, one might either say that there
is a balance between the pressure force and the Coriolis force, with no net acceler-
ation, or that the pressure force produces a Coriolis acceleration. The descriptions
are equivalent, because of Newton’s second law, but should not be conflated.

The Coriolis forces is named after Gaspard Gustave de Coriolis (1792-1843), who
introduced the force in the context of rotating mechanical systems (Coriolis 1832,
1835). See Persson (1998) for a historical account as well as a physical interpreta-
tion of the Coriolis force.

2 Phillips (1973). See also Stommel and Moore (1989) and Gill (1982). (There are
typographic errors in the second term of each of Gill’s equations (4.12.11) and
(4.12.12).)

3 Phillips (1966). See White (2003) for a review. In the early days of numerical mod-
elling these equations were the most primitive — i.e., the least filtered — equations
that could practically be integrated numerically. Associated with increasing com-
puter power there is a tendency for comprehensive numerical models to use non-
hydrostatic equations of motion that do not make the shallow-fluid or traditional
approximations, and it is conceivable that the meaning of the word ‘primitive’ may
evolve to accomodate them.

4 The Boussinesq approximation is named after Boussinesq (1903), although similar
approximations were used earlier by Oberbeck (1879, 1888). Spiegel and Veronis
(1960) give a physically based derivation, and Mihaljan (1962) provides a system-
atic asymptotic derivation of the equations, expanding the Navier-Stokes equations
in two small parameters, proportional to the coefficient of volume expansion and
the square of the thermal diffusivity. Mahrt (1986) discusses its applicability in the
atmosphere.

5 I thank W. R. Young for this derivation.

6 Various versions of anelastic equations exist — see Batchelor (1953), Ogura and
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Phillips (1962), Gough (1969), Lipps and Hemler (1982) and Durran (1989), al-
though not all have potential vorticity and energy conservation laws (Bannon 1995,
1996), Scinocca and Shepherd (1992). The system we derive is most similar to that
of Ogura and Phillips (1962) and unpublished notes by J. S. A. Green.

7 A numerical model that includes sound waves must take very small timesteps in
order to maintain numerical stability, in particular to satisfy the CFL criterion. An
alternative is to use an implicit time-stepping scheme that effectively lets the nu-
merics do the filtering of the sound waves, and this approach is favoured by many
numerical modellers. If we make the hydrostatic approximation then all sound
waves except those that propagate horizontally are eliminated, and there is little
need to also make the anelastic approximation.

8 It is named for C.-G. Rossby (see endnote on page 250) but seems to have been
first used by Kibel (1940) and is sometimes called the Kibel or Rossby-Kibel num-
ber. The notion of geostrophic balance and so, implicitly, that of a small Rossby
number, predates either Rossby or Kibel.

9 After Taylor (1921b) and Proudman (1916). The Taylor-Proudman effect is some-
times called the Taylor-Proudman ‘theorem’, but it is more usefully thought of as
a physical effect, with manifestations even when the conditions for the satisfaction
of the theorem are not met.

10 Foster (1972).

11 Many numerical models of the large-scale circulation in the atmosphere and ocean
do make the hydrostatic approximation. In these models convection must be
parameterized; otherwise, it would simply occur at the smallest scale available,
namely the size of the numerical grid, and this type of unphysical behaviour should
be avoided. Of course in non-hydrostatic models convection must also be param-
eterized if the horizontal resolution of the model is too coarse to properly resolve
the convective scales. See also problem 2.10.

12 After Ekman (1905). The problem was posed to Ekman, a student of Vilhelm Bjerk-
nes, by Fridtjof Nansen, the polar explorer and statesman, who wanted to under-
stand the motion of icebergs.

13 Davis et al. (1981), Price et al. (1987), Rudnick and Weller (1993).

Further Reading

Cushman-Roisin, B., 1994. An Introduction to Geophysical Fluid Dynamics.
This compact book provides a nice introduction to a variety of topics in GFD.

Gill, A. E. 1982. Atmosphere-Ocean Dynamics.
A rich and book, especially strong on equatorial dynamics and gravity wave motion.

Holton, J. R. 1992. An Introduction to Dynamical Meteorology.
A deservedly well-known textbook at the upper-division undergraduate/beginning
graduate level.

Pedlosky, J., 1987. Geophysical Fluid Dynamics.
A primary reference, especially for flow at low Rossby number. Although the book
requires some effort, there is a handsome pay-off for those who study it closely.

White (2002) provides a clear and thorough summary of the equations of motion for
meteorology, including the non-hydrostatic and primitive equations.
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Zdunkowski, W. and Bott, A. 2003. Dynamics of the Atmosphere: A Course in Theoreti-
cal Meteorology.
Emphasizes the fundamental aspects and the equations describing them.

Problems

2.1 For an ideal gas in hydrostatic balance, show that:

(a) The integral of the potential plus internal energy from the surface to the top is
is equal to its enthalpy;

(b) d�=dz D cp.T=�/d�=dz , where � D I C p˛ C ˚ is the dry static energy;
(c) The following expressions for the pressure gradient force are all equal (even

without hydrostatic balance):

�
1

�
rp D �� r˘ D �

c2
s

��
r.��/: (P2.1)

where ˘ D cpT=� is the Exner function.

2.2 Show that, without approximation, the unforced, inviscid momentum equation may
be written in the forms

Dv
Dt

D T r� � r.p˛ C I/ (P2.2)

and
@v

@t
C! � v D T r� � rB (P2.3)

where ! D r � v, � is the specific entropy (d� D cp d ln � ) and B D I C v2=2 C p˛

where I is the internal energy per unit mass.
Hint: First show that T r� D rI C pr˛, and note also the vector identity v � .r �

v/ D
1
2

r.v � v/ � .v � r/v.

2.3 Consider two-dimensional fluid flow in a rotating frame of reference on the f �plane.
Linearize the equations about a state of rest.

(a) Ignore the pressure term and determine the general solution to the resulting
equations. Show that the speed of fluid parcels is constant. Show that the
trajectory of the fluid parcels is a circle with radius jU j=f , where jU j is the fluid
speed.

(b) What is the period of oscillation of a fluid parcel? Why is this not the same as
the period of rotation of the frame of reference?

2.4 A fluid at rest evidently satisfies the hydrostatic relation, which says that the pres-
sure at the surface is given by the weight of the fluid above it. Now consider a deep
atmosphere on a spherical planet. A unit cross-sectional area at the planet’s surface
supports a column of fluid whose cross-section increases with height, because the
total area of the atmosphere increases with distance away from the center of the
planet. Is the pressure at the surface still given by the hydrostatic relation, or is
it greater than this because of the increased mass of fluid in the column? If it is
still given by the hydrostatic relation, then the pressure at the surface, integrated
over the entire area of the planet, is less than the total weight of the fluid; resolve
this paradox. But if the pressure at the surface is greater than that implied by
hydrostatic balance, explain how the hydrostatic relation fails.
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2.5 By considering how the direction of the coordinate axes change with position, show
geometrically that in spherical coordinates:
Di=Dt D u@i=@x D .u=r cos#/.j sin# � k cos#/;
Dj=Dt D u@j=@x C v@j=@y D �i.u=r/ tan# � kv=a;
Dk=Dt D u@k=@x C v@k=@y D i.u=r/C j.v=r/.
Then, using

Dv
Dt

D i
Du

Dt
C j

Dv
Dt

C k
Dw
Dt

C u
Di
Dt

C v
Dj
Dt

C w
Dk
Dt
; (P2.4)

show that

Dv
Dt

D i
�

Du

Dt
�

uv tan#
r

C
uw

r

�
C j

 
Dv
Dt

C
u2 tan#

r
C
vw

r

!

C k

 
Dw
Dt

�
u2 C v2

r

!
:

(P2.5)

2.6 At what latitude is the angle between the direction of Newtonian gravity (due solely
to the mass of the earth) and that of apparent gravity (Newtonian gravity plus cen-
trifugal terms) the largest? At what latitudes, if any, is this angle zero?

2.7 � Write the momentum equations in true spherical coordinates, including the cen-
trifugal and gravitational terms. Show that for reasonable values of the wind, the
dominant balance in the meridional component of this equation involve a balance
between centrifugal and pressure gradient terms. Can this balance be subtracted
out of the equations in a sensible way, so leaving a useful horizontal momentum
equation that involves the Coriolis and acceleration terms? If so, obtain a closed
set of equations for the flow this way. Discuss the pros and cons of this approach
versus the geometric approximation discussed in section 2.2.1.

2.8 For an ideal gas show that the expressions (2.223) and (2.227) are equivalent.

2.9 Consider an ocean at rest with known vertical profiles of potential temperature and
salinity, �.z/ and S.z/. Suppose we also know the equation of state in the form
� D �.�;S;p/. Obtain an expression for the buoyancy frequency. Check your
expression by substituting the equation of state for an ideal gas and recovering a
known expression for the buoyancy frequency.

2.10 Convection and its parameterization.

(a) Consider a Boussinesq system in which the vertical momentum equation is mod-
ified by the parameter ˛ to read

˛2 Dw
Dt

D �
@�

@z
C b; (P2.6)

and the other equations are unchanged. (If ˛ D 0 the system is hydrostatic,
and if ˛ D 1 the system is the original one.) Linearise these equations about a
state of rest and of constant stratification (as in section 2.10.1) and obtain the
dispersion relation for the system, and plot it for various values of ˛, including
0 and 1. Show that, for ˛ > 1 the system approaches the limiting frequency of
N more rapidly than with ˛ D 1.

(b) � Argue that if N 2 < 0, convection in a system with ˛ > 1 generally occurs at
a larger scale than with ˛ D 1. Show this explicitly by adding some diffusion
or friction to the right-hand sides of the equations of motion and obtaining the
dispersion relation. You may do this approximately.



Notes and Problems 125

2.11 (a) The geopotential height is the height of a given pressure level. Show that in
an atmosphere with a uniform lapse rate (i.e., dT=dz D � D constant) the
geopotential height at a pressure p is given by

z D
T0

�

"
1 �

�
p0

p

��R� =g
#

(P2.7)

where T0 is the temperature at z D 0.
(b) In an isothermal atmosphere, obtain an expression for the geopotential height

as function of pressure, and show that this is consistent with the expression
(P2.7) in the appropriate limit.

2.12 Consider the simple Boussinesq equations, Dv=Dt D kb C �r2v, r � v D 0,
Db=Dt D Q C �r2b. Obtain an energy equation similar to (2.113) but now with
the terms on the right-hand side that represent viscous and diabatic effects. Over
a closed volume, show that the dissipation of kinetic energy is balanced by a buoy-
ancy source. Show also that, in a statistically steady state, the heating must occur
at a lower level than the cooling if a kinetic-energy dissipating circulation is to be
maintained.

2.13 � Suppose a fluid is contained in a closed container, with insulating sidewalls, and
heated from below and cooled from above. The heating and cooling are adjusted so
that there is no net energy flux into the fluid. Let us also suppose that any viscous
dissipation of kinetic energy is returned as heating, so the total energy of the fluid is
exactly constant. Suppose the fluid starts out at rest and at a uniform temperature,
and the heating and cooling are then turned on. A very short time afterwards, the
fluid is lighter at the bottom and heavier at the top; that is, its potential energy
has increased. Where has this energy come from? Discuss this paradox for both a
compressible fluid (e.g., an ideal gas) and for a simple Boussinesq fluid.

2.14 Consider a rapidly rotating (i.e., in near geostrophic balance) Boussinesq fluid on
the f -plane.

(a) Show that the pressure divided by the density scales as � � f UL.
(b) Show that the horizontal divergence of the geostrophic wind vanishes. Thus,

argue that the scaling W � UH=L is an overestimate for the magnitude of the
vertical velocity. (Optional extra: obtain a scaling estimate for the magnitude
of vertical velocity in rapidly rotating flow.)

(c) Using these results, or otherwise, discuss whether hydrostatic balance is more
or less likely to hold in a rotating flow that in non-rotating flow.

2.15 Using either the anelastic equations in height coordinates, or the equations of mo-
tion in pressure coordinates, show that for rapidly rotating flow the vertical shear of
horizontal velocity is proportional to the horizontal temperature gradient. Estimate
the size of the zonal wind 5 km above the surface in the midlatitude atmosphere
in summer and winter using (approximate) values for the meridional temperature
gradient in the atmosphere. What is the shear corresponding to the pole-equator
temperature gradient in the ocean?

2.16 Using approximate but realistic values for the observed stratification, what is the
buoyancy period for (a) the mid-latitude troposphere, (b) the stratosphere, (c) the
oceanic thermocline, (d) the oceanic abyss?

2.17 Consider a dry, hydrostatic, ideal-gas atmosphere whose lapse rate is one of con-
stant potential temperature. What is its vertical extent? That is, at what height does
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the density vanish? Is this a problem for the anelastic approximation discussed in
the text?

2.18 Show that for an ideal gas, the expressions (2.227), (2.222), (2.223) are all equiva-
lent, and express N 2 terms of the temperature lapse rate, @T=@z .

2.19 � Calculate a reasonably accurate, albeit approximate, expression for the buoyancy
equation for seawater. (Derived from notes by R. deSzoeke)
Solution (i): The buoyancy frequency is given by

N 2
D �

g

�

�
@�pot

@z

�
env

D
g

˛

�
@˛pot

@z

�
env

D �
g2

˛2

�
@˛pot

@p

�
env

(P2.8)

where ˛pot D ˛.�;S;pR/ is the potential density, and pR a reference pressure. From
(1.178)

˛pot D ˛0

"
1 �

˛0

c2
0

pR C ˇT .1 C �pR/�
0
C

1

2
ˇ�

T �
02

� ˇS .S � S0/

#
(P2.9)

Using this and (P2.8) we obtain the buoyancy frequency,

N 2
D �

g2

˛2
˛0

�
ˇT

�
1 C pR C

ˇ�
T

ˇT

�

��
@�

@p

�
env

� ˇS

�
@S

@p

�
env

�
; (P2.10)

although we must substitute local pressure for the reference pressure pR. (Why?)

Solution (ii): The sound speed is given by

c�2
D �

1

˛2

�
@˛

@p

�
�;S

D
1

˛2

 
˛2

0

c2
0

� ˛1�

!
(P2.11)

and, using (P2.8) and (2.227) the square of the buoyancy frequency may be written

N 2
D

g

˛

�
@˛

@z

�
env

�
g2

c2
D �

g2

˛2
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@˛

@p

�
env

C
˛2

c2

#
(P2.12)

Using (1.178), (P2.11) and (P2.12) we recover (P2.10), although now with p explicitly
in place of pR.

2.20 Begin with the mass conservation in the height-coordinates, namely D�=Dt C �r �

v D 0. Transform this into pressure coordinates using the chain rule (or otherwise)
and derive the mass conservation equation in the form rp � u C @!=@p D 0.

2.21 Starting with the primitive equations in pressure coordinates, derive the form of the
primitive equations of motion in sigma-pressure coordinates. In particular, show
that the prognostic equation for surface pressure is,

@ps

@t
C r � .psu/C ps

@ P�

@�
D 0 (P2.13)

and that hydrostatic balance may be written @˚=@� D �RT=� .

2.22 Starting with the primitive equations in pressure coordinates, derive the form of the
primitive equations of motion in log-pressure coordinates in which Z D �H ln.p=pr /

is the vertical coordinate. Here, H is a reference height (e.g., a scale height RTr =g

where Tr is a typical or an average temperature) and pr is a reference pressure
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(e.g., 1000 mb). In particular, show that if the ‘vertical velocity’ is W D DZ=Dt

then W D �H!=p and that

@!

@p
D �

@

@p

�
pW

H

�
D
@W

@Z
�

W

H
: (P2.14)

and obtain the mass conservation equation (2.157d). Show that this can be written
in the form

@u

@x
C
@v

@y
C

1

�s

@

@Z
.�sW / D 0 (P2.15)

where �s D �r exp.�Z=H /.

2.23 (a) Prove that the argument of the square root in (2.257) is always positive.
Solution: The largest value or the argument occurs when m D 0 and k2 D

1=.4H 2/. The argument is then 1 � 4H 2N 2=c2. But c2 D RT0 D gH and
N 2 D g�=H so that 4N 2H 2=c2 D 4�= � 0:8.

(b) � This argument seems to depend on the parameters in the ideal gas equation
of state. Is it more general than this? Is a natural system possible for which the
argument is negative, and if so what physical interpretation could one ascribe
to the situation?

2.24 Consider a ideal-gas isothermal atmosphere that obeys the hydrostatic equations of
motion. Show that small deviations around a resting state, as described by (2.251),
but with (2.251b) is replaced by (2.268), give rise to internal gravity waves with a
dispersion relation given by (2.269). Show also that the Lamb wave is present in
this system.

2.25 Suppose that we allow for the possibility of friction in the vertical momentum equa-
tion, and write this as

@�

@z
D A

@2w

@z2
: (P2.16)

Show that if Ek � 1 the term on the right-hand side is negligible if L � H , and
that there is no boundary layer in the pressure field, as in the inviscid case.

2.26 Consider a wind stress imposed by a mesoscale cyclonic storm (in the atmosphere)
given by

� D �Ae�.r=�/2

.y i C x j/ (P2.17)

where r2 D x2 C y2, and A and � are constants. Also assume constant Coriolis
gradient ˇ D @f=@y and constant ocean depth H . Find (a) the Ekman transport, (b)
the vertical velocity wE.x;y; z/ below the Ekman layer, (c) the northward velocity
v.x;y; z/ below the Ekman layer and (d) indicate how you would find the westward
velocity u.x;y; z/ below the Ekman layer.

2.27 In an atmospheric Ekman layer on the f -plane for a fluid with � D �a D 1 let us
write the momentum equation as

f � u D �r� C
@�

@z
(P2.18)

where � D K@u=@z and K is a constant coefficient of viscosity. An independent
formula for the stress at the ground is � D C u, where C is a constant. Assume
that in the free atmosphere the wind is geostrophic and zonal, with ug D U i.
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(a) Find an expression for the wind vector at the ground. Discuss the limits C D 0

and C D 1. Show that when C D 0 the frictionally-induced vertical velocity at
the top of the Ekman layer is zero.

(b) Find the vertically integrated horizontal mass flux caused by the boundary layer.
(c) When the stress on the atmosphere is �, the stress on the ocean beneath is

��. Determine the direction and strength of the surface current in terms of
the surface wind, the oceanic Ekman depth and the ratio �a=�o, where �o is the
density of the seawater. How does the boundary-layer mass flux in the ocean
compare to that in the atmosphere?

Partial solution: A useful trick in Ekman layer problems is to write the velocity as
a complex number, zu D u C iv. The Ekman layer equation, (2.295a), may then be
written as

A
@2 zU

@z2
D if zU (P2.19)

where zU D zu � zug. The solution to this is

zu � zug D .zu.0/ � zug/ exp

�
�
.1 C i/z

d

�
: (P2.20)

where the boundary condition of finiteness at infinity eliminates the exponentially
growing solution. The boundary condition at z D 0 is @ug=@z D .C=K/ug which

gives .zu.0/ � zug/ exp.i =4/ D �Cd=.
p

2K/zu.0/, and the rest of the solution fol-
lows.

2.28 The logarithmic boundary layer
Close to ground rotational effects are unimportant and small-scale turbulence gen-
erates a mixed layer. In this layer, assume that the stress is constant and that it
can be parameterized by an eddy diffusivity the size of which is proportional to the
distance from the surface. Show that the velocity then varies logarithmically with
height.
Solution: Write the stress as � D �0u�2 where the constant u� is called the frictional
velocity. Using the eddy diffusivity hypothesis this stress is given by

� D �0u�2
D �0A

@u

@z
where A D u�kz (P2.21)

where k is von Karman’s (‘universal’) constant (approximately equal to 0.4). From
(P2.21) we have @u=@z D u�=.Az/ which integrates to give u D .u�=k/ ln.z=z0/.
The parameter z0 is known as the roughness length, and is typically of order cen-
timeters or a little larger, depending on the surface.



Another advantage of a mathematical statement is that it is so definite
that it might be definitely wrong. . . Some verbal statements have not
this merit.

L. F. Richardson (1881–1953).

CHAPTER 3

Shallow Water Systems and Isentropic
Coordinates

C
ONVENTIONALLY, ‘THE’ SHALLOW WATER EQUATIONS describe a thin layer of constant
density fluid in hydrostatic balance, rotating or not, bounded from below by
a rigid surface and from above by a free surface, above which we suppose is

another fluid of negligible inertia. Such a configuration can be generalized to multiple
layers of immiscible fluids lying one on top of each other, forming a ‘stacked shallow
water’ system, and this class of systems is the main subject of this chapter.

The single-layer model is one of the simplest useful models in geophysical fluid
dynamics, because it allows for a consideration of the effects of rotation in a simple
framework without with the complicating effects of stratification. By adding layers we
can then study the effects of stratification, and indeed the model with just two layers
is not only a simple model of a stratified fluid, it is a surprisingly good model of many
phenomena in the ocean and atmosphere. Indeed, the models are more than just ped-
agogical tools — we will find that there is a close physical and mathematical analogy
between the shallow water equations and a description of the continuously stratified
ocean or atmosphere written in isopycnal or isentropic coordinates, with a meaning
beyond a coincidental similarity in the equations. We begin with the single-layer case.

3.1 DYNAMICS OF A SINGLE, SHALLOW LAYER

Shallow water dynamics apply, by definition, to a fluid layer of constant density in
which the horizontal scale of the flow is much greater than the depth of the water. The
fluid motion is then fully determined by the momentum and mass continuity equations,
and because of the assumed small aspect ratio the the hydrostatic approximation is well

129
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Fig. 3.1 A shallow water system. h.x;y/ is the thickness of a water
column, H its mean thickness, �.x;y/ the height of the free surface and
�b is the height of the lower, rigid, surface, above some arbitrary origin,
typically chosen such that the average of �b is zero. �� is the deviation
free surface height, so we have � D �b C h D H C��.

satisfied, and we invoke this from the outset. Consider, then, fluid in a container above
which is another fluid of negligible density (and therefore negligible inertia) relative
to the fluid of interest, as illustrated in Fig. 3.1. As usual, our notation is that v D

ui C vj C wk is the three dimensional velocity and u D ui C vj is the horizontal
velocity. h.x;y/ is thickness of the liquid column, H is its mean height, and � is the
height of the free surface. In a flat-bottomed container � D h, whereas in general
h D � � �b , where �b is the height of the floor of the container.

3.1.1 Momentum equations

The vertical momentum equation is just the hydrostatic equation,

@p

@z
D ��g; (3.1)

and, because density is assumed constant, we may integrate this to

p.x;y; z/ D ��gz C po (3.2)

At the top of the fluid, z D �, the pressure is determined by the weight of the overlying
fluid and this is assumed negligible. Thus, p D 0 at z D � giving

p.x;y; z/ D �g.h.x;y/ � z/ (3.3)

The consequence of this is that the horizontal gradient of pressure is independent of
height. That is

rzp D �grz� (3.4)

where

rz D i
@

@x
C j

@

@y
(3.5)
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is the gradient operator at constant z. (In the rest of this chapter we will drop the
subscript z unless that causes ambiguity. The three-dimensional gradient operator will
be denoted r3. We will also mostly use Cartesian coordinates, but the shallow water
equations may certainly be applied over a spherical planet — indeed, ‘Laplace’s tidal
equations’ are essentially the shallow water equations on a sphere.) The horizontal
momentum equations therefore become

Du

Dt
D �

1

�
rp D �gr� (3.6)

The right-hand side of this equation is independent of the vertical coordinate z. Thus,
if the flow is initially independent of z, it must stay so. (This z-independence is unre-
lated to that arising from the rapid rotation necessary for the Taylor-Proudman effect.)
The velocities u and v are functions only of x;y and t and the horizontal momentum
equation is therefore

Du

Dt
D
@u

@t
C u

@u

@x
C v

@u

@y
D �gr�: (3.7)

That the horizontal velocity is independent of z is a consequence of the hydrostatic
equation, which ensures that the horizontal pressure gradient is independent of height.
(Another starting point would be to take this independence of the horizontal motion
with height as the definition of shallow water flow. In real physical situations such
independence does not hold exactly — for example, friction at the bottom may induce
a vertical dependence of the flow in a boundary layer.) In the presence of rotation (3.7)
easily generalizes to

Du

Dt
C f � u D �gr� ; (3.8)

where f D f k. Just as with the primitive equations, f may be constant or may
vary with latitude, so that on a spherical planet f D 2˝ sin# and on the ˇ-plane
f D f0 C ˇy.

3.1.2 Mass conservation equation

From first principles

The mass contained in a fluid column of height h and cross-sectional area A is given
by
R

A
�h dA (Fig. 3.2). If there is a net flux of fluid across the column boundary (by

advection) then this must be balanced by a net increase in the mass in A, and therefore
a net increase in the height of the water column. The mass convergence into the column
is given by

Fm D Mass flux in D �

Z
S

�u � dS (3.9)

where S is the area of the vertical boundary of the column. The surface area of the
column is comprised of elements of area hnıl , where ıl is a line element circumscribing
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Figure 3.2 The mass budget for
a column of area A in a shallow
water system. The fluid leaving
the column is

H
�hu � n dl where

n is the unit vector normal to
the boundary of the fluid column.
There is a non-zero vertical veloc-
ity at the top of the column if the
mass convergence into the column
is non-zero.

A

W

h
u

the column and n is a unit vector perpendicular to the boundary, pointing outwards.
Thus (3.9) becomes

Fm D �

I
�hu � n dl (3.10)

Using the divergence theorem in two-dimensions, (3.10) simplifies to

Fm D �

Z
A

r � .�uh/ dA: (3.11)

where the integral is over the cross-sectional area of the fluid column (looking down
from above). This is balanced by the local increase in height of the water column, given
by

Fm D
d
dt

Z
� dV D

d
dt

Z
A

�h dA D

Z
A

�
@h

@t
dA (3.12)

The balance between (3.11) and (3.12) thus leads toZ
A

�
@

@t
h C r � .uh/

�
dA D 0 (3.13)

Because the area is arbitrary the integrand itself must vanish, whence,

@h

@t
C r � .uh/ D 0 ; (3.14)

or equivalently

Dh

Dt
C hr � u D 0 : (3.15)

This derivation holds whether or not the lower surface is flat. If it is, then h D �, and if
not h D �� �b . Eqs. (3.8) and (3.14) or (3.15) form a complete set, summarized in the
shaded box on page 134.
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From the 3D mass conservation equation

Since the fluid is incompressible, the three-dimensional mass continuity equation is just
r � v D 0. Writing this out in component form

@w

@z
D �

�
@u

@x
C
@v

@y

�
D �r � u (3.16)

Integrate this from the bottom of the fluid (z D �b) to the top (z D �), noting that the
right-hand side is independent of z, to give

w.�/ � w.�b/ D �hr � u: (3.17)

At the top the vertical velocity is the matarial derivative of the position of a particular
fluid element. But the position of the fluid at the top is just �, and therefore (see Fig.
3.2)

w.�/ D
D�
Dt
: (3.18)

At the bottom of the fluid we have similarly

w.�b/ D
D�b

Dt
; (3.19)

where, absent earthquakes and the like, @�b=@t D 0. Using the last two equations,
(3.17) becomes

D
Dt
.� � �b/C hr � u D 0 (3.20)

or
Dh

Dt
C hr � u D 0: (3.21)

as in (3.15).

3.1.3 A rigid lid

The case where the upper surface is held flat by the imposition of a rigid lid is some-
times of interest. The ocean suggests one such example, for here the bathymetry at the
bottom of the ocean provides much larger variations in fluid thickness than do the small
variations in the height of the ocean surface. Suppose then the upper surface is at a
contant height H then, from (3.14) with @h=@t D 0 the mass conservation equation
becomes

rh � .uhb/ D 0: (3.22)

where hb D H ��b Note that this allows us to define an incompressible mass-transport
velocity, U � hbu.

Although the upper surface is flat, the pressure there is no longer constant because
a force must be provided by the rigid lid to keep the surface flat. The horizontal mo-
mentum equation is

Du

Dt
D �

1

�0

rplid (3.23)
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The Shallow Water Equations

For a single-layer fluid, and including the Coriolis term, the inviscid shallow water
equations are:
Momentum:

Du

Dt
C f � u D �gr�: (SW.1)

Mass Conservation:

Dh

Dt
C hr � u D 0 or

@h

@t
C r � .hu/ D 0: (SW.2)

where u is the horizontal velocity, h is the total fluid thickness, � is the height
of the upper free surface and �b is the height of the lower surface (the bottom
topography). Thus, h.x;y; t/ D �.x;y; t/ � �b.x;y/. The material derivative is

D
Dt

D
@

@t
C u � r D

@

@t
C u

@

@x
C v

@

@y
; (SW.3)

with the rightmost expresion holding in Cartesian coordinates.

where plid is the pressure at the lid, and the complete equations of motion are then (3.22)
and (3.23).1 If the lower surface is flat, the two-dimensional flow itself is divergence-
free, and the equations reduce to the two-dimensional incompressible Euler equations.

3.1.4 Stretching and the vertical velocity

Because the horizontal velocity is depth independent, the vertical velocity plays no role
in advection. However, w is certainly not zero for then the free surface would be unable
to move up or down, but because of the vertical independence of the horizontal flow w

does have a simple vertical structure; to determine this we write the mass conservation
equation as

@w

@z
D �r � u (3.24)

and integrate upwards from the bottom to give

w D wb � .r � u/.z � �b/: (3.25)

Thus, the vertical velocity is a linear function of height. Eq. (3.25) can be written

Dz

Dt
D

D�b

Dt
� .r � u/.z � �b/; (3.26)

and at the upper surface w D D�=Dt so that here we have

D�
Dt

D
D�b

Dt
� .r � u/.� � �b/; (3.27)
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Eliminating the divergence term from the last two equations gives

D
Dt
.z � �b/ D

z � �b

� � �b

D
Dt
.� � �b/; (3.28)

which in turn gives
D
Dt

�
z � �b

� � �b

�
D

D
Dt

�z � �b

h

�
D 0: (3.29)

This means that the ratio of the height of a fluid parcel above the floor to the total depth
of the column is fixed; that is, the fluid stretches uniformly in a column, and this is
kinematic property of the shallow water system.

3.1.5 Analogy with Compressible Flow

The shallow water equations (3.8) and (3.14) are analogous to the compressible gas
dynamic equations in two dimensions, namely

Du

Dt
D �

1

�
rp (3.30)

and
@�

@t
C r � .u�/ D 0; (3.31)

along with an equation of state which we take to be p D f .�/. The mass conservation
equations (3.14) and (3.31) are identical, with the replacement � $ h. If p D C� ,
then (3.30) becomes

Du

Dt
D �

1

�

dp

d�
r� D �C��2

r� (3.32)

If  D 2 then the momentum equations (3.8) and (3.32) become equivalent, with � $ h

and C $ g. In an ideal gas  D cp=cv and values typically are in fact less than two
(in air  � 7=5); however, if the equations are linearized, then the analogy is exact for
all values of  , for then (3.32) becomes @v0=@t D ���1

0
c2

s r�0 where c2
s D dp=d�, and

the linearized shallow water momentum equation is @u0=@t D �H �1.gH /rh0, so that
�0 $ H and c2

s $ gH . The sound waves of a compressible fluid are then analogous
to shallow water waves, considered in section 3.7.

3.2 REDUCED GRAVITY EQUATIONS

Consider now a single shallow moving layer of fluid on top a deep, quiescent fluid layer
(Fig. 3.3), and beneath a fluid of negligible inertia. This configuration is often used
a model of the upper ocean: the upper layer represents flow in perhaps the upper few
hundred meters of the ocean, the lower layer the near-stagnant abyss. If we turn the
model upside-down we have a model, perhaps slightly less realistic, of the atmosphere:
the lower layer represents motion in the troposphere above which lies an inactive strato-
sphere. The equations of motion are virtually the same in both cases.
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Figure 3.3 The reduced gravity shallow
water system. An active layer lies over a
deep, more dense, quiescent layer. In a
common variation the upper surface is held
flat by a rigid lid, and �0 D 0.

3.2.1 Pressure gradient in the active layer

We’ll derive the equations for the oceanic case (active layer on top) in two cases, which
differ slightly in the assumption made about the upper surface.

I Free upper surface

The pressure in the upper layer is given by integrating the hydrostatic equation down
from the upper surface. Thus, at a height z in the upper layer

p1.z/ D g�1.�0 � z/; (3.33)

where �0 is the height of the upper surface. Hence, everywhere in the upper layer,
1

�1

rp1 D �gr�0; (3.34)

and the momentum equation is
Du

Dt
C f � u D �gr�0: (3.35)

In the lower layer the the pressure is also given by the weight of the fluid above it. Thus,
at some level z in the lower layer,

p2.z/ D �1g.�0 � �1/C �2g.�1 � z/: (3.36)

But if this layer is motionless the horizontal pressure gradient in it is zero and therefore

�1g�0 D ��1g0�1 C constant; (3.37)

where g0 D g.�2 � �1/=�1 is the reduced gravity. The momentum equation becomes
Du

Dt
C f � u D g0

r�1: (3.38)

The equations are completed by the usual mass conservation equation,
Dh

Dt
C hr � u D 0; (3.39)

where h D �0 � �1. Because g � g0, (3.37) shows that surface displacements are
much smaller than the displacements at the interior interface. We see this in the real
ocean where the mean interior isopycnal displacements may be several tens of meters
but variations in the mean height of ocean surface are of order centimeters.
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II The rigid lid approximation

The smallness of the upper surface displacement suggests that we will make little error
is we impose a rigid lid at the top of the fluid. Displacements are no longer allowed, but
the lid will in general impart a pressure force to the fluid. Suppose that this is P .x;y; t/,
then the horizontal pressure gradient in the upper layer is simply

rp1 D rP: (3.40)

The pressure in the lower layer is again given by hydrostasy, and is

p2 D ��1g�1 C �2g.�1 � z/C P

D �1gh � �2g.h C z/C P;
(3.41)

so that
rp2 D �g.�2 � �1/rh C rP; (3.42)

Then if rp2 D 0 we have
g.�2 � �1/rh D rP (3.43)

and the momentum equation for the upper layer is just

Du

Dt
C f � u D �g0

1rh: (3.44)

where g0 D g.�2 � �1/=�1. These equations differ from the usual shallow water equa-
tions only in the use of a reduced gravity g0 in place of g itself. It is the density dif-
ference between the two layers that is important. Similarly, if we take a shallow water
system, with the moving layer on the bottom, and we suppose that overlying it is a sta-
tionary fluid of finite density, then we would easily find that the fluid equations for the
moving layer are the same as if the fluid on top had zero inertia, except that g would be
replaced by an appropriate reduced gravity (problem 3.1).

3.3 MULTI-LAYER SHALLOW WATER EQUATIONS

We now consider the dynamics of multiple layers of fluid stacked on top of each other.
This is a crude representation of continuous stratification, but it turns out to be a pow-
erful model of many geophysically interesting phenomena as well as being physically
realizable in the laboratory. The pressure is continuous across the interface, but the
density jumps discontinuously and this allows the horizontal velocity to have a corre-
sponding discontinuity. The set up is illustrated in Fig. 3.4.

In each layer pressure is given by the hydrostatic approximation, and so anywhere
in the interior we can find the pressure by integrating down from the top. Thus, at a
height z in the first layer we have

p1 D �1g.�0 � z/; (3.45)

and in the second layer,

p2 D �1g.�0 � �1/C �2g.�1 � z/ D �1g�0 C �0g0
1�1 � �2gz; (3.46)
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Figure 3.4 The multi-
layer shallow water sys-
tem. The layers are num-
bered from the top down.
The coordinates of the in-
terfaces are denoted �,
and the layer thicknesses
h, so that hi D �i � �i�1.

where g0
1

D g.�2 � �1/=�1, and so on. The term involving z is irrelevant for the dy-
namics, because only the horizontal derivative enters the equation of motion. Omitting
this term, for the n’th layer the dynamical pressure is given by the sum from the top
down:

pn D �1

n�1X
iD0

g0
i�i ; (3.47)

where g0
i D g.�iC1 � �i/=�1 (taking �0 D 0). This may be expressed in terms of the

layer thicknesses by summing from the bottom up:

�n D �b C

iDNX
iDnC1

hi : (3.48)

The momentum equation for each layer may then be written, in general,

Dun

Dt
C f � un D �

1

�n

rpn; (3.49)

where the pressure is given by (3.47) and in terms of the layer depths using (3.49). If we
make the Boussinesq approximation then �n on the right-hand side of (3.49) is replaced
by �1.

Finally, the mass conservation equation for each layer has the same form as the
single-layer case, and is

Dhn

Dt
C hnr � un D 0: (3.50)
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Fig. 3.5 The two layer shallow water system. A fluid of density �1 lies over
a denser fluid of density �2. In the reduced gravity case the lower layer
may be arbitrarily thick and is assumed stationary and so has no horizontal
pressure gradient. In the ‘rigid-lid’ approximation the top surface displace-
ment is neglected, but there is then a non-zero pressure gradient induced
by the lid.

The two- and three-layer cases

The two-layer model is the simplest model to capture the effects of stratification. Eval-
uating the pressures using (3.47) and (3.48) we find:

p1 D �1g�0 D �1g.h1 C h2 C �b/ (3.51a)

p2 D �1Œg�0 C g0
1�1� D �1

�
g.h1 C h2 C �b/C g0

1.h2 C �b/
�
: (3.51b)

The momentum equations for the two layers are then
Du1

Dt
C f � u1 D �gr�0 D �gr.h1 C h2 C �b/: (3.52a)

and in the bottom layer
Du2

Dt
C f � u2 D �

�1

�2

�
gr�0 C g0

1r�1

�
D �

�1

�2

�
gr.�b C h1 C h2/C g0

1r.h2 C �b/
� (3.52b)

In the Boussinesq approximation �1=�2 is replaced by unity.
In a three layer model the dynamical pressures are found to be

p1 D �1gh (3.53a)

p2 D �1

�
gh C g0

1.h2 C h3 C �b/
�

(3.53b)

p3 D �1

�
gh C g0

1.h2 C h3 C �b/C g0
2.h3 C �b/

�
; (3.53c)

where h D �0 D �b C h1 C h2 C h3 and g0
2

D g.�3 � �2/=�1. More layers can
obviously be added in a systematic fashion.
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3.3.1 Reduced-gravity multi-layer equation

As with a single active layer, we may envision multiple layers of fluid overlying a
deeper stationary layer. This is a useful model of the stratified upper ocean overlying
a nearly stationary and nearly unstratified abyss. Indeed we use such a model to study
the ‘ventilated thermocline’ in chapter 16 and a detailed treatment may be found there.
If we suppose there is a lid at the top, then the model is almost the same as that of the
previous section. However, now the horizontal pressure gradient in the lowest model
layer is zero, and so we may obtain the pressures in all the active layers by integrating
the hydrostatic equation upwards from this layer. Suppose we have N moving layers,
then the reader may verify that the dynamic pressure in the n’th layer is given by

pn D �

iDNX
iDn

�1g0
i�i (3.54)

where as before g0
i D g.�iC1 � �i/=�1. If we have a lid at the top, so that �0 D 0, then

the interface displacements are related to the layer thicknesses by

�n D �

iDnX
iD1

hi : (3.55)

From these expressions the momentum equation in each layer is easily constructed.

3.4 GEOSTROPHIC BALANCE AND THERMAL WIND

Geostrophic balance occurs in the shallow water equations, just as in the continuously
stratifed equations, when the Rossby number U=fL is small and the Coriolis term dom-
inates the advective terms. In the single-layer shallow water equations the geostrophic
flow is:

f � ug D �r� (3.56)

Thus, the geostrophic velocity is proportional to the slope of the surface, as sketched in
Fig. 3.6. (For the rest of this section, we will drop the subscript g, and take all velocites
to be geostrophic.)

In both the single-layer and multi-layer case, the slope of an interfacial surface is di-
rectly related to the difference in pressure gradient on either side and so, by geostrophic
balance, to the shear of the flow. This is the shallow water analog of the thermal wind
relation. To obtain an expression for this, consider the interface, �, between two layers
labelled 1 and 2. The pressure in two layers is given by the hydrostatic relation and so,

p1 D A.x;y/ � �1gz (at some z in layer 1) (3.57a)

p2 D A.x;y/ � �1g�C �2g.� � z/

D A.x;y/C �1g0
1� � �2gz (at some z in layer 2) (3.57b)

where A.x;y/ is the pressure where z D 0, but we don’t need to specifiy where this is.
Thus we find

1

�1

r.p1 � p2/ D �g0
1r�: (3.58)
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Fig. 3.6 Geostrophic flow in a shallow water system, with a positive value
of the Coriolis parameter f , as in the Northern hemisphere. The pressure
force is directed down the gradient of the height field, and this can be
balanced by the Coriolis force if the fluid velocity is at right angles to it. If
f were negative, the geostrophic flow would be reversed.

If the flow is geostrophically balanced and Boussinesq then, in each layer, the velocity
obeys

f ui D
1

�1

k � rpi : (3.59)

Using (3.58) then gives
f .u1 � u2/ D �k � g0

1r�; (3.60)

or in general
f .un � unC1/ D k � g0

nr�: (3.61)

This is the thermal wind equation for the shallow water system. It applies at any inter-
face, and it implies the shear is proportional to the interface slope, a result sometimes
know as the ‘Margules relation’.

Suppose that we represent the atmosphere by two layers of fluid then a meridionally
decreasing temperature may be represented by an interface that slopes upward toward
the pole, and in the Northern hemisphere @�=@y > 0. Then, in the northern hemisphere
where f is positive we have

u1 � u2 D
g1

f

@�

@y
> 0; (3.62)

and the temperature gradient is associated with a positive shear. (See problem 3.2.)

3.5 FORM DRAG

When the interface between two layers varies with position — that is, when it is wavy
— the layers exert a pressure force on each other. Similarly, if the bottom is not flat
then the topography and the bottom layer can exert forces on each other. This is known
as form drag, and it is an important means whereby momentum can be added to or
extracted from a flow.2 Consider a layer confined between two interfaces, �1.x;y/ and
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�2.x;y/. Then over some zonal interval L the average zonal pressure force on that fluid
layer is given by

Fp D �
1

L

Z x2

x1

Z �1

�2

@p

@x
dx dz: (3.63)

Integrating by parts first in z and then in x, and noting that by hydrostasy @p=@z does
not depend on horizontal position within the layer, we obtain

Fp D �
1

L

Z x2

x1

�
@p

@x
z

��1

�2

dx

D ��1

@p1

@x
C �2

@p2

@x
D Cp1

@�1

@x
� p2

@�2

@x
;

(3.64)

where p1 is the pressure at �1, and similarly for p2, and to obtain the second line we
suppose that the integral is around a closed path, such as a circle of latitude, and the
average is denoted with an overbar. These terms represent the transfer of momentum
from one layer to the next, and at a particular interface, i , we may define the form drag,
�i , by

�i � pi

@�i

@x
D ��i

@pi

@x
: (3.65)

The form drag is a stress, and as the layer depth shrinks to zero its vertical derivative,
@�=@z , is the force on the fluid. It is a particularly important mechanism for the vertical
transfer of momentum and its ultimate removal in an eddying fluid, and it one of the
the main mechanisms wherby the wind stress at the top of the ocean is communicated
to the ocean bottom. At the fluid bottom the form drag is p�bx , where �b is the bottom
topography, and this is proportional to the momentum exchange with the solid earth.
This is a significant mechanism for the ultimate removal of momentum in the ocean,
especially in the Antactic Circumpolar Current where it is likely to be much larger than
bottom (Ekman) drag arising from small scale turbulence and friction. In the two layer,
flat-bottomed case the only form drag occurring as that at the interface, and the mo-
mentum transfer between the layers is just p1@�1=@x or ��1@p=@x ; then, the force on
each layer due to the other is equal and opposite, as we would expect from momentum
conservation.

For flows in geostrophic balance, the form drag is closely related to the meridional
heat flux. The pressure gradient and velocity are related by �f v0 D @p0=@x and the
interfacial displacement is proportional to the temperature perturbation, b0 (in fact one
may show that �0 � �b0=.@b=@z/). Thus ��0@p0

�=@x / v0b0, a correspondence that
will re-occur when we consider the Eliassen-Palm flux in chapter 7.

3.6 CONSERVATION PROPERTIES OF SHALLOW WATER SYSTEMS

There are two common types of conservation property in fluids: (i) material invari-
ants, and (ii) integral invariants. Material invariance occurs when a property (� say) is
conserved on each fluid element, and so obeys the equation D�=Dt D 0. An integral
invariant is one that is conserved when integrated over some volume, usually closed;
energy is an example.
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3.6.1 A material invariant: potential vorticity

The vorticity of a fluid (considered at greater length in chapter 4), denoted !, is defined
to be the curl of the velocity field, so that

! � r � v (3.66)

Let us also define the shallow water vorticity, !�, as the curl of the horizontal velocity,
so that

!�
� r � u (3.67)

and, because @u=@z D @v=@z D 0, only its vertical component is non-zero and

!�
D k

�
@v

@x
�
@u

@y

�
� k �: (3.68)

Using the vector identity

.u � r/u D
1

2
r.u � u/ � u � .r � u/; (3.69)

we write the momentum equation (3.8) as

@u

@t
C!�

� u D �r.gh C
1

2
u2/: (3.70)

To obtain an evolution equation for the vorticity we take the curl of (3.70), and make
use of the vector identity

r � .!�
� u/ D .u � r/!�

� .!�
� r/u C!�

r � u � ur �!�

D .u � r/!�
C!�

r � u; (3.71)

where r �!� is the divergence of a curl and therefore zero, and .!� � r/u D 0 because
!� is perpendicular to any direction in which u varies. The curl of (3.70) is then

@!�

@t
C .u � r/! D �!�

r � u; (3.72)

or
@�

@t
C .u � r/� D ��r � u: (3.73)

where � D k �!�. However, the mass conservation equation may be written as

� �r � u D
�

h

Dh

Dt
: (3.74)

Thus, (3.73) becomes
D�
Dt

D
�

h

Dh

Dt
; (3.75)

which simplifies to
D
Dt

�
�

h

�
D 0: (3.76)
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The important quantity �=h, often denoted Q, is known as the potential vorticity, and
(3.76) is known as the potential vorticity equation. We re-derive this conservation law
in a more general way in section 4.6

Because Q is conserved on parcels, then so is any function of Q; that is, F.Q/ is
a material invariant, where F is any function. To see this algebraically, multiply (3.76)
by F 0.Q/, the derivative of F with respect to Q, giving

F 0.Q/
DQ

Dt
D

D
Dt

F.Q/ D 0: (3.77)

Since F is arbitrary there are an infinite number of Lagrangian invariants corresponding
to different choices of F .

Effects of rotation

In a rotating frame of reference, the shallow water momentum equation is

Du

Dt
C f � u D �grh; (3.78)

where (as before) f D f k. This may be written in vector invariant form as

@u

@t
C .!�

C f / � u D �r.gh C
1

2
u2/; (3.79)

and taking the curl of this gives the vorticity equation

@�

@t
C .u � r/.� C f / D �.f C �/r � u: (3.80)

This is the same as the shallow water vorticity equation in a non-rotating frame, save
that � is replaced by �C f , the reason for this being that f is the vorticity that the fluid
has by virtue of the background rotation. Thus, (3.80) is simply the equation of motion
for the total or absolute vorticity, !a D !� C f D .� C f /k.

The potential vorticity equation in the rotating case follows, much as in non-rotating
case, by combining (3.80) with the mass conservation equation, giving

D
Dt

�
� C f

h

�
D 0 : (3.81)

That is, Q � .� C f /=h, the potential vorticity in a rotating shallow system, is a
material invariant. (We use the same symbol for potential vorticity in both rotating and
non-rotating cases).

Vorticity and circulation

Although vorticity itself is not a material invariant, its integral over a horizontal material
area is. To demonstrate this in the non-rotating case, consider the integral

C D

Z
A

� dA D

Z
A

Qh dA; (3.82)
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over a surface ‘A’, the cross-sectional area of a column of height h (as in Fig. 3.2).
Taking the material derivative of this gives

DC

Dt
D

Z
A

DQ

Dt
h dA C

Z
A

Q
D
Dt
.h dA/: (3.83)

The first term is zero, by (3.75); the second term is just the derivative of the volume of
a column of fluid and it too is zero, by mass conservation. Thus,

DC

Dt
D

D
Dt

Z
A

� dA D 0 (3.84)

Thus, the integral of the vorticity over a some cross-sectional area of the fluid is un-
changing, although both the vorticity and area of the fluid may individually change.
Using Stokes’ theorem, it may be written

DC

Dt
D

D
Dt

I
u � dl (3.85)

where the line integral is around the boundary of ‘A’. This is an example of Kelvin’s
circulation theorem, which we shall meet again in more general form in chapter 4,
where we also consider the rotating case.

A slight generalization of (3.84) is possible. Consider the integral I D
R

F.Q/h dA

where again F is any differentiable function of its argument. It is clear that

D
Dt

Z
A

F.Q/h dA D 0: (3.86)

If the area of integration in (3.70) or (3.86) is the whole domain (enclosed by frictionless
walls, for example) then it is clear that the integral of hF.Q/ is a constant, including as
a special case the integral of �.

3.6.2 Energy conservation — an integral invariant

Since we have made various simplifications in deriving the shallow water system, it is
not self-evident that energy should be conserved, or indeed what form the energy takes.
The kinetic energy density, that is the kinetic energy per unit area, is �hu2=2. The
potential energy density of the fluid is

PE D

Z h

0

�0gz dz D
1

2
�0gh2 (3.87)

The factor �0 appears in both kinetic and potential energies and, because it is a constant,
we will omit it.

Using the mass conservation equation (3.15) we obtain an equation for the evolution
of potential energy density:

D
Dt

gh2

2
C gh2

r � u D 0 (3.88a)
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or
@

@t

gh2

2
C r �

�
u

gh2

2

�
C

gh2

2
r � u D 0: (3.88b)

From the momentum and mass continuity equations we obtain an equation for the evo-
lution of kinetic energy density, namely

D
Dt

hu2

2
C

u2h

2
r � u D �gu � r

h2

2
(3.89a)

or
@

@t

hu2

2
C r �

�
u

hu2

2

�
C gu � r

h2

2
D 0: (3.89b)

Adding (3.88b) and (3.89b) we obtain

@

@t

1

2

�
hu2

C gh2
�

C r �

�
1

2
u
�
gh2

C hu2
C gh2

��
D 0 (3.90)

or
@E

@t
C r � F D 0 (3.91)

where E D KE C PE D .hu2 C gh2/=2 is the density of the total energy and F D

u.hu2 C gh2 C gh2/=2 is the energy flux. If the fluid is confined to a domain bounded
by rigid walls, on which the normal component of velocity vanishes, then on integrating
(3.90) over that area and using Gauss’s theorem, the total energy is seen to be conserved;
that is

d yE

dt
D

1

2

d
dt

Z
A

.hu2
C gh2/ dA D 0: (3.92)

Such an energy principle also holds in the case with bottom topography. Note that, as
we found in the case for a compressible fluid in chapter 2, the energy flux in (3.91) is
not just the energy density multiplied by the velocity but it contains an additional term
guh2=2, and this represents the energy transfer occurring when the fluid does work
against the pressure force (see problem 3.3).

3.7 SHALLOW WATER WAVES

3.7.1 Non-rotating

To first understand the basic properties of wave motion in shallow water, we linearize
the equations around a mean height H , and a state of rest. Thus let

h.x;y; t/ D H C h0.x;y; t/; (3.93a)

u.x;y; t/ D u0.x;y; t/: (3.93b)

The mass conservation equation becomes

@h0

@t
C .H C h0/r � u C u0

� rh0
D 0; (3.94)
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and neglecting squares of small quantities this becomes

@h0

@t
C Hr � u0

D 0: (3.95)

The advective terms drop out of the momentum equation, since we are linearizing
around a state of rest, yielding

@u0

@t
D �grh0: (3.96)

For the remainder of the section we will drop the primes on the linearized fields.
Eliminating velocity by differentiating (3.95) with respect to time and taking the

divergence of (3.96) leads to

@2h

@t2
� gHr

2h D 0 (3.97)

which may be recognized as a wave equation. We can find the dispersion relationship
for this by substituting the trial solution

h D Re h0ei.k�x�!t/ (3.98)

where h0 is a complex constant, k D ik C jl is the horizontal wavenumber, and Re
indicates that the real part of the solution should be taken. If for simplicity we restrict
attention for the moment to the one-dimensional problem, with no variation in the y-
direction, then substituting into (3.97) leads to the dispersion relationship

! D ˙ck; (3.99)

where c D
p

gH . That is, the wave speed is proportional to the square root of the mean
fluid depth and is independent of the wavenumber — that is, the waves are dispersion-
less. The general solution is a superposition of all such waves, with the amplitudes of
each wave (or Fourier component) being determined by the Fourier decomposition of
the initial conditions.

Because the waves are dispersionless, the general solution can be written

h.x; t/ D
1

2
ŒF.x � ct/C F.x C ct/� (3.100)

where F.x/ is the height field at t D 0. From this, it is easy to see that the shape of an
initial disturbance is preserved as it propagates both to the right and to the left at speed
c. (See also problem 3.7.)

3.7.2 Rotating, constant Coriolis parameter

Linearizing the rotating, flat-bottomed shallow water equations about a state of rest we
obtain

@u

@t
� f0v D �g

@h

@x
; (3.101a)
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@v

@t
C f0u D �g

@h

@x
; (3.101b)

@h

@t
C H.ux C vy/ D 0: (3.101c)

We nondimensionalize these equations with length- and time-scales L and T respec-
tively, so that U D L=T , and nondimensionalize the surface height deviation by the
depth of the fluid, H . The equations become

@yu

@yt
� yf0yv D �yc2 @

yh

@yx
; (3.102a)

@yv

@yt
C yf0yu D �yc2 @

yh

@yy
; (3.102b)

@yh

@yt
C .yuyx C yvyy/ D 0: (3.102c)

All the variables with hats on are nondimensional, and yf0 D f0T and yc D
p

gH=U is
the nondimensional speed of nonrotating shallow-water waves. (It is also the inverse of
the Froude number U=

p
gH .) To obtain a dispersion relationship we let

.yu; yv; yh/ D .u0; v0; h0/e
i.yk� yx�y!yt/; (3.103)

where yk D yki C Olj and y! is the nondimensional frequency, and substitute into (3.102),
giving 0B@i y! � yf0 iyc2 Ok

yf0 i y! iyc2 Ol

i Ok i Ol i y!

1CA
0@u0

v0

h0

1A D 0: (3.104)

This homogeneous equation has nontrivial solutions only if the determinant of the
matrix vanishes. This gives

y!.y!2
� yf 2

0 � yc2 yK2/ D 0: (3.105)

where yK2 D Ok2 C Ol2. There are two classes of solution to (3.105). The first is simply
y! D 0, time-independent flow corresponding to geostrophic balance in (3.101). (Be-
cause geostrophic balance gives a divergence-free velocity field for constant Coriolis
parameter the equations are satisfied by a time-independent solution.) The second set
of solutions is given by

y!2
D yf 2

0 C yc2. Ok2
C Ol2/: (3.106)

In dimensional form this equation is

!2
D f 2

0 C gH.k2
C l2/ : (3.107)

The corresponding waves are known as Poincaré waves, and the dispersion relationship
is illustrated in Fig. 3.7.3 Note that the frequency is always greater than the Coriolis
frequency f0. There are two interesting limits:
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Fig. 3.7 Dispersion relation for Poincaré waves (solid line) and nonro-
tating shallow water waves (dashed line). The frequency is normalized by
the Coriolis frequency f and the wavenumber by the (inverse) deformation

radius
p

gH=f . The frequency is always greater than f . For long waves
(small wavenumbers) the frequency is approximately f , as for inertial os-
cillations. For short waves (high wavenumbers) the frequency asymptotes
to that of nonrotating shallow water waves, namely (in dimensional form)p

gHk.

(i) The short waves limit: If

K2
�

f 2
0

gH
(3.108)

where K2 D k2 C l2, then the dispersion relationship reduces to that of the
nonrotating case (3.99). This condition is equivalent to requiring that the wave-
length be much shorter than the deformation radius, Ld. Specifically, if l D 0 and
� D 2 =k is the wavelength, the condition is

�2
� L2

d.2 /
2 (3.109)

The numerical factor of .2 /2 is more than an order of magnitude, so care must be
taken when deciding if the condition is satisfied in particular cases. Furthermore,
the wavelength must still be longer than the depth of the fluid, else the shallow
water condition is not met.

(ii) The long wave limit: If

K2
�

f 2
0

gH
; (3.110)

that is if the wavelength is much longer than the deformation radius Ld, then the
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dispersion relationship is
! D f0: (3.111)

These are known as inertial oscillations. The equations of motion giving rise to
them are

@u

@t
� f0v D 0;

@v

@t
C f0u D 0; (3.112)

which are equivalent to Lagrangian equations for free particles in a rotating frame,
namely

d2x

dt2
� f0v D 0;

d2y

dt2
C f0u D 0: (3.113)

In this limit fluid parcels are thus undergoing free, inertial, oscillations in the ro-
tating coordinate system, unrestrained by pressure forces (see problem 3.9).

3.7.3 Kelvin waves

The Kelvin wave is a particular type of gravity wave that exists in the presence of both
rotation and a lateral boundary. Suppose there is a solid boundary at y D 0; clearly
harmonic solutions in the y-direction are not allowable, as these would not satisfy the
condition of no-normal flow at the boundary. Do any wavelike solutions exist? The
affirmative answer to this question was provided by Kelvin and the associated waves
are now eponymously known as Kelvin waves.4

We begin with the linearized shallow water equations

@u

@t
� f0v D �g

@�

@x
;

@v

@t
C f0u D �g

@�

@y
; (3.114a,b)

@�

@t
C H

�
@u

@x
C
@v

@y

�
D 0: (3.115)

The fact that v D 0 at x D 0 suggests that we look for a solution with v D 0 every-
where, whence the equations become

@u

@t
D �g

@�

@x
; f0u D �g

@�

@y
; (3.116a,b)

@�

@t
C H

@u

@x
D 0: (3.117)

Equations (3.116a) and (3.117) lead to the standard wave equation

@2u

@t2
D c2 @

2u

@x2
; (3.118)

where c D
p

gH , the usual wave speed of shallow water waves. The solution of (3.118)
is

u D F1.x C ct;y/C F2.x � ct;y/; (3.119)
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with corresponding surface displacement

� D
p

H=g Œ�F1.x C ct;y/C F2.x � ct;y/� : (3.120)

The solution represents the superposition of two waves, one (F1) travelling in the neg-
ative x-direction, and the other in the positive x-direction. To obtain the y-dependence
of these functions we use (3.116b) which gives

@F1

@y
D

f0p
gH

F1;
@F2

@y
D �

f0p
gH

F2; (3.121)

with solutions

F1 D F.x C ct/ey=Ld F2 D G.x � ct/e�y=Ld ; (3.122)

where Ld D
p

gH=f0 is the radius of deformation. The solution F1 grows exponen-
tially away from the wall, and so fails to satisfy the condition of boundedness at infinity.
It must be thus eliminated, leaving the general solution

u D e�yu=LdG.x � ct/; v D 0; (3.123a)

� D
p

H=ge�yu=LdG.x � ct/: (3.123b)

The solution thus decays exponentially away from the boundary. If f0 is positive, as
in the Northern hemisphere, the boundary is to the right of an observer moving with
the wave. Given a constant Coriolis parameter, we could equally well have obtained a
solution on a meridional wall, in which case we would find that the wave again moves
such that the wall is to the right of the wave direction. (This is obvious once it is realized
that f -plane dynamics are isotropic in x and y.). Thus, in the Northern Hemisphere the
wave moves anticlockwise round a basin, and conversely in the Southern Hemisphere,
and in both hemispheres the direction is cyclonic.

3.8 GEOSTROPHIC ADJUSTMENT

We noted in chapter 2 that the large-scale, extra-tropical circulation of the atmosphere
is in near-geostrophic balance. Why is this? Why should the Rossby number be small?
Arguably, the magnitude of the velocity in the atmosphere and ocean is ultimately given
by the strength of the forcing, and so ultimately by the differential heating between
pole and equator (although even this argument is not satisfactory, since the forcing
mainly determines the energy throughput, not directly the energy itself, and the forcing
is itself dependent on the atmosphere’s response). But even supposing that the velocity
magnitudes are given, there is no a priori guarantee that the forcing or the dynamics
will produce length-scales that are such that the Rossby number is small. In fact, there
is a powerful and ubiquitious process whereby a fluid in an initially unbalanced state
naturally evolves toward a state of geostrophic balance, namely geostrophic adjustment.
This process occurs quite generally in rotating fluids, stratified or not. To pose the
problem in a simple form we will consider the free evolution of a single shallow layer
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of fluid whose initial state is manifestly unbalanced, and we will suppose that surface
displacements are small so that the evolution of the system is described by the linearized
shallow equations of motion. These are

@u

@t
C f � u D �gr�;

@�

@t
C Hr � u D 0; (3.124)

where � is the free surface displacement and H is the mean fluid depth, and we omit
the primes on the linearized variables.

3.8.1 Non-rotating flow

We consider first the non-rotating problem set, with little loss of generality, in one
dimension. We suppose that initially the fluid is at rest but with a simple discontinuity
in the height field so that

�.x; t D 0/ D

(
C�0 x < 0

��0 x > 0
(3.125)

and u.x; t D 0/ D 0 everywhere. We can physically realize these initial conditions by
separating two fluid masses of different depths by a thin dividing wall, and then quickly
removing the wall. What is the subsequent evolution of the fluid? The general solution
to the linear problem is given by (3.100) where the functional form is determined by the
initial conditions so that here

F.x/ D �.x; t D 0/ D ��0sgn.x/: (3.126)

Equation (3.100) states that this initial pattern is propagated to the right and to the left.
That is, two discontinuities in fluid height simply propagate to the right and left at a
speed c D

p
gH . Specifically, the solution is

�.x; t/ D �
1

2
�0Œsgn.x C ct/C sgn.x � ct/� (3.127)

The initial conditions may be much more complex than a simple front, but, because the
waves are dispersionless, the solution is still simply a sum of the translation of those
initial conditions to the right and to the left at speed c. The velocity field in this class of
problem is obtained from

@u

@t
D �g

@�

@x
(3.128)

giving

u D
g

2c
ŒF.x C ct/ � F.x � ct/� (3.129)

Thus, at a given location, away from the initial disturbance, the fluid remains at rest and
undisturbed until the fronts arrive. After the fronts have passed, the fluid is again at rest.
Ultimately, then, all the kinetic energy of the fluid is propagated away to infinity.
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3.8.2 Rotating flow — the Rossby-Gill problem

Rotation makes a profound difference to the adjustment problem of the shallow water
system, because a steady, adjusted, solution can exist with nonzero gradients in the
height field, because the pressure field can be balanced by the Coriolis force. We will
find also find that potential vorticity conservation provides powerful constraint on the
fluid evolution. In a rotating shallow fluid that conservation is represented by

@Q

@t
C u � rQ D 0; (3.130)

where Q D .� C f /=h. In the linear case with constant Coriolis parameter (3.130)
becomes

@q

@t
D 0; q D

�
� � f0

�

H

�
: (3.131)

This equation may be obtained either from the linearized velocity and mass conservation
equations, (3.124), or from the (3.130) directly. In the latter case, we write

Q D
� C f0

H C �
�

1

H
.� C f0/

�
1 �

�

H

�
�

1

H

�
f0 C � � f0

�

H

�
D
f0

H
C

q

H
(3.132)

having used f0 � j�j and H � j�j. The term f0=H is a constant and so dynamically
unimportant, as is the H �1 factor multiplying q. Further, the advective term u � rQ be-
comes u � rq, and this is second order in perturbed quantities and so is neglected. Thus,
making these approximations, (3.130) reduces to (3.131). The potential vorticity field
is therefore fixed in space! Of course, this was also true in the nonrotating case where
the fluid is initially at rest. Then � D 0 and the fluid remains irrotational throughout
the subsequent evolution of the flow. However, this is rather a weak constraint on the
subsequent evolution of the fluid; it does nothing, for example, to prevent all the kinetic
energy of the fluid being radiated to infinity. However, in the rotating case the potential
vorticity is non-zero, and potential vorticity conservation and geostrophic balance are
all we need to infer the final steady state, assuming it exists, without solving for the
details of the flow evolution, as we now see.

With an initial condition for the height field given by (3.125), the initial potential
vorticity is given by

q.x;y/ D

(
�f0�0=H x < 0

f0�0=H x > 0;
(3.133)

and this remains unchanged throughout the adjustment process. The final steady state
is then the solution of the equations

� � f0

�

H
D q.x;y/; f0u D �g

@�

@y
; f0v D g

@�

@x
; (3.134a,b,c)

where � D @v=@x � @u=@y . Because the Coriolis parameter is constant, the velocity
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Fig. 3.8 Solutions of a linear geostrophic adjustment problem. Top panel:
the initial height field, given by (3.125) with �0 D 1. Second panel: equilib-
rium height field, � given by (3.137) and � D f0 =g. Third panel: equilib-
rium geostrophic velocity (normal to the gradient of height field), given by
(3.138). Bottom panel: potential vorticity, given by (3.133), and this does
note evolve. The distance, x is non-dimensionalized by the deformation ra-

dius Ld D

p
gH=f0, and the velocity by �0.g=f0Ld/. Changes to the initial

state occur only within O.Ld/ of the initial discontinuity; and as x ! ˙1

the initial state is unaltered.

field is horizontally non-divergent and we may define a streamfunction  D g�=f0.
Equations (3.134) then reduce to

 
r

2
�

1

L2
d

!
 D q.x;y/; (3.135)

where Ld D
p

gH=f0 is known as the Rossby radius of deformation or often just the
‘deformation radius’ or the ‘Rossby radius’. It is a naturally occurring length-scale in
problems involving both rotation and gravity, and arises in slightly different form in
stratified fluids.

The initial conditions (3.133) admit of a nice analytic solution, for the flow will
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remain uniform in y, and (3.135) reduces to

@2 

@x2
�

1

L2
d

 D �
f0�0

H
sgn.x/: (3.136)

We solve this separately for x > 0 and x < 0 and then match the solutions and their
first derivatives at x D 0, imposing also the condition that the streamfunction decay to
zero as x ! ˙1. The solution is

 D

(
�.g�0=f0/.1 � e�x=Ld/ x > 0

C.g�0=f0/.1 � ex=Ld/ x < 0:
(3.137)

The velocity field associated with this is obtained from (3.134b,c), and is

u D 0; v D �
g�0

fLd
e�jxj=Ld : (3.138)

The velocity is perpendicular to the slope of the free surface, and a jet forms along the
initial discontinuity, as illustrated in Fig. 3.8.

The important point of this problem is that the variations in the height and field are
not radiated away to infinity, as in the non-rotating problem. Rather, potential vorticity
conservation constrains the influence of the adjustment to within a deformation radius
(we see now why this name is appropriate) of the initial disturbance. This property is a
general one in geostrophic adjusment — it also arises if the initial condition consists of
a velocity jump, as considered in problem 3.11.

3.8.3 Energetics of adjustment

How much of the initial potential energy of the flow is lost to infinity by gravity wave
radiation, and how much is converted to kinetic energy? The linear equations (3.124)
satisfy

1

2

@

@t
.Hu2

C g�2/C gHr � .u�/ D 0; (3.139)

so that energy conservation holds in the form

E D
1

2

Z
.Hu2

C g�2/ dx;
dE

dt
D 0: (3.140)

The fluid has a non-zero potential energy, .1=2/
R1

�1
g�2 dx, if there are variations in

fluid height. The initial potential energy is

PEI D

Z 1

0

g�2
0 dx; (3.141)

which is nominally infinite if the fluid has no boundaries. In the non-rotating case the
final state has no variations in free-surface height, and its potential energy is zero. That
is, all of its initial potential energy is converted to kinetic energy which is ‘radiated away
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to infinity’. However, in the rotating case the final potential energy, after adjustment, is,
using 3.137,

PEF D
1

2
g�2

0

"Z 1

0

�
1 � e�x=Ld

�2

dx C

Z 0

�1

�
1 � ex=Ld

�2

dx

#
(3.142)

This is also nominally infinite, but the change in potential energy is finite and is given
by

PEI � PEF D g�2
0

Z 1

0

.2e�x=Ld � e�2x=Ld/ dx D
3

2
g�2

0Ld: (3.143)

The initial kinetic energy is zero, because the fluid is at rest, and its final value is, using
(3.138),

KEF D
1

2
H

Z
u2 dx D H

�
g�0

fLd

�2 Z 1

0

e�2x=Ld dx D
g�2

0
Ld

2
: (3.144)

Thus, in this problem, one-third of the difference between the initial and final po-
tential energies is converted to kinetic energy that is trapped within a distance of order
a deformation radius, and the remainder, an amount gLd�

2
0

is lost to infinity. In any
finite region surrounding the initial discontinuity the final energy is less than the initial
energy, but the conservation of potential vorticity prevents the complete loss of energy.
In other adjustment problems the ratios will differ but the qualitative effect will remain
(problem 3.10).

3.8.4 * General initial conditions

Because of the linearity of the (linear) adjustment problem a spectral viewpoint is use-
ful, in which the fields are represented as the sum or integral of non-interacting Fourier
modes. For example, suppose that the height field of the initial disturbance is a two-
dimensional field given by

� D

“
z�0k;le

i.kxCly/ dk dl (3.145)

where the Fourier coefficients z�k;l are given, and the initial velocity field is zero. Then
the initial (and final) potential vorticity field is given by

q D �
f0

H

“
z�0k;le

i.kxCly/ dk dl: (3.146)

To obtain an expression for the final height and velocity fields, we express the potential
vorticity field as

q D

Z
zqk;l dk dl (3.147)

where in the final, geostrophically balanced, state,

q D
g

f0

r
2� �

f0

H
�; (3.148)
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so that

zqk;l D

�
�

g

f0

K2
�
f0

H

�
z�k;l ; (3.149)

where K2 D k2 C l2. Using (3.146) and (3.149), the Fourier components of the final
height field satisfy �

�
g

f0

K2
�
f0

H

�
z�k;l D �

f0

H
z�
.0/

k;l
(3.150)

or

z�k;l D
z�0k;l

K2L2
d C 1

: (3.151)

In physical space the final height field is just the spectral integral of this, namely

� D

“
z�k;l dk dl D

“
z�0k;l

K2L2
d C 1

dk dl: (3.152)

We see that at large scales (K2L2
d � 1) �k;l is almost unchanged from its initial state;

the velocity field, which is then determined by geostrophic balance, thus adjusts to the
pre-existing height field. At large scales most of the energy in geostrophically balanced
flow is potential energy; thus, it is energetically easier for the velocity to change to
come into balance with the height field than vice versa. At small scales, however, the
final height field has much less variability than it did initially.

Conversely, at small scales the height field adjusts to the velocity field. To see this,
let us suppose that the initial conditions contain vorticity but have zero height displace-
ment. Specifically, if the initial vorticity is r2 0, where 0 is the initial streamfunction,
then it is straightforward to show that the final streamfunction is given by

 D

“
z k;l dk dl D

“
K2L2

d
y 0k;l

K2L2
d C 1

dk dl: (3.153)

The final height field then obtained from this, via geostrophic balance, by � D .f0=g/ .
Evidently, for small scales (K2L2

d � 1) the streamfunction, and hence the vortical
component of the velocity field, are almost unaltered from their initial values. On the
other hand, at large scales the final streamfunction has much less variability than it does
initially, and so the height field will be largely governed by whatever variation it (and
not the velocity field) had initially. In general, the final state is a superposition of the
states given by (3.152) and (3.153). The divergent component of the initial velocity
field does not affect the final state because it has no potential vorticity, and so all of the
associated energy is lost to infinity.

Finally, we remark that just as in the problem with a discontinuous initial height
profile the change in total energy during adjustment is negative — this can be seen from
the form of the integrals above, although we leave the specifics as a problem to the
reader. That is, some of the initial potential and kinetic energy is lost to infinity, but
some is trapped by the potential vorticity constraint.
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3.8.5 A variational perspective

In the non-rotating problem, all of the initial potential energy is converted to kinetic
energy. This energy is in turn radiated to infinity. In the rotating problem, the final state
contains both potential and kinetic energy. Why is the energy not all radiated away to in-
finity? It is because potential vorticity conservation on parcels prevents all of the energy
being dispersed. This suggests that it may be informative to think of the geostrophic
adjustment problem as a variational problem: we seek to minimize the energy consis-
tent with the conservation of potential vorticity. We stay in the linear approximation
in which, because the advection of potential vorticity is neglected, potential vorticity
remains constant at each point.

The energy of the flow is given by the sum of potential and kinetic energies, namely

Energy D

Z
H.u2

C g�2/ dx; (3.154)

(where dx � dx dy) and the potential vorticity field is

q D � � f
�

H
: (3.155)

The problem is then to extremize the energy subject to potential vorticity conservation.
This is a constrained problem in the calculus of variations, sometimes called an isoperi-
metric problem because of its origins in maximizing the area of a surface for a given
perimeter.5 The mathematical problem is to extremize the integral

I D

Z n
H.u2

C v2/C g�2
C �.x;y/

�
.vx � uy/ � f0�=H

�o
dx: (3.156)

where �.x;y/ is a Lagrange multiplier, undetermined at this stage. It is a function of
space: if it were a constant, the integral would merely extremize energy subject to a
given integral of potential vorticity, and rearrangements of potential vorticity (which
here we wish to disallow) would leave the integral unaltered.

As there are three independent variables there are three Euler-Lagrange equations
obtained by minimizing I . These are

@L

@h
�
@

@x

@L

@hx

�
@

@y

@L

@hy

D 0;

@L

@u
�
@

@x

@L

@ux

�
@

@y

@L

@uy

D 0;
@L

@v
�
@

@x

@L

@vx

�
@

@y

@L

@vy

D 0;

(3.157)

where L is the integrand appearing in (3.156). After a little algebra these equations
yield

2g� � �f0 D 0; 2u C
@�

@y
D 0; 2v �

@�

@x
D 0; (3.158)

and eliminating � gives the simple relationships

u D �
g

f0

@�

@y
; v D

g

f0

@�

@x
; (3.159)

which are the equations of geostrophic balance. Thus, in the linear approximation,
geostrophic balance is a minimum energy state for a given field of potential vorticity.
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3.9 ISENTROPIC COORDINATES

We now return to the continuously stratified primitive equations, and consider the use
of potential density as a vertical coordinate. In practice this means using potential tem-
perature in the atmosphere or buoyancy (density) in the ocean; such coordinate systems
are generically called isentropic coordinates, and sometimes isopycnal coordinates if
density is used. Although a seemingly odd thing to do, for adiabatic flow in particu-
lar the resulting equations of motion have an attractive form that aids the interpretation
of large-scale flow. The thermodynamic equation then becomes a statement for the
conservation of the mass of fluid with a given value of potential density and, because
the the flow of both the atmosphere and ocean is largely along isentropic surfaces, the
momentum and vorticity equations have quasi-two-dimensional form.

The particular choice of vertical coordinate is determined by the form of the ther-
modynamic equation in the equation-set at hand; thus, if the thermodynamic equation
is D�=Dt D P� , we transform the equations from .x;y; z/ coordinates to .x;y; �/ coor-
dinates. The material derivative in this coordinate system is

D
Dt

D
@

@t
C u

�
@

@x

�
�

C v

�
@

@y

�
�

C
D�
Dt

@

@�

D
@

@t
C u � r� C P�

@

@�

(3.160)

where the last term is zero for adiabatic flow, and the two-dimensional velocity u �

.u; v/ is parallel to the isentropes.

3.9.1 A hydrostatic Boussinesq fluid

In the simple Boussinesq equations (see the table on page 77) the buoyancy is the rel-
evant thermodynamic variable. With hydrostatic balance the horizontal and vertical
momentum equations are, in height coordinates,

Du

Dt
C f � u D �r�; b D �z (3.161)

where b is the buoyancy, the variable analogous to the potential temperature � of an
ideal gas. The adiabatic thermodynamic equation is

Db

Dt
D 0; (3.162)

and because b D �gı�=�0, isentropic coordinates are the same as isopycnal coordi-
nates.

Using (2.144) the horizontal pressure gradient may be transformed to isentropic
coordinates�

@�

@x

�
z
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�
@�

@x

�
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�

�
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�
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@�

@z
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�
@�

@x

�
b

� b

�
@z

@x

�
b

D

�
@M

@x

�
b

(3.163)

where
M � � � zb: (3.164)
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Thus, the horizontal momentum equation becomes

Du

Dt
C f � u D �rbM: (3.165)

where the material derivative is given by (3.160). Using (3.164) the hydrostatic equation
becomes

@M

@b
D �z: (3.166)

The mass continuity equation may be derived by noting that the mass element may
be written as

ım D
@z

@b
ıbıxıy: (3.167)

The mass continuity equation, Dm=Dt D 0, becomes

D
Dt

@z

@b
C
@z

@b
r3 � v D 0 (3.168)

where r3 �v is the three dimensional derivative of the velocity in isentropic coordinates.
Thus,

D�
Dt

C �rb � u D ��
@ Pb

@b
(3.169)

where � � @z=@b is a measure of the thickness between two isentropic surfaces. Equa-
tions (3.165), (3.166) and (3.169) comprise a closed set, with dependent variables u, M

and z in the space of independent variables x, y and b.

3.9.2 A hydrostatic ideal gas

Deriving the equations of motion for this system requires a little more work than in the
Boussinesq case but the idea is the same. For an ideal gas in hydrostatic balance we
have, using (1.116),

ı�

�
D
ıT

T
� �

ıp

p
D
ıT

T
C

ı˚

cpT
D

1

cpT
ıM (3.170)

where M � cpT C ˚ is the ‘Montgomery potential’, equal to the dry static energy.
(We use some of the same symbols as in the Boussinesq case to facilitate comparison,
but their meanings are slightly different.) From this

@M

@�
D ˘ (3.171)

where ˘ � cpT=� D cp.p=pR/
R=cp is the ‘Exner function’. Equation (3.171) repre-

sents the hydrostatic relation in isentropic coordinates. Note also that M D �˘ C ˚ .
To obtain the an appropriate form for the horizontal pressure gradient first note that,

in the usual height coordinates, it is given by

1

�
rzp D �rz˘ (3.172)
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where ˘ D cpT=� . Using (2.144) gives

�rz˘ D �r�˘ �
�

g

@˘

@z
r�˚: (3.173)

Then, using the definition of ˘ and the hydrostatic approximation to help evaluate the
vertical derivative, we obtain

1

�
rzp D cpr�T C r�˚ D r�M: (3.174)

Thus, the horizontal momentum equation is

Dv
Dt

C f � u D �r�M: (3.175)

As in the Boussinesq case the mass continuity equation may be derived by noting
that the mass element may be written as

ım D
@p

@�
ı�ıxıy: (3.176)

The mass continuity equation, Dm=Dt D 0, becomes

D
Dt

@p

@�
C
@p

@�
r3 � v D 0 (3.177)

or
D�
Dt

C �r� � u D ��
@ P�

@�
(3.178)

where now � � @p=@� is a measure of the (pressure) thickness between two isentropic
surfaces. Equations (3.171), (3.175) and (3.178) form a closed set, analogous to (3.166),
(3.165) and (3.169).

Analogy to shallow water equations

The equations of motion in isentropic coordinates have an obvious analogy with the
shallow water equations, and we may think of the shallow water equations to be a
finite-difference representation of the primitive equations written in isentropic coordi-
nates, or think of the latter as the continuous limit of the shallow water equations as the
number of layers increases. For example, consider a two-isentropic-level representation
of (3.171), (3.175) and (3.178), in which the lower boundary is an isentrope. A natural
finite differencing gives

�M1 D �z0��0 (3.179a)

M1 � M2 D �z1��1 (3.179b)

and the momentum equations for each layer become

Du1

Dt
C f � u1 D ���0rz0 (3.180a)
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Du2

Dt
C f � u2 D ���0rz0 ���1rz1 (3.180b)

which, together with the mass continuity equation for each level, are just like the two-
layer shallow water equations (3.52). This means that results that one might easily
derive for the shallow water equations will often have a continuous analog that may be
derived by straightforward extension.

3.10 AVAILABLE POTENTIAL ENERGY

In this the final section of this chapter we revisit the issue of the internal and potential
energy in stratified flow, motivated by the following remarks. In adiabatic, inviscid flow
the total amount of energy is conserved, and there are conversions between internal
energy, potential energy and kinetic energy. In an ideal gas the potential energy and the
internal energy of a column extending throughout the atmosphere are in a constant ratio
to each other, and their sum is called the total potential energy. In a simple Boussinesq
fluid, energetic conversions involve only the potential and kinetic energy, and not the
internal energy, and the total potential energy is just the potential energy. Yet, plainly,
in neither a Boussinesq fluid nor an ideal gas can all the total potential energy in a fluid
be converted to kinetic energy, for then all of the fluid would be adjacent to the ground
and the fluid would have no thickness, which intuitively seems impossible. Given a
state of the atmosphere or ocean, how much of its total potential energy is available
for conversion to kinetic energy? In particular, because total energy is conserved only
in adiabatic flow, we may usefully ask: how much potential energy is available for
conversion to kinetic energy under an adiabatic re-arrangement of fluid parcels?

Suppose that at any given time the flow is stably stratified, but that the isentropes
(or more generally the surfaces of constant potential density) are sloping, as sketched
in Fig. 3.9. Evidently, the potential energy of the system would be reduced if the isen-
tropes were flattened, for then heavier fluid would be moved to lower altitudes, with
lighter fluid replacing it at higher altitudes. In an adiabatic re-arrangement the amount
of fluid between the isentropes would remain constant, and a state with flat isentropes
(meaning parallel to the geopotential surfaces) evidently constitutes a state of minimum
total potential energy. The difference between the total potential energy of the fluid
and the total potential energy after an adiabatic re-arrangement to a state in which the
isentropic surfaces are flat is called the available potential energy, or APE.6

3.10.1 A Boussinesq fluid

The potential energy of a column of Boussinesq fluid of unit area is given by

P D

Z H

0

bz dz D

Z H

0

b

2
dz2: (3.181)

and the potential energy of the entire fluid is given by the horizontal integral of this.
The minimum potential energy of the fluid arises after an adiabatic re-arrangement in
which the isopycnals are flattened, and the resulting buoyancy is only a function of z.
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Fig. 3.9 If a stably stratified initial state with sloping isentropes (left) is
adiabatically re-arranged then the state of minimum potential energy has
flat isentropes, as on the right, but the amount of fluid contained between
each isentropic surface is unchanged. The difference between the potential
energies of the two states is the available potential energy.

The available potential energy is then the difference between the energy of the initial
state and of this minimum state, and to obtain an approximate expression for this we
first integrate (3.181) by parts to give

P D �

Z bm

0

z2 db; (3.182)

where bm is the maximum value of b in the column. (We omit a constant of integration
that cancels when the state of minimum potential energy is subtracted. Alternatively,
take the upper limit of the z-integral to be z D 0 and at the lower limit, at z D �H say,
take b D 0.) The minimum potential energy state arises when z is a function only of
b, z D Z.b/ say. Because mass is conserved in the re-arrangement, Z is equal to the
horizontally averaged value of z on a given isopycnal surface, z, and the surfaces z and
b thus define each other completely. The average available potential energy, per unit
area, is then given by

APE D

Z bm

0

.z2 � z2/ db D

Z bm

0

z02 db; (3.183)

where z D z Cz0; that is z0 is the height variation of an isopycnal surface. The available
potential energy is thus proportional to the integral of the variance of the altitude of such
a surface, and it is a positive-definite quantity. To obtain an expression in z-coordinates,
we express the height variations on an isopycnal surface in terms of buoyancy varia-
tions on a constant-height surface by Taylor-expanding the height about its value on the
isopycnal surface. Referring to Fig. 3.10 this gives

z.b/ D z C
@z

@b

ˇ̌̌̌
bDb

Œb � b.z/� D z �
@z

@b

ˇ̌̌̌
bDb

b0 (3.184)



164 Chapter 3. Shallow Water Systems and Isentropic Coordinates

Fig. 3.10 An isopycnal surface, b D b, and the constant height surface,
z D z. z is the height of the isopycnal surface after a re-arrangement
to a minimum potential energy state, equal to the average height of the
isopycnal surface. The values of z on the isopycnal surface, and of b on the
constant height surface, can be obtained by the Taylor expansions shown.
For an ideal gas in pressure coordinates, replace z by p and b by � .

where b0 D b.z/ � b is corresponding buoyancy perturbation on the z surface and
b is the average value of b on the z surface. Furthermore, @z=@b jzDb � @z=@b �

.@b=@z/�1, and (3.184) thus becomes

z0
D z.b/ � z � �b0

�
@z

@b

�
� �

b0

.@b=@z/
: (3.185)

where z0 D z.b/�z is the height perturbation of the isopycnal surface, from its average
value. Using (3.185) in (3.183) we obtain an expression for the APE per unit area, to
wit

APE �

Z H

0

b02

@b=@z
dz : (3.186)

The total APE of the fluid is the horizontal integral of this, and is thus proportional
to the variance of the buoyancy on a height surface. We emphasize that APE is not
defined for single column of fluid, for it depends on the variations of buoyancy over a
horizontal surface. Note too that this derivation neglects the effects of topography. This,
and the use of a basic state stratification, effectively restrict the use of (3.186) to at most
a single ocean basin, and even for that the approximations used limit the accuracy of
the expressions.

3.10.2 An ideal gas

The expression for the APE for an ideal gas is obtained in the same way, mutatis mutan-
dis, as it was for a Boussinesq fluid and the trusting reader may skip directly to (3.194).
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The internal energy of an ideal gas column of unit area is given by

I D

Z 1

0

cvT� dz D

Z ps

0

cv

g
T dp; (3.187)

where ps is the surface pressure, and the corresponding potential energy is given by

P D

Z 1

0

�gz dz D

Z ps

0

z dp D

Z 1

0

p dz D

Z ps

0

R

g
T dp: (3.188)

In (3.187) we use hydrostasy, and in (3.188) the equalities make successive use of hy-
drostasy, an integration by parts, and hydrostasy and the ideal gas relation. Thus, the
total potential energy is given by

TPE � I C P D
cp

g

Z ps

0

T dp: (3.189)

Using the ideal gas equation of state we can write this as

TPE D
cp

g

Z ps

0

�
p

ps

��
� dp D

cpps

g.1 C �/

Z 1

0

�
p

ps

��C1

d�; (3.190)

after an integration by parts. (We omit a term proportional to p�C1
s �s that arises in

the integration by parts, because it plays no role in what follows.) The total potential
energy of the entire fluid is equal to a horizontal integral of (3.190). The minimum total
potential energy arises when the pressure in (3.190) a function only of � , p D P .�/,
where by conservation of mass P is the average value of the original pressure on the
isentropic surface, P D p . The average available potential energy per unit area is then
given by the difference between the initial state and this minimum, namely

APE D
cpps

g.1 C �/

Z 1

0

24� p

ps

��C1

�

�
p

ps

��C1
35 d�; (3.191)

which is a positive definite quantity. A useful approximation to this expression is ob-
tained by expressing it in terms of the variance of the potential temperature on a pressure
surface. We first use the binomial expansion to expand p�C1 D .p C p0/�C1. Neglect-
ing third and higher order terms (3.191) becomes

APE D
Rps

2g

Z 1

0

�
p

ps

��C1 �
p0

p

�2

d�: (3.192)

The variable p0 D p.�/ � p is a pressure perturbation on an isentropic surface, and is
related to the potential temperature perturbation on an isobaric surface by [c.f., (3.185)]

p0
� �� 0 @p

@�
� �

� 0

@�=@p
: (3.193)
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where � 0 D �.p/ � �.p/ is the potential temperature perturbation on the p surface.
Using (3.193) in (3.192) we finally obtain

APE D
Rp��

s

2

Z ps

0

p��1

 
�g

@�

@p

!�1

� 02 dp : (3.194)

The APE is thus proportional to the variance of the potential temperature on the pressure
surface or, from (3.192), proportional to the variance of the pressure on an isentropic
surface.

3.10.3 Use, interpretation, and the atmosphere and ocean

The potential energy of a fluid is reduced when the dynamics act to flatten the isentropes.
Consider, for example, the earth’s atmosphere, with isentropes sloping upward toward
the pole (Fig. 3.9 with the pole on the right). Flattening these isentropes amounts to a
sinking of dense air and a rising of light air, and this reduction of potential energy leads
to a corresponding production of kinetic energy. Thus, if the dynamics is such as to
try reduce the temperature gradient between equator and pole, then APE is continually
being converted to KE. A stastistically steady state is achieved because the heating
from the sun continually acts to restore the horizontal temperature gradient between
equator and pole, so replenishing the pool of APE, and to this extent the large-scale
atmospheric circulation acts like a heat engine. The weighting of the expression (3.194)
with stratification may be understood by noting that the more stable the stratification
(i.e., the greater the value of �@�=@p) then, in a given mass of fluid, the greater is the
volume of lighter fluid and the less the amount of potential energy that can be converted
to kinetic energy. (Note also that a change in APE corresponds to a change in the total
potential energy of the fluid by the same amount.)

It is a useful exercise to calculate the total potential energy of the atmosphere and
ocean, the available potential energy and the kinetic energy (problem 3.15). One finds

TPE � APE > KE (3.195)

with, very approximately, TPE � 100 APE and APE � 10 KE. The first inequality
should not surprise us (for it was this that lead us to define APE in the first instance),
but the second is not obvious (and in fact the ratio is larger in the ocean). It is related to
the fact that the instabilities of the atmosphere and ocean occur at a scale smaller than
the size of the domain, and are unable to release all the potential energy that might be
available. Understanding this more fully is the topic of chapters 6 and 9.

Notes

1 The algorithm to numerically solve these equations differs from that of the free-
surface shallow water equations because the mass conservation equation can no
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longer be stepped forward in time. Rather, an elliptic equation for plid must be
derived by eliminating time derivatives from from (3.23) using (3.22), and this then
solved at each timestep.

2 This expression ‘form drag’ is also commonly used in aerodynamics, and the two
usages are related. In aerodynamics, form drag is the force due to pressure differ-
ence between the front and rear of an object, or any other ‘form’, moving through
a fluid. Aerodynamic form drag may include frictional effects between the wind
and the surface itself, but this effect is absent in most geophysical uses.

3 (Jules-)Henri Poincaré (1854–1912) was a prodigious French mathematician, physi-
cist and philosopher, regarded as one the greatest mathematicians living at the
turn of the 20th century. He is probably most remembered now for his original
work in analysis (e.g., solvability of algebraic equations), dynamical systems and
celestial mechanics, obtaining many results in what would be called non-linear
dynamics and chaos when these fields re-emerged some 60 years later. He also
independently obtained a number of the results of special relativity, as well as
working on the theory of rotating fluids — hence the Poincaré waves of this chap-
ter [also discussed by Kelvin (1879)]. He also wrote extensively and successfully for
the general public on the meaning, importance and philosophy of science. Among
other things he discussed whether scientific knowledge was a mere convention,
a notion that remains discussed and controversial to this day. (His answer: ‘con-
vention’, in part, yes; ‘mere’, no.) He was a proponent of the role of intuition in
mathematical and scientific progress, and did not believe that mathematics could
ever be wholly reduced to pure logic. One of the last polymaths.

4 Thomson, W. (Lord Kelvin) (1879). See Gill (1982) or Philander (1990) for more
detailed discussions.

5 An introduction to variational problems may be found in Weinstock (1952) and a
number of other textbooks. Applications to many traditional problems in mechan-
ics are discussed by Lanczos (1970).

6 Margules (1903) introduced the concept of potential energy that is available for
conversion to kinetic energy, Lorenz (1955) clarified its meaning and derived use-
ful, approximate formulae for its computation. Shepherd (1993) showed that the
APE is just the non-kinetic part of the pseudo-energy, an interpretation that nat-
urally leads to a number of extensions of the concept. There are a host of other
papers on the subject, including that of Huang (1998) who looked at some of the
limitations of the approximate expressions in an oceanic context.

Further Reading

Gill, A. E. 1982. Atmosphere-Ocean Dynamics.
This remains a classic reference for geostrophic adjustment and gravity waves. The
time-dependent geostrophic adjustment problem is discussed in section 7.3.

Problems

3.1 Derive the appropriate shallow water equations for a single moving layer of fluid
of density �1 above a rigid floor, and where above the moving fluid is a stationary
fluid of density �0, where �0 < �1. Show that as .�0=�1/ ! 0 the usual shallow
water equations emerge.
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3.2 (a) Model the atmosphere as two immiscible, ‘shallow water’ fluids of different
density stacked one above the other. Using reasonable values for the values
of any needed physical parameters such as the density of the two layers, esti-
mate the displacement of the interfacial surface associated with a pole–equator
temperature gradient of 60 K.

(b) Similarly estimate an interfacial displacement in the ocean associated with a
temperature gradient of 20 K over a distance of 4000 km. (This is a crude rep-
resentation of the main oceanic thermocline.)

3.3 � For a shallow water fluid the energy equation, (3.91), has the form @E=@t C

r � .v.E C gh2=2/ D 0. But for a compressible fluid, the corresponding energy
equation, (1.195), has the form @E=@t Cr � .v.E Cp/ D 0. In a shallow water fluid,
p ¤ gh2=2 at a point so these equations are superficially different. Explain this
and reconcile the two forms. (Hint: The shallow water equations are in hydrostatic
balance. What is the average pressure in a fluid column?)

3.4 � Can the shallow water equations for an incompressible fluid be derived by way
of an asymptotic expansion in the aspect ratio? If so, do it. That is, without assum-
ing hydrostasy ab initio, expand the Euler equations with a free surface in small
paramter equal to the ratio of the depth of the fluid to the horizontal scale of the
motion, and so obtain the shallow water equations.

3.5 � The inviscid shallow water equations, rotating or not, can support gravity waves
of arbitrarily short wavelengths. For sufficiently high wavenumber, the wavelength
will be shorter than the depth of the fluid. Is this consistent with an asymptotic
nature of the shallow water equations? Discuss.

3.6 Show that the vertical velocity within a shallow-water system is given by

w D
z � �b

h

Dh

Dt
C

D�b

Dt
: (P3.1)

Interpret this result, showing that it gives sensible answers at the top and bottom
of the fluid layer.

3.7 What is the appropriate generalization of (3.100) to two-dimensions? Suppose that

at time t D 0 the height field is given by a Gaussian distribution h0 D Ae�r 2=�2

where r2 D x2 Cy2. What is the subsequent evolution of this, in the linear approx-
imation? Show that the distribution remains Gaussian, and that its width increases
at speed

p
gH , where H is the mean depth of the fluid.

3.8 In an adiabatic shallow water fluid in a rotating reference frame show that the po-
tential vorticity conservation law is

D
Dt

� C f

� � hb

D 0 (P3.2)

where � is the height of the free surface and hb is the height of the bottom topog-
raphy, both referenced to the same flat surface.

(a) A cylindrical column of air at 30° latitude with radius 100 km expands horizon-
tally to twice its original radius. If the air is initially at rest, what is the mean
tangential velocity at the perimeter after the expansion.

(b) An air column at 60° N with zero relative vorticity (� D 0) stretches from the
surface to the tropopause, which we assume is a rigid lid, at 10 km. The air
column moves zonally onto a plateau 2.5 km high. What is its relative vorticity?
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Suppose it then moves southward to 30° N. What is its vorticity? (Assume density
is constant.)

3.9 � In the long-wave limit of Poincaré waves, fluid parcels behave as free-agents; that
is, like free solid particles moving in a rotating frame unencumbered by pressure
forces. Why then, is their frequency given by ! D f D 2˝ where ˝ is the rotation
rate of the coordinate system, and not by ˝ itself? Do particles that are stationary
or move in a straight line in the inertial frame of reference satisfy the dispersion
relationship for Poincaré waves in this limit? Explain.

3.10 Linearize the f -plane shallow-water system about a state of rest. Suppose that
there is an initial disturbance that is given in the general form

� D

“
z�k;l ei.kxCly/ dk dl (P3.3)

where � is the deviation surface height and the Fourier coefficients z�k;l are given,
and that the initial velocity is zero.

(a) Obtain the geopotential field at the completion of geostrophic adjustment, and
show that the deformation scale is a natural length scale in the problem.

(b) Show that the change in total energy during the adjustment is always less than
or equal to zero. Neglect any initial divergence.
N.B. Because the problem is linear, the Fourier modes do not interact.

3.11 Geostrophic adjustment of a velocity jump
Consider the evolution of the linearized f -plane shallow water equations in an
infinite domain. Suppose that initially the fluid surface is flat, the zonal velocity is
zero and the meridional velocity is given by

v.x/ D v0sgn.x/ (P3.4)

(a) Find the equilibrium height and velocity fields at t D 1.
(b) What are the initial and final kinetic and potential energies?

Partial Solution:
The potential vorticty is q D � � f0�=H , so that the initial and final state is

q D 2v0ı.x/: (P3.5)

(Why?) The final state streamfunction is thus given by
�
@2=@x2 � L�2

d

�
 D q, with

solution  D  0 exp.x=Ld/ and  D  0 exp.�x=Ld/ for x < 0 and x > 0, where
 0 D Ldv0 (why?), and � D f0 =g. The energy is E D

R
.Hv2 C g�2/=2 dx. The

initial KE is infinite, the initial PE is zero, and the final state has PE D KE D

gLd�
2
0
=4 — that is, the energy is equipartitioned between kinetic and potential.

3.12 In the shallow water equations show that, if the flow is approximately geostroph-
ically balanced, the energy at large scales is predominantly potential energy and
that energy at small scales is predominantly kinetic energy. Define precisely what
‘large scale’ and ‘small scale’ mean in this context.

3.13 In the shallow-water geostrophic adjustment problem, show that at large scales the
velocity adjusts to the height field, and that at small scales the height field adjusts
to the velocity field.
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3.14 � Consider the problem of minimizing the full energy [i.e.,
R
.hu2/Cg�2/ dx], given

the potential vorticity field q.x;y/ D .� C f /=h. Show that the balance relations
analogous to (3.8.5) are uh D �@.Bq�1/=@y and vh D @.Bq�1/=@x where B is
the Bernoulli function B D g�C u2=2. Show that steady flow does not necessarily
satisfy these equations. Discuss.

3.15 Using realistic values for temperature, velocity etc., calculate approximate values
for the total potential energy, the available potential energy, and the kinetic energy,
of either a hemisphere in the atmosphere or an ocean basin.



All real fluid motions are rotational.

Clifford Truesdell, The Kinematics of Vorticity, 1954.

CHAPTER 4

Vorticity and Potential Vorticity

V
ORTICITY AND POTENTIAL VORTICITY both play a central role in geophysical fluid
dynamics — indeed, we shall find that the large scale circulation of the ocean
and atmosphere is in large-part governed by the evolution of the latter. In

this chapter we define these quantities and deduce some of their dynamical proper-
ties. Along the way we will come across Kelvin’s circulation theorem, one of the most
fundamental conservation laws in all of fluid mechanics, and we will find that the con-
servation of potential vorticity is intimately tied to this.

4.1 VORTICITY AND CIRCULATION

4.1.1 Preliminaries

Vorticity is defined to be the curl of velocity, and is normally denoted by the symbol !.
Thus

! � r � v: (4.1)

Circulation is defined to be the integral of velocity around a closed fluid loop. That is,

C �

I
v � dl ; (4.2)

which by Stokes’ theorem can be written as

C D

Z
S

! � dS : (4.3)

where S is any surface bounded by the loop. That is, the circulation around some path is
equal to the integral of the normal component of vorticity over any surface bounded by
that path. The circulation is not a field like vorticity and velocity. Rather, we think of the

171
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circulation around a particular material line of finite length, and so its value generally
depends on the path chosen. If ıS is an infinitesimal surface element whose normal
points in the direction of the unit vector On, then

On � .r � v/ D
1

ıS

I
ıl

v � dl (4.4)

where the line integral is around the infinitesimal area. Thus at a point the component of
vorticity in the direction of n is proportional to the circulation around the surrounding
infinitesimal fluid element, divided by the elemental area bounded by the path of the
integral. A heuristic test for the presence of vorticity is then to imagine a small paddle-
wheel in the flow: the paddle wheel acts as a ‘circulation-meter’ and so rotates if the
vorticity is non-zero.

4.1.2 Simple axi-symmetric examples

Consider axi-symmetric motion in two dimensions, so that the flow is confined to a
plane. We use cylindrical coordinates .r; �; z/ where z is the direction perpendicular to
the plane. Then

uz D ur D 0; u� ¤ 0: (4.5)

Rigid Body Motion

The velocity distribution is given by

u� D ˝r (4.6)

where ˝ is the angular velocity of the fluid. Associated with this is the vorticity

! D r � v D !zk; (4.7)

where

!z D
1

r

@

@r
.ru�/ D

1

r

@

@r
.r2˝/ D 2˝: (4.8)

The vorticity of a fluid in solid body rotation is thus twice the angular velocity of the
fluid, and is pointed in a direction orthogonal to the plane of rotation.

The ‘vr ’ vortex

This vortex is so-called because the tangential velocity (i.e., ‘v’) is such that the product
vr is constant. In our notation we therefore have

u� D
K

r
; (4.9)

where K is a constant determining the vortex strength. Evaluating the z-component of
vorticity gives

!z D
1

r

@

@r
.ru�/ D

1

r

@

@r

�
r

K

r

�
D 0; (4.10)
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Figure 4.1 Evaluation of circulation in
the axi-symmetric vr vortex. The circulation
around path A–B–C –D is zero. This result
does not depend on the radii r1 or r2 or the an-
gle �, and the circulation around any infinitesi-
mal path not enclosing the origin is zero. Thus
the vorticity is zero everywhere except at the
origin.

except where r D 0, at which the expression is singular and the vorticity is infinite.
Obviously the paddle wheel rotates when placed at the vortex center, but, less obviously,
does not if placed elsewhere.

We can also obtain the result by calculating the circulation
H

u � dl around an ap-
propriate contour. If the contour is a circle that encloses the origin, the circulation is
given by

Cı D

I
K

r
r d� D 2 K (4.11)

This does not depend on the radius, and so it is true if the radius is infinitesimal, pro-
vided the contour encloses the origin. Since the vorticity is the circulation divided by
the area, the vorticity at the origin must be infinite. Consider now a contour that does
not enclose the origin, for example the contour a–b–c–d–a in Fig. 4.1. Over the seg-
ments a–b and c–d the velocity is orthogonal to the contour, and so the contribution is
zero. Over b-c and d–a we have

Cbc D
K

r2

� r2 D K�; Cda D �
K

r1

� r1 D �K� (4.12)

The net circulation around the contour Cabcda is zero. If we shrink this contour to an
infinitesimal size then within this contour, by Stokes’ theorem, the vorticity is zero.
Thus the vorticity is everywhere zero, except at the origin.

4.2 THE VORTICITY EQUATION

Using the vector identity v � .r � v/ D r.v � v/=2 � .v � r/v, we can write the
momentum equation as

@v

@t
C! � v D �

1

�
rp �

1

2
rv2

C �r
2v: (4.13)

Taking the curl of this gives the vorticity equation

@!

@t
C r � .! � v/ D

1

�2
.r� � rp/; (4.14)
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where here, and in most of the rest of this chapter, we ignore viscosity.
Now, the vector identity

r � .a � b/ D .b � r/a � .a � r/b C ar � b � br � a; (4.15)

implies that the second term on the left hand side of (4.14) may be written

r � .! � v/ D .v � r/! � .! � r/v C!r � v � vr �!: (4.16)

Because vorticity is the curl of velocity, its divergence vanishes, whence we obtain

@!

@t
C .v � r/! D .! � r/v �!r � v C

1

�2
.r� � rp/: (4.17)

The divergence term may be eliminated with the aid of the mass-conservation equation
to give

Dz!

Dt
D .z! � r/v C

1

�3
.r� � rp/ : (4.18)

where z! D !=�.
The last term on the right-hand side of (4.17), as well as the term on the right-hand

side of (4.18), is called the baroclinic term, the non-homentropic term, or the solenoidal
term. The solenoidal vector is defined by

S D
1

�2
r� � rp D �r˛ � rp (4.19)

A solenoid is a tube directed perpendicular to both r˛ and rp, with elements of length
proportional to rp � r˛. If the isolines of p and ˛ are parallel to each other, then
solenoids do not exist. This occurs when the density is a function only of pressure for
then

r� � rp D r� � r�
dp

d�
D 0: (4.20)

The solenoidal vector may also be written

S D �r� � rT: (4.21)

(This follows most easily by first writing the momentum equation in the form @v=@t C

! � v D T r� � rB, and taking its curl; see problem 2.2.) Evidently, then, the
solenoidal term vanishes if: (i) isolines of pressure and density are parallel; (ii) iso-
lines of temperature and entropy are parallel; (ii) density or entropy or temperature or
pressure are constant. A barotropic fluid has by definition p D p.�/ and therefore no
solenoids. A baroclinic fluid is one for which rp is not parallel to r�. An important
result immediately follows from (4.18): the baroclinic term must be balanced by either
the nonlinear terms or the vorticity tendency and therefore, in general, a baroclinic fluid
is a moving fluid, and a stationary baroclinic fluid has a tendency to produce motion.
This result holds even in the presence of viscosity.
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For a barotropic fluid the vorticity equation takes the simple form,

Dz!

Dt
D .z! � r/v: (4.22)

If the fluid is also incompressible, meaning that r�v D 0, then we have the even simpler
form,

D!
Dt

D .! � r/v: (4.23)

The terms on the right-hand side of (4.22) or (4.23) are conventionally divided into
‘stretching’ and ‘tipping’ (or ‘tilting’) terms, and we return to these in section 4.3.1.

An integral conservation property

Consider a single Cartesian component in (4.17). Then

@!x

@t
D �v � r!x � !xr � v C .! � r/vx C Sx

D �r � .v!x/C r � .!vx/C Sx

(4.24)

where Sx is the (x-component of) the solenoidal term. This may be written as

@!x

@t
C r � .v!x �!vx/ D Sx; (4.25)

and this implies the Cartesian tensor form of the vorticity equation, namely

@!i

@t
C

@

@xj

.vj!i � vi!j / D Si (4.26)

with summation over repeated indices. The tendency of vorticity is given by the solenidal
term plus the divergence of a vector field, and thus if the former vanishes the volume
integrated vorticity can only be altered by boundary effects. In both atmosphere and
ocean the solenoidal term is important, but we will see in section 4.5 that a useful con-
servation law for a scalar quantity can still be obtained.

4.2.1 Two-dimensional flow

In two-dimensional flow the fluid is confined to a surface, and independent of the third
dimension normal to that surface. Let us initially stay in a Cartesian geometry, and then
two-dimensional flow is flow on a plane, and the velocity normal to the plane, and the
rate of change of any quantity normal to that plane, are zero. Let the normal direction
be the z-direction and then the velocity in the plane, denoted by u, is

v D u D ui C vj; w D 0: (4.27)

Only one component of vorticity non-zero and this is given by

! D k
�
@v

@x
�
@u

@y

�
: (4.28)
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That is, in two-dimensional flow the vorticity is perpendicular to the velocity. We let
� � !z D ! � k. Both the stretching and tilting terms vanish in two-dimensional flow,
and the two-dimensional vorticity equation becomes, for incompressible flow,

D�
Dt

D 0; (4.29)

where D�=Dt D @�=@t Cu�r�. That is, in two-dimensional flow vorticity is conserved
following the fluid elements; each material parcel of fluid keeps its value of vorticity
even as it is being advected around. Furthermore, specification of the vorticity com-
pletely determines the flow field. To see this, we use the incompressibility condition to
define a streamfunction  such that

u D �
@ 

@y
; v D

@ 

@x
; (4.30)

and
� D r

2 : (4.31)

Given the vorticity, the Poisson equation (4.31) can be solved for the streamfunction
and the velocity fields obtained through (4.30), and this process is called ‘inverting the
vorticity’.

Numerical integration of (4.29) is then a process of time-stepping plus inversion.
The vorticity equation may then be written as an advection equation for vorticity,

@�

@t
C u � r� D 0 (4.32)

in conjunction with (4.30) and (4.31). The vorticity is stepped forward one time-step
using a finite-difference representation of (4.32), and the vorticity inverted to obtain a
velocity using (4.31) and (4.30). (The notion that complete or nearly complete infor-
mation about the flow may be obtained by inverting one field plays an important role in
geophysical fluid dynamics, as we will see later on.)

In the presence of rotation the two-dimensional vorticity equation becomes

@�

@t
C u � r.� C f / D 0 (4.33)

where f D 2˝ � k. This may be written

D
Dt
.� C f / D 0; (4.34)

implying that the absolute vorticity, �a � � C f , is materially conserved. If f is a
constant, then (4.33) reduces to (4.32), and background rotation plays no role. If f
varies linearly with y, so that f D f0 C ˇy, then (4.33) becomes

@�

@t
C u � r� C ˇv D 0 (4.35)

which is known as the ˇ-plane vorticity equation.
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ωa
Figure 4.2 A vortex tube pass-

ing through a material sheet. The
circulation is the integral of the
velocity around the boundary of
A, and is equal to the integral of
the normal component of vorticity
over A.

Finally, we note that two-dimensional flow is not restricted to a single, Cartesian
plane, and we may certainly envision two-dimensional flow on the surface of a sphere.
In this case, the velocity normal to the spherical surface (the ‘vertical velocity’) van-
ishes. However, aside from their expression in spherical coordinates the equations of
motion are largely unchanged, and in particular vorticity (absolute vorticity if the sphere
is rotating) is conserved on parcels as they move over the spherical surface.

4.3 VORTICITY AND CIRCULATION THEOREMS

4.3.1 The ‘frozen-in’ property of vorticity

Let us first consider some simple topological properties of the vorticity field and its
evolution. We define a vortex-line to be a line drawn through the fluid which is every-
where in the direction of the local vorticity. This definition is analogous to that of a
streamline, which is everywhere in the direction of the local velocity. A vortex-tube is
formed by the collection of vortex lines passing through a closed curve (Fig. 4.2. A
material-line is just a line that connects material fluid elements. Suppose we draw a
vortex line through the fluid; such a line obviously connects fluid elements and there-
fore defines a co-incident material line. As the fluid moves the material line deforms,
and the vortex line also evolves in a manner determined by the equations of motion. A
remarkable property of vorticity is that, for an unforced and inviscid barotropic fluid,
the flow evolution is such that a vortex line remains co-incident with the same material
line with which it was initially associated. Put another way, a vortex line always con-
tains the same material elements — the vorticity is ‘frozen’ or ‘glued’ to the material
fluid.

To prove this we consider how an infinitesimal material line element ıl evolves, ıl
being the infinitesimal material element connecting l with l C ıl . The rate of change
of ıl following the flow is given by

Dıl
Dt

D
1

ıt

�
ıl.t C ıt/ � ıl.t/

�
; (4.36)

which follows from the definition of the material derivative in the limit ıt ! 0. From
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Fig. 4.3 Evolution of an infinitesimal material line ıl from time t to time
t C ıt . It can be seen from the diagram that D ıl=Dt D ıv.

the Taylor expansion of ıl.t/ and the definition of velocity it is also apparent that

ıl.t C ıt/ D l.t/C ıl.t/C .v C ıv/ıt � .l.t/C vıt/

D ıl C ıvıt;
(4.37)

as illustrated in Fig. 4.3. Substituting into (4.36) gives

Dıl
Dt

D ıv (4.38)

But since ıv D .ıl � r/v we have that

Dıl
Dt

D .ıl � r/v (4.39)

Comparing this with (4.18), we see that vorticity evolves in the same way as a line
element. To see what this means, at some initial time we can define an infinitesimal
material line element parallel to the vorticity at that location, that is,

ıl.x; t/ D A!.x; t/ (4.40)

where A is a (dimensional) constant. Then, for all subsequent times, the magnitude of
the vorticity of that fluid element (wherever that particular element may be in the fluid)
remains proportional to the length of the fluid element and points in the same direction
— that is:

!.x0; t 0/ D A�1ıl.x0; t 0/: (4.41)

To see the same result in a slightly different way note that a vortex line element is
determined by the condition ıl D A! or, because A is just an arbitrary scaling factor,
! � ıl D 0. Now, for any line element we have that

D
Dt
.! � ıl/ D

D!
Dt

� ıl �
Dıl
Dt

�!: (4.42)
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We also have that
Dıl
Dt

D ıv D ıl � rv (4.43a)

and
D!
Dt

D ! � rv: (4.43b)

If the line element is initially a vortex line element then, at t D 0, ıl D A! and, using
(4.43), the right hand side of (4.42) vanishes. Thus, the tendency of ! � ıl is zero, and
the vortex line continues to be a material line.

Stretching and tilting

The frozen-in property of vorticity allows us to intepret the terms on the right-hand side
of (4.22) or (4.23) in terms of ‘stretching’ and ‘tipping’ (or ‘tilting’). Consider a single
Cartesian component of (4.23),

D!x

Dt
D !x

@u

@x
C !y

@u

@y
C !z

@u

@z
: (4.44)

The second and third terms of this are the tilting or tipping terms because they in-
volve changes in the orientation of the vorticity vector. They tell us that vorticity in
x-direction may be generated from vorticity in the y- and z-directions if the advection
acts to tilt the material lines. Because vorticity is tied to these lines, vorticity oriented
in one direction becomes oriented in another, and in Fig. 4.4 we see how vorticity in
the z-direction may be created by the tilting of vortex lines that initially have a purely
horizontal orientation.

The first term on the right-hand side of (4.44) is the stretching term, and it acts to
intensify the x-component of vorticity if the velocity is increasing in the x-direction
— that is, if the material lines are being stretched (Fig. 4.5). This effect again arises
because a vortex line is tied to a material line, and therefore vorticity is amplified if
the material line aligned with it is stretched, and in proportion to that stretching. This
effect leads to the amplification of vorticity in tornadoes, to give one example. If the
fluid is incompressible the the volume of a mass of material fluid remains fixed, so that
stretching in one direction is accompanied by convergence in another, and this leads to
the conservation of circulation, as we now discuss.

4.3.2 Kelvin’s Circulation Theorem

Kelvin’s circulation theorem states that under certain circumstances the circulation
around a material fluid parcel is conserved; that is, the circulation is conserved ‘fol-
lowing the flow’. The primary restrictions are that body forces are conservative (i.e.,
they are representable as potential forces, and therefore that the flow be inviscid), and
that the fluid is baroropic [i.e., p D p.�/]. Of these, the latter is the more restrictive for
geophysical fluids.

The circulation in the theorem is defined with respect to an inertial frame of refer-
ence; specifically, the velocity in (4.48) is the velocity relative to an inertial frame. We
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Figure 4.4 The tilting of vorticity. Sup-
pose that vorticity, ! is initially directed
horizontally, as in the lower figure, so that
!z , its vertical component, is zero. The ma-
terial lines, and therefore the vortex lines
also, are tilted by the postive vertical veloc-
ity W , so creating a vertically oriented vor-
ticity. This mechanism is important in cre-
ating vertical vorticity in the atmospheric
boundary layer (and, one may show, the ˇ-
effect in large-scale flow).

will give a straightforward proof, beginning with the inviscid momentum equation,

Dv
Dt

D �
1

�
rp � r˚; (4.45)

where r˚ represents the conservative body forces on the system. Applying the material
derivative to the circulation, (4.2), gives

DC

Dt
D

D
Dt

I
v � dr D

I �
Dv
Dt

� dr C v � dv
�

D

I ��
�

1

�
rp � r˚

�
� dr C v � dv

�
D

I
�

1

�
rp � dr

(4.46)

using (4.45) and D.ıl/=Dt D ıv. The line integration is over a closed, material,
circuit. The second and third terms on the second line vanish separately, because they
are exact differentials integrated around a closed loop. The term on the last line vanishes
if density is constant or, more generally, if pressure is a function of density alone in
which case rp is parallel to r�. To see this, note thatI

1

�
rp � dr D

Z
S

r �

�
rp

�

�
� dA D

Z
A

�r� � rp

�2
� dA; (4.47)
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Fig. 4.5 Stretching of material lines distorts the cylinder of fluid as shown.
Vorticity is tied to material lines, and so is amplified in the direction of
the stretching. However, because the volume of fluid is conserved, the
end surfaces shrink, the material lines through the cylinder ends converge,
and the integral of vorticity over a material surface (the circulation) remains
constant, as discussed in section 4.3.2.

using Stokes’s theorem where A is any surface bounded by the path of the line integral,
and this evidently vanishes identically if p is a function of � alone. The last term is the
integral of the solenoidal vector, and if it is zero (4.46) becomes

D
Dt

I
v � dr D 0 : (4.48)

This is Kelvin’s circulation theorem. In words, the circulation around a material loop is
invariant for a barotropic fluid that is subject only to conservative forces. Using Stokes’
theorem, the circulation theorem may also be written

D
Dt

Z
! � dS D 0 : (4.49)

That is, the area-integral of the normal component of vorticity across any material sur-
face is constant, under the same conditions. This form is both natural and useful, and it
arises because of the way vorticity is tied to material fluid elements, as we now see.

Stretching and circulation

We now informally consider how vortex stretching and mass conservation work together
to give the circulation theorem. Let the fluid be incompressible so that the volume of a
fluid mass is constant, and consider a surface normal to a vortex tube, that is he plane of
the surface perpendicular to the direction of the vorticity, as in Fig. 4.5). Let the volume
of a small material box around the surface be ıV , the length of the material lines be ıl
and the surface area be ıA. Then

ıV D ıl ıA: (4.50)
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Because of the frozen-in property, vorticity passing through the surface is proportional
to the length of the material lines. That is ! / ıl , and

ıV / ! ıA: (4.51)

The right-hand side is just the circulation around the surface. Now, if the corresponding
material tube is stretched ıl increases, but the volume, ıV , remains constant by mass
conservation. Thus, the circulation given by the right-hand side of (4.51) also remains
constant. In other words, because of the frozen-in property vorticity itself is amplified
by the stretching, but the vortex lines get closer together in such a way that the product
! ıS remains constant and circulation is conserved.

Baroclinic flow and the solenoidal term

In baroclinic flow, the circulation is not generally conserved. and we have

DC

Dt
D �

I
rp

�
� dl D �

I
dp

�
(4.52)

and this is sometimes called Bjerknes’s circulation theorem.1 Noting the fundamental
thermodynamic relation T d� D dI C p d˛ we have

˛ dp D d.p˛/ � T d�C dI (4.53)

so that the solenoidal term on the right-hand side of (4.52) may be written as

So � �

I
˛ dp D

I
T d� D �

I
� dT D �R

I
T d log p (4.54)

where the last equality holds only for an ideal gas. Using Stokes’s theorem So can also
be written as

So D �

Z
A

r˛�rp � dA D �

Z
A

�
@˛

@T

�
p

r˛�rp � dA D

Z
A

rT �r� � dA: (4.55)

The rate of change of the circulation across a surface depends on the existence of this
solenoidal term (Fig. 4.6 and, for an example, problem 4.6).

However, even if the solenoidal vector is in general non-zero, circulation is con-
served if the material path is in a surface of constant entropy, �, and if D�=Dt D 0. In
this case the solenoidal term vanishes and, because D�=Dt D 0, entropy remains con-
stant on that same material loop as it evolves. This result gives rise to the conservation
of potential vorticity, discussed in section 4.5

Circulation in a rotating frame

In a rotating frame of reference, the appropriate form of the circulation theorem is
obtained by using

D
Dt

I
.vr C˝�r/�dr D

I ��
Dvr

Dt
C˝ � vr

�
� dr C .vr C˝ � r/ � dvr

�
; (4.56)
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Fig. 4.6 A schematic of the solenoids and the circulation theorem. The
circulation over a surface is the integral of the vortex lines passing through
it. Solenoids are tubes perpendicular to both r˛ and rp, and they have
a non-zero cross-sectional area if isolines of ˛ and p do not coincide. The
rate of change of circulation over a material surface is given by the sum of
all the solenoidal areas crossing the surface. If r˛ � rp D 0 there are no
solenoids.

where for emphasis we explicitly use the subscript r to denote the rotating frame. ButH
vr � dvr D 0 and, integrating by parts,I

.˝ � r/ � dvr D

I n
dŒ.˝ � r/ � vr � � .˝ � dr/ � vr

o
D

I n
dŒ.˝ � r/ � vr �C .˝ � vr / � dr

o
:

(4.57)

The first term is on the right-hand side is zero and so (4.56) becomes

D
Dt

I
.vr C˝ � r/ � dr D

I �
Dvr

Dt
C 2˝ � vr

�
� dr D �

I
dp

�
; (4.58)

where the second equality uses the momentum equation. The term on the last line
vanishes if the fluid is barotropic, and if so the circulation theorem is

D
Dt

I
.vr C˝ � r/ � dr D 0: (4.59)

Using Stokes’s theorem this may be written,

D
Dt

Z
.!r C 2˝/ � dS D 0: (4.60)

having used r � .˝ � r/ D 2˝ , and where !r is the relative vorticity, or the vorticity
of a fluid parcel as measured in the rotating frame.2
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4.3.3 The circulation theorem for hydrostatic flow

A version of Kelvin’s circulation theorem holds for hydrostatic flow. For simplicity we
restrict attention to the f -plane, and start with the hydrostatic momentum equations,

Dur

Dt
C 2˝ � ur D �

1

�
rzp; (4.61a)

0 D �
1

�

@p

@z
� r˚; (4.61b)

where now ˚ D gz is the gravitational potential and ˝ D ˝k. The advecting field is
three-dimensional, and in particular we still have Dır=Dt D ıv D .ır � r/v. Thus,
using (4.61) we have

D
Dt

I
.ur C˝ � r/ � dr D

I ��
Dur

Dt
C˝ � vr

�
� dr C .ur C˝ � r/ � dvr

�
D

I �
Dur

Dt
C 2˝ � ur

�
� dr

D

I �
�

1

�
rp � r˚

�
� dr; (4.62)

as with (4.58), having used ˝ � vr D ˝ � ur , and where the gradient operator r

is three-dimensional. The last term on the right-hand side vanishes because it is the
integral of the gradient of a potential around a closed path. The first term vanishes if
the fluid is barotropic, so that the circulation theorem is

D
Dt

I
.ur C˝ � r/ � dr D 0: (4.63)

Using Stokes’s theorem we have the equivalent form

D
Dt

Z
.!hy C 2˝/ � dS D 0; (4.64)

where the subscript ‘hy’ denotes hydrostatic and, in Cartesian coordinates,

!hy D r � u D �i
@v

@z
C j

@u

@z
C k

�
@v

@x
�
@u

@y

�
: (4.65)

4.4 VORTICITY EQUATION IN A ROTATING FRAME

Perhaps easiest way to derive the vorticity equation appropriate for a rotating reference
frame is to begin with the momentum equation in the form

@vr

@t
C .2˝ C!r / � vr D �

1

�
rp C r

�
˚ �

1

2
v2

r

�
; (4.66)
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∫
A

(ω + 2Ω) · dA = 2ΩA⊥

Fig. 4.7 The projection of a material circuit on to the equatorial plane. If
a fluid element moves poleward, keeping its orientation to the local verti-
cal fixed (e.g., it stays horizontal) then the area of its projection on to the
equatorial plane increases. If its total (absolute) circulation is to be main-
tained, then the vertical component of the relative vorticity must diminish.
That is,

R
A
.! C 2˝/ � dA D

R
A
.� C f /dA D constant. Thus, the ˇ term

in D.� C f /=Dt D D�=Dt C ˇv D 0 ultimately arises from the tilting of a
parcel relative to the axis of rotation as it moves meridionally.

where the potential ˚ contains the gravitational and centrifugal forces. Take the curl of
this and use the identity (4.15), which here implies

r�Œ.2˝C!r /�vr � D .2˝C!r /r�vr C.vr �r/.2˝C!r /�Œ.2˝C!r /�r�vr ; (4.67)

(noting that r � .2˝ C!/ D 0), to give the vorticity equation

D!r

Dt
D Œ.2˝ C!r / � r� v � .2˝ C!r /r � vr C

1

�2
.r� � rp/: (4.68)

Note that because ˝ is a constant, D!r=Dt D D!a=Dt where !a D ˝ C !r is the
absolute vorticity. The only difference between the vorticity equation in the rotating
and inertial frames of reference is in the presence of the solid-body vorticity 2˝ on the
right-hand side. The second term on the right-hand side may be folded in to the material
derivative using mass continuity, and after a little manipulation (4.68) becomes

D
Dt

�
!a

�

�
D

1

�
.2˝ C!r / � rvr C

1

�3
.r� � rp/: (4.69)

However, note that it is the absolute voricity, !a, that now appears on the left-hand side.
If � is constant, !a may be replaced by !r .
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4.4.1 The circulation theorem and vortex tilting

What are the implications of the circulation theorem on a rotating, spherical planet? Let
us define relative circulation over some material loop as

Cr �

I
vr � dl ; (4.70)

and because vr D va � 2˝ � r we have

Cr D Ca �

Z
2˝ � dS D Ca � 2˝A? (4.71)

where Ca is the total or absolute circulation and A? is the area enclosed by the pro-
jection of the material circuit onto the plane normal to the rotation vector; that is, onto
the equatorial plane (see Fig. 4.7). If the solenoidal term is zero then the circulation
theorem, (4.60), may be written as

D
Dt
.Cr C 2˝A?/ D 0 (4.72)

This equation tells us that the relative circulation around a circuit will change if the
orientation of the plane changes; that it, if the area of its projection on to the equato-
rial plane changes. In large scale dynamics the most common cause of this is when a
fluid parcel changes its latitude. For example, consider the two-dimensional flow of an
infinitesimal, horizontal, homentropic fluid surface at a latitude # with area ıS , so that
the projection of its area on the equatorial plane is ıS sin# . If the fluid surface moves,
but remains horizontal, then directly from (4.72) the relative vorticity changes as

D�r

Dt
D �2˝

D
Dt

sin# D �vr

2˝ cos#
a

: (4.73)

The means by which the relative vorticity of a parcel changes by virtue of its latitudinal
displacement is known as the beta effect, or the ˇ effect. It is a manifestation of the
tilting term in the vorticity equation, and it is often the most important means by which
relative vorticity does change in large-scale flow. We define

ˇ �
df
dy

D
2˝

a
cos#; (4.74)

so that in this instance D�r=Dt D �ˇvr . The ˇ term directly arises in the full vorticity
equation, as we now see.

4.4.2 The vertical vorticity equation

For many applications, especially in large-scale dynamics, the most important, although
not the largest, component of the vorticity is the vertical one, because this contains much
of the information about the horizontal flow. We can obtain an explicit expression for it
by taking the vertical component of (4.68), although care must be taken because the unit
vectors .i; j; k/ are functions of position (see problem 2.5.) An alternative derivation
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that results in a useful form begins with the horizontal momentum equations in the form

@u

@t
� v.� C f /C w
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C v2/C Fy : (4.75b)

(4.75c)

where in this section we again drop the subscript r on variables measured in the rotating
frame. Cross-differentiating gives, after a little algebra,
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(4.76)

The brave reader may verify that this equation holds in spherical coordinates, with
@=@x D .r cos#/�1@=@� and @=@y D r�1@=@# . We interpret the various terms as
follows:

D�=Dt D @�=@t C v � r�: The material derivative of the vertical component of the
vorticity.

Df=Dt D v@f=@y D vˇ: The ˇ-effect. The vorticity is affected by the meridional
motion of the fluid, so that, apart from the terms on the right-hand side, .�Cf /

is conserved on parcels. Because the Coriolis parameter changes with latitude
this is like saying that the system has differential rotation. This effect is pre-
cisely that due to the change in orientation of fluid surfaces with latitude, as
given above in section 4.4.1 and Fig. 4.7.

�.�Cf /.@u=@x C@v=@y/: The divergence term, which gives rise to vortex stretching.
In an incompressible fluid this may be written .� C f /@w=@z , so that vortic-
ity is amplified if the vertical velocity increases with height, so stretching the
material lines and the vorticity.

.@u=@z/.@w=@y/ � .@v=@z/.@w=@x/: The tilting term, whereby a vertical compo-
nent of vorticity may be generated by a vertical velocity acting on a horizontal
vorticity. See Fig. 4.4.

��2 Œ.@�=@x/.@p=@y/ � .@�=@y/.@p=@x/� D ��2J.�;p/: The solenoidal term, also
called the non-homentropic or baroclinic term, arising when isosurfaces of
pressure and density are not parallel.

.@Fy=@x � @Fx=@y/: The forcing and friction term. If the only contribution to this is
from molecular viscosity then this term is �r2�.
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In inviscid two-dimensional incompressible flow, all of the terms on the right-hand
side vanish and we have the simple equation

D.� C f /

Dt
D 0: (4.77)

For inviscid shallow water flow, we can show that (see chapter 3)

D.� C f /

Dt
D �.� C f /

�
@u

@x
C
@v

@y

�
: (4.78)

In this equation the vanishing of the tilting term is perhaps the only aspect which is
perhaps not immediately apparent, but this too gives way with a little thought.

4.5 POTENTIAL VORTICITY CONSERVATION

Although Kelvin’s circulation theorem is a general statement about vorticity conserva-
tion, in its original form it is not always a very useful statement for two reasons. First,
it is a not a statement about a field, such as vorticity itself. Second, it is not satisfied
for baroclinic flow, such as is found in the atmosphere and ocean. (Of course non-
conservative forces such as viscosity also lead to circulation non-conservation, but this
applies to virtually all conservation laws and does not diminish them.) It turns out that
it is possible to derive a beautiful conservation law that overcomes both of these fail-
ings and one, furthermore, that is extraordinarily useful in geophysical fluid dynamics.
This is the conservation of potential vorticity introduced first by Rossby and then in a
more general form by Ertel.3 The idea is that we can use a scalar field that is being
advected by the flow to keep track of, or to take care of, the evolution of fluid elements.
For a baroclinic fluid this scalar field must be chosen in a special way (it must be a
function of the density and pressure alone), but the restriction to barotropic fluid can
then be avoided. Then using the scalar evolution equation in conjunction with the vor-
ticity equation gives us a scalar conservation equation. In the next few subsections we
derive the equation for potential vorticity conservation in several superficially different
ways. We do not treat rotation explicitly until section 4.5.5, and so the vorticity in what
follows should be regarded as the absolute vorticity.

4.5.1 PV conservation from the circulation theorem

Barotropic fluids

Let us begin with the simple case of a barotropic fluid. For an infinitesimal volume we
write Kelvin’s theorem as:

D
Dt
Œ.!a � n/ıA� D 0 (4.79)

where n is a unit vector normal to an infinitesimal surface ıA. Now consider a volume
bounded by two isosurfaces of values � and �Cı�, where � is any materially conserved
tracer, so satisfying D�=Dt D 0, so that ıA initially lies in an isosurface of � (see Fig.
4.8). Since n = r�=jr�j and the infinitesimal volume ıV D ıhıA, where ıh is the
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Fig. 4.8 An infinitesimal fluid element, bounded by two isosurfaces of the
conserved tracer �. As D�=Dt D 0, then Dı�=Dt D 0.

separation between the two surfaces, we have

!a � n ıA D !a �
r�

jr�j

ıV

ıh
: (4.80)

Now, the separation between the two surfaces, ıh may be obtained from

ı� D ıx � r� D ıhjr�j; (4.81)

and using this in (4.79) we obtain

D
Dt

�
.!a � r�/ıV

ı�

�
D 0: (4.82)

Now, as � is conserved on material elements, then so is ı�, and it may be taken out
of the differentiation. The mass of the volume element � ıV is also conserved, so that
(4.82) becomes

�ıV

ı�

D
Dt

�
!a

�
� r�

�
D 0 (4.83)

or
D
Dt
.z!a � r�/ D 0 (4.84)

where z!a D !a=�. Eq. (4.84) is a statement of potential vorticity conservation for a
barotropic fluid. The field � may be chosen arbitrarily, provided that it be materially
conserved.

The general case

For a baroclinic fluid the above derivation fails simply because the statement of the
conservation of circulation, (4.79) is not, in general, true: there are solenoidal terms on
the right-hand side and from (4.52) and (4.54) we have

D
Dt
Œ.!a � n/ıA� D S � nıA; S D �r˛ � rp D �r� � rT: (4.85)



190 Chapter 4. Vorticity and Potential Vorticity

ω a . ∇θ
ω a

θ = θ 0

 Mass:  ρ δA δh = constant

Entropy:  | ∇θ |  δh = constant

δh

θ = θ 0 −
 δθ

| ∇θ |

δA

δA

Fig. 4.9 Geometry of potential vorticity conservation. The circulation
equation is DŒ.!a � n/ıA�=Dt D S � n ıA where S / r� � rT . We choose
n D r�=jr� j, where � is materially conserved, to annihilate the solenoidal
term on the right-hand side, and we note that ıA D ıV =ıh, where ıV
is the volume of the cylinder, and that ıh D ı�=jr� j. The circulation is
C � !a � nıA D !a � .r�=jr� j/.ıV =ıh/ D Œ��1!a � r��.ıM=ı�/ where
ıM D �ıV is the mass of the cylinder. As ıM and ı� are materially
conserved, so is the potential vorticity ��1!a � r� .

However, the right-hand side may be annihilated by choosing the circuit around which
we evaluate the circulation be such that the solenoidal term is identically zero. Given
the form of S , this occurs if the values of any of p; �; �;T are constant on that circuit;
that is, if � D p; �; � or T . But the derivation also demands that � be a materially
conserved quantity, which usually restricts its choice to � (or potential temperature), or
to � itself if the thermodynamic equation is D�=Dt D 0. Thus, the conservation of
potential vorticity for inviscid, adiabatic flow is

D
Dt
.z!a � r�/ D 0 (4.86)

where D�=Dt D 0. For diabatic flow source terms appear on the right-hand side, and
we derive these later on. A summary of this derivation provided Fig. 4.9.
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4.5.2 PV conservation from the frozen-in property

In this section we show that potential vorticity conservation is a consequence of the
frozen-in property of vorticity. This is not surprising, because the circulation theorem
itself has a similar origin. Thus, this derivation is not independent of the derivation in
the previous section, just a minor re-expression of it. We first consider the case in which
the solenoidal term vanishes from the outset.

Barotropic fluids

If � is a materially conserved tracer then the difference in � between two infinitesimally
close fluid elements is also conserved and

D
Dt
.�1 � �2/ D

Dı�
Dt

D 0: (4.87)

But ı� D r� � ıl where ıl is the infinitesimal vector connecting the two fluid elements.
Thus

D
Dt
.r� � ıl/ D 0 (4.88)

But since the line element and the vorticity (divided by density) obey the same equation,
we can replace the line element by vorticity (divided by density) in (4.88) to obtain again

D
Dt

�
r� �!a

�

�
D 0: (4.89)

That is, the potential vorticity, Q D .z!a � r�/ is a material invariant, where � is any
scalar quantity that satisfies D�=Dt D 0.

Baroclinic fluids

In baroclinic fluids we cannot casually substitute the vorticity for that of a line element
in (4.88) because of the presence of the solenoidal term, and in any case a little more
care would not be amiss. From (4.88) we obtain

ıl �
Dr�

Dt
C r� �

Dıl
Dt

D 0 (4.90)

or, using (4.39),

ıl �
Dr�

Dt
C r� � Œ.ıl � r/v� D 0: (4.91)

Now, let us choose ıl to correspond to a vortex line, so that at the initial time ıl D

� z!a. (Note that in this case the association of ıl with a vortex line can only be made
instantaneously, and we cannot set Dıl=Dt / D!a=Dt .) Then,

z!a �
Dr�

Dt
C r� � Œ.!a � r/v� D 0; (4.92)

or, using the vorticity equation (4.18),

z!a �
Dr�

Dt
C r� �

�
Dz!a

Dt
�

1

�3
r� � rp

�
D 0: (4.93)
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This may be written
D
Dt

z!a � r� D
1

�3
r� � .r� � rp/: (4.94)

The term on the right hand side is in general non-zero for an arbitrary choice of scalar,
but it will evidently vanish if rp;r� and r� are coplanar. If � is any function of p

and � this will be satisfied, but � must also be a materially conserved scalar. If, as for
an ideal gas, � D �.�;p/ (or � D �.p; �/) where � is the entropy (which is materially
conserved), and if � is a function of entropy � alone, then � satisfies both conditions.
Explicitly, the solenoidal term vanishes because

r� � .r� � rp/ D
d�
d�

r� �

��@�
@p

rp C
@�

@�
r�
�

� rp

�
D 0: (4.95)

Thus, provided � satisfies the two conditions

D�
Dt

D 0 and � D �.p; �/; (4.96)

then (4.94) becomes
D
Dt

�
!a � r�

�

�
D 0: (4.97)

The natural choice for � is potential temperature, whence

D
Dt

�
!a � r�

�

�
D 0 : (4.98)

The presence of a density term in the denominator is not necessary for incompressible
flows (i.e., if r � v D 0).

4.5.3 * An algebraic derivation

Finally, we give a straightforward algebraic derivation of potential vorticity conserva-
tion. We will take the opportunity to include frictional and diabatic processes, although
these may also be included in the derivations above.4 We begin with the frictional vor-
ticity equation in the form

Dz!a

Dt
D .z!a � r/v C

1

�3
.r� � rp/C

1

�
.r � F / : (4.99)

where F represents any nonconservative force term on the right-hand side of the mo-
mentum equation (i.e., Dv=Dt D ���1rp C F ). We have also the equation for our
materially conserved scalar �,

D�
Dt

D P� (4.100)

where P� represents any sources and sinks of �. Now

.z!a � r/
D�
Dt

D z!a �
Dr�

Dt
C Œ.z!a � r/v� � r�: (4.101)
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which may be obtained just by expanding the left-hand side. Thus, using (4.100),

z!a �
Dr�

Dt
D .z!a � r/ P� � Œ.z!a � r/v� � r�: (4.102)

Now take the dot product of (4.99) with r�:

r� �
Dz!a

Dt
D r� � Œ.z!a � r/v�C r� �

�
1

�3
.r�� rp/

�
C r� �

�
1

�
.r � F /

�
: (4.103)

The sum of the last two equations yields

D
Dt
.z!a � r�/ D z!a � r P�C r� �

�
1

�3
.r� � rp/

�
C

r�

�
� .r � F /: (4.104)

This equation reprises (4.94), but with the addition of frictional and diabatic terms.
As before, the solenoidal term is annihilated if we choose � D �.p; �/, so giving the
evolution equation for potential vorticity in the presence of forcing and diabatic terms,
namely:

D
Dt
.z!a � r�/ D z!a � r P� C

r�

�
� .r � F / : (4.105)

4.5.4 Effects of salinity and moisture

For seawater the equation of state may be written as

� D �.�;p;S/ (4.106)

where � is potential temperature and S is salinity. In the absence of diabatic terms
(which include saline diffusion) potential temperature is a materially conserved quan-
tity. However, because of the presence of salinity, � cannot be used to annihilate the
solenoidal term; that is

r� � .r� � rp/ D

�
@�

@S

�
p;�

rS � .r� � rp/ ¤ 0: (4.107)

Strictly speaking then, there is no potential vorticity conservation principle for seawa-
ter. However, such a blunt statement rather overemphasizes the importance of salinity in
the ocean, and the nonconservation of potential vorticity because of this effect is rather
small.

In a moist atmosphere in which condensational heating occurs there is no ‘moist
potential vorticity’ that is generally conserved. We may choose to define a moist PV
(Qe say) based on moist equivalent potential temperature but it does not always obey
DQe=Dt D 0.5
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Fig. 4.10 The mass of a column of fluid, hA, is conserved in the shallow
water system. Furthermore, the vorticity is tied to material lines so that �A
is also a material invariant, where � D ! � k is the vertical component of the
vorticity. From this, �=h must be materially conserved; that is D.�=h/=Dt D

0, which is the conservation of potential vorticity in a shallow water system.
In a rotating system this readily generalizes to DŒ.� C f /=h�=Dt D 0.

4.5.5 Effects of rotation, and summary remarks

In a rotating frame the potential vorticity conservation equation is obtained simply by
replacing !a by ! C 2˝ , where ˝ is the rotation rate of the rotating frame. The
operator D=Dt is reference-frame invariant, and so may be evaluated using the usual
formulae with velocities measured in the rotating frame.

The conservation of potential vorticity has profound consequences in fluid dynam-
ics, especially in a rotating, stratified fluid. The nonconservative terms are often small,
and large-scale flow in both the ocean and atmosphere is characterized by conservation
of potential vorticity. Such conservation is a very powerful constraint on the flow, and
indeed it turns out that potential vorticity is a much more useful quantity for baroclinic,
or nonhomentropic fluids than for barotropic fluids, because the required use of a spe-
cial conserved scalar imparts additional information. A large fraction of the remainder
of this book explores, in one way or another, the consequences of potential vorticity
conservation.

4.6 * POTENTIAL VORTICITY IN THE SHALLOW WATER SYSTEM

In chapter 3 we derived potential vorticity conservation by direct manipulation of the
shallow water equations. We now show that here too, potential vorticity is related to the
conservation of circulation. Specifically, we will begin with the the three-dimensional
form of Kelvin’s theorem, and then make the small aspect ratio assumption (which is
the key assumption underlying shallow water dynamics), and thereby recover shallow
water potential vorticity conservation. In the following two subsections we give two
variants of such derivation (see also Fig. 4.10).
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4.6.1 Using Kelvin’s theorem

We begin with
D
Dt
.!3 � ıS / D 0; (4.108)

where !3 is the curl of the three-dimensional velocity and ıS D ynıS is an arbitrary in-
finitesimal vector surface element, with n pointing in the direction normal to the surface.
If we separate the vorticity and surface element into vertical and horizontal components
we can write (4.108) as

D
Dt
Œ.� C f /ıA C!h � ıSh� D 0 (4.109)

where !h and ıSh are the horizontally-directed components of the vorticity and the
surface element, and ıA D kıS is the area of a horizontal cross-section of a fluid
column. In Cartesian form the horizontal component of the vorticity is

!h D i
�
@w

@y
�
@v

@z

�
� j

�
@w

@x
�
@v

@z

�
D i

@w

@y
� j
@w

@x
; (4.110)

where vertical derivatives of the horizontal velocity are zero by virtue of the nature of
the shallow water system. Now, the vertical velocity in the shallow water system is
smaller than the horizontal velocity by the order of the apect ratio — the ratio of the
fluid depth to the horizontal scale of motion. Furthermore, the size of the horizontally-
directed surface element is also an aspect-ratio smaller than the vertically-directed com-
ponent. That is,

j!hj � ˛j�j and jıShj � ˛jıAj; (4.111)

where ˛ D H=L is the aspect ratio. Thus!h �ıSh is an aspect-number squared smaller
than the term �ıA and in the small aspect ratio approximation should be neglected.
Kelvin’s circulation theorem, (4.109) becomes

D
Dt
Œ.� C f /ıA� D 0 or

D
Dt

�
.� C f /

h
hıA

�
D 0; (4.112)

where h is the depth of the fluid column. But hıA is the volume of the fluid column,
and this is constant. Thus, as in (3.81), we have

D
Dt

�
� C f

h

�
D 0; (4.113)

where, because horizontal velocities are independent of the vertical coordinate, the ad-
vection is purely horizontal.

4.6.2 Using an appropriate scalar field

In a constant density fluid we can write potential vorticity conservation as

D
Dt
.!3 � r�/ D 0; (4.114)
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where � is any materially-conserved scalar [c.f. (4.84) or (4.89)]. In the flat-bottomed
shallow water system, a useful choice of scalar is the ratio z=h, where h is the local
thickness of the fluid column because, from (3.29),

D
Dt

� z

h

�
D 0; (4.115)

the fluid is flat-bottomed (for simplicity). With this choice of scalar, potential vorticity
conservation becomes

D
Dt

h
! � r

� z

h

�i
D 0; (4.116)

where ! and D=Dt are fully three dimensional. Expanding the dot product gives

D
Dt

�
� C f

h
�

z

h2
!h � rzh

�
D 0: (4.117)

For an order-unity Rossby number, the ratio of the size of the two terms in this equation
is

j�j

j.z=h/!h � rhhj
�

ŒU=L��
WH=L2

� D
UL

WH
D ˛2

� 1: (4.118)

Thus, the second term in (4.117) is an aspect-ratio squared smaller than the first and,
upon its neglect, (4.113) is recovered.

4.7 POTENTIAL VORTICITY IN APPROXIMATE, STRATIFIED MODELS

If approximate models of stratified flow — Boussinesq, hydrostatic and so on — are
to be useful then they should conserve an appropriate form potential vorticity, and we
consider a few such cases here.

4.7.1 The Boussinesq equations

The Boussinesq equations are incompressible (that is, the volume of a fluid element is
conserved) and the equation for vorticity itself is isomorphic to that for a line element.
However the Boussinesq equations are not barotropic — r� is not parallel to rp — and
although the pressure gradient term r� disappears on taking its curl (or equivalently
disappears on integration around a closed path) the buoyancy term kb does not, and it is
this that prevents Kelvin’s circulation theorem from holding. Specifically, the evolution
of circulation in the Boussinesq equations obeys

D
Dt
Œ.!a � n/ıA� D .r � bk/ � nıA (4.119)

The right-hand side is annihilated if we choose n to be parallel to rb, because rb � r �

.bk/ D 0. In the simple Boussinesq equations the thermodynamic equation is

Db

Dt
D 0; (4.120)
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and potential vorticity conservation is therefore (with !a D !C˝)

DQ

Dt
D 0; Q D .!C 2˝/ � rb: (4.121a,b)

Expanding (4.121b) in Cartesian coordinates with˝ D f k we obtain:

Q D .vx � uy/bz C .wy � vz/bx C .uz � wx/by C f bz : (4.122)

In the general Boussinesq equations b itself is not materially conserved. We cannot
expect to obtain a conservation law if salinity is present, but if the equation of state and
thermodynamic equation are:

b D b.�; z/;
D�
Dt

D 0; (4.123)

then potential vorticity conservation follows, because taking the dot-product with r�

will annihilate the right-hand side of (4.119). That is,

r� � r � .bk/ D

�
@�

@z
rz C

@�

@b
rb

�
� r � .bk/ D 0: (4.124)

The materially conserved potential vorticity is then just Q D !a � r� . Note that if the
equation of state is b D b.�; �/, where � is the pressure, then potential vorticity is not
conserved because rp � r � .bk/ ¤ 0.

4.7.2 The hydrostatic equations

Making the hydrostatic approximation has no effect on the satisfaction of Kelvin’s cir-
culation theorem or, in a baroclinic fluid, Bjerknes’s theorem. Thus, in a baroclinic
hydrostatic fluid we have

D
Dt

Z
.!hy C 2˝/ � dS D �

Z
r˛ � rp � dS (4.125)

where, from (4.65) !hy D r � u D �ivz C juz C k.vx � uy/, but the gradient operator
and material derivative are fully three-dimensional. Derivation of potential vorticity
conservation then proceeds, as in section 4.5.1, by choosing the circuit over which the
circulation is calculated to be such that the right-hand side vanishes; that is, to be such
that the solenoidal term is annihilated. Precisely as before, this occurs if the circuit is
barotropic and without further ado we write

DQhy

Dt
D

D
Dt

�
.!h C 2˝/ � r�

�

�
D 0: (4.126)

Expanding this gives in Cartesian coordinates

Qhy D
1

�

�
.vx � uy/�z � vz�x C uz�y C 2˝�z

�
: (4.127)

In spherical coordinates the hydrostatic approximation is usually accompanied by the
traditional approximation and the expanded expression for a conserved potential vortic-
ity is more complicated. It can still be derived from Kelvin’s theorem, but this is left as
an exercise for the reader (problem 4.4).
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4.7.3 Potential Vorticity on Isentropic Surfaces

If we begin with the primitive equations in isentropic coordinates then potential vortic-
ity conservation follows quite simply. Cross differentiating the horizontal momentum
equations (3.165) gives the vorticity equation [c.f. (3.73)]

D
Dt
.� C f /C .� C f /r� � u D 0: (4.128)

where D=Dt D @=@t C u � r� . The thermodynamic equation is

D�
Dt

C �r � u D 0; (4.129)

where � D @z=@b (Boussinesq) or @p=@� (ideal gas) is the thickness of an isopycnal
layer. Eliminating the divergence between (4.128) and (4.129) gives

D
Dt

�
� C f

�

�
D 0: (4.130)

The derivation, and the result, are precisely the same as with the shallow water equations
(sections 3.6.1 and 4.6).

A connection between isentropic and height coordinates

The hydrostatic potential vorticity written in height coordinates may be transformed
into a form that reveals its intimate connection with isentropic surfaces. Let us make
the Boussinesq approximation for which the potential vorticity is

Qhy D .vx � uy/bz � vzbx C uzby ; (4.131)

where b is the buoyancy. We can write this as

Qhy D bz
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�
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��
: (4.132)

But the terms in the inner brackets are just the horizontal velocity derivatives at constant
b. To see this, note that�
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; (4.133)

with a similar expression for .@u=@y/b . (These relationships follow from standard rules
of partial differentiation. Derivatives with respect to z are taken at constant x and y.)
Thus, we obtain

Qhy D
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@z
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�
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�
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�
D
@b

@z
�b (4.134)

Thus, potential vorticity is simply the horizontal vorticity evaluated on a surface of
constant buoyancy, multiplied by the vertical derivative of buoyancy, a measure of static
stability. An analogous derivation, with a similar result, proceeds for the ideal gas
equations, with potential temperature replacing buoyancy.
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4.8 THE IMPERMEABILITY OF ISENTROPES TO POTENTIAL VORTICITY

A kinematical result is a result valid forever.

Clifford Truesdell, The Kinematics of Vorticity, 1954.

An interesting property of isentropic surfaces is that they are ‘impermeable’ to potential
vorticity, meaning that the mass integral of potential vorticity (

R
Q� dV ) over a volume

bounded by an isentropic surface remains constant, even in the presence of diabatic
sources, provided the surfaces do not intersect a non-isentropic surface like the ground.6

This may seem surprising, especially because unlike most conservation laws the result
does not require adiabatic flow, and for that reason it leads to interesting interpretations
of a number of phenomena. However, at the same time impermeability is a consequence
of the definition of potential vorticity rather than the equations of motion, and in that
sense is a kinematic property.

To derive the result we define s � �Q D r � .�!/ and integrate over some volume
V to give

I D

Z
V

s dV D

Z
V

r � .�!/ dV D

Z
S

�! � dS ; (4.135)

using the divergence theorem, where S is the surface surrounding the volume V . If this
is an isentropic surface then we have

I D �

Z
S

! � dS D �

Z
V

r �! dV D 0; (4.136)

again using the divergence theorem. That is, over a volume wholly enclosed by a single
isentropic surface the integral of s vanishes. If the volume is bounded by more than
one isentropic surface neither of which intersect the surface, for example by concen-
tric spheres of different radii as in Fig. 4.11a, the result still holds. The quantity s is
called ‘potential vorticity concentration’, or ‘PV concentration’. The integral of s over
a volume is akin to the total amount of a conserved material property, like salt content,
and so may be called ‘PV substance’. That is, the PV concentration is the amount of
potential vorticity substance per unit volume and

PV substance D

Z
s dV D

Z
�Q dV; (4.137)

which follows the sstandard chemical meaning for concentration.
Suppose now that fluid volume is enclosed by an isentrope that intersects the ground,

as in Fig. 4.11b. Let A denote the isentropic surface, B denote the ground, �A the con-
stant value of � on the isentrope, and �B.x;y; t/ the non-constant value of � on the
ground. The integral of s over the volume is then

I D

Z
V

r � .�!/ dV D �A

Z
A

! � dS C

Z
B

�B! � dS

D �A

Z
ACB

! dS C

Z
B

.�B � �A/! � dS

D

Z
B

.�B � �A/! � dS :

(4.138)
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�1

�2

V
Earth

�B.x; y/

A

= == ==== == == ==== == ===

�A D const.

B

V

�B.x; y/

↓

(a) (b)

Fig. 4.11 (a) Two isentropic surfaces that do not intersect the ground.
The integral of PV concentration over the volume between then, V , is zero,
even if there is heating and the contours move. (b) An isentropic surface,
A, intersects the ground, B, so enclosing a volume V . The rate of change
of PV concentration over the volume is given by an integral over B.

The first term on the second line vanishes after using the divergence theorem. Thus,
the value of I , and so its rate of change, is a function only of an integral over the
surface B, and the PV flux there must be calculated using the full equations of motion.
However, we do not need to be concerned with a flux of PV concentration through the
isentropic surface. Put another way, the PV substance in a volume can change only
when isentropes enclosing the volume intersect a boundary such as the earth’s surface.

4.8.1 Interpretation and application

Motion of the isentropic surface

How can the above results hold in the presence of heating? The isentropic surfaces must
move in such a way that the total amount of PV concentration contained between them
nevertheless stays fixed, and we now demonstrate this explicitly. The potential vorticity
equation may be written

@Q

@t
C v � rQ D SQ; (4.139)

where, from (4.105), SQ D .!=�/ � r P� C r� � .r � F /=�. Using mass continuity this
may be written as

@s

@t
C r � J D 0; (4.140)

where J � �vQ C N and r � N D ��SQ. Written this way, the quantity J=.�Q/ is
a notional velocity, vQ say, and s satisfies

@s

@t
C r � .vQs/ D 0: (4.141)

That is, s evolves as if it were being fluxed by the velocity vQ. A chemical tracer �,
where � is the amount of tracer per unit volume, obeys a similar equation, to wit

@�

@t
C r � .v�/ D 0; (4.142)
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However, whereas (4.142) implies that D.�=�/=Dt D 0, (4.141) does not imply that
@Q=@t C vQ � rQ D 0 because @�=@t C r � .�vQ/ ¤ 0.

Now, the impermeability result tells us that there can be no notional velocity across
an isentropic surface. How can this be satisfied by the equations of motion? We write
the right-hand side of (4.139) as

�Sq D r � . P�!C �r � F / D r � . P�!C F � r�/: (4.143)

Thus, the J vector is

J D �vQ � P�! � F � r� (4.144a)

D �Q.v? C vk/ � P�!k � F � r�; (4.144b)

where

vk D v �
v � r�

jr� j2
r�; v? D �

@�=@t

jr� j2
r�; (4.145a)

!k D ! �
! � r�

jr� j2
r� D ! �

Q

jr� j2
r�: (4.145b)

The subscripts ‘?’ and ‘k’ denote components perpendicular and parallel to the local
isentropic surface, and v? is the velocity of the isentropic surface normal to itself.
Equation (4.144) may be verified by using (4.145) and D�=Dt D P� .

The ‘parallel’ terms in (4.144) are all vectors parallel to the local isentropic surface,
and therefore do not lead to any flux of PV concentration across that surface. Further-
more, the term �Qv? is �Q multiplied by the normal velocity of the surface. That is
to say, the notional velocity associated with the flux normal to the isentropic surface is
equal to the normal velocity of the isentropic surface itself, and so it too provides no
flux of PV concentration across that surface (even through there may well be a mass
flux across the surface). Put simply, the isentropic surface always moves in such a way
as to ensure that there is no flux of PV concentration across it. In our proof of the im-
permeability result in the previous section we used the fact that the potential vorticity
multiplied by density is the divergence of something. In the demonstration above we
used the fact that the terms forcing this are the divergence of something.

* Dynamical choices of PV flux and a connection to Bernoullis’ theorem

If we add a non-divergent vector to the flux, J , then it has no effect on the evolution of
s. This gauge invariance means that the notional velocity, vQ D J=.�Q/ is similarly
non-unique, although it does not mean that there are not dynamical choices for it that
are more appropropriate in given circumstances. To explore this, let us obtain a general
expression for J by starting with the definition of s, so that

@s

@t
D r� �

@!

@t
C! � r

@�

@t

D r� � r �
@v

@t
C r �

�
!
@�

@t

�
D �r � J 0

(4.146)
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where

J 0
D r� �

@v

@t
�
@�

@t
!C r� � r�: (4.147)

The last term in this expression is an arbitrary divergence-free vector. If we choose
� D � and � D B, where B is the Bernoulli function given by B D I C v2=2 C p=�

where I is the internal energy per unit mass, then

J 0
D r� �

�
rB C

@v

@t

�
�!. P� � v � r�/; (4.148)

having used the thermodynamic equation D�=Dt D P� . Now, the momentum equation
may be written, without approximation, in the form (see problems 2.1 and 2.2)

@v

@t
D �! � v C T r�C F � rB (4.149)

where � is the specific entropy (d� D cp d ln � ). Using (4.148) and (4.149) gives

J 0
D �Qv � P�!C r� � F : (4.150)

which is the same as (4.144a). Furthermore, using (4.147) for steady flow,

J D r� � rB: (4.151)

That is, the flux of potential vorticity (in this gauge) is aligned with the intersection
of � - and B-surfaces. For steady inviscid and adiabatic flow the Bernoulli function is
constant along streamlines; that is, surfaces of constant Bernoulli function are aligned
with streamlines, and, because � is materially conserved, streamlines are formed at
intersecting � - and B-surfaces, as in (1.198). In the presence of forcing, this property
is replaced by (4.151), that the flux of PV concentration is along such intersections.

This choice of gauge leading to (4.150) is physical in that it reduces to the true
advective flux v�Q for unforced, adiabatic flow, but it is not a unique choice, nor man-
dated by the dynamics. Choosing � D 0 leads to

J1 D �Qv � P�!C r� � .F � rB/ (4.152)

and using (4.147) this vanishes for steady flow, a potentially useful property.

4.8.2 Summary Remarks

The impermeability result has a number of consequences, some obvious with hindsight,
and it also provides an interesting point of view and diagnostic tool.7 Here, we will just
remark:

? There can be no net transport of potential vorticity across an isentropic surface, and
the total amount of potential vorticity in a volume wholly enclosed by isentropic
surfaces is zero.



Notes and Problems 203

? Thus, and trivially, the amount of potential vorticity contained between two isen-
tropes isolated from the earth’s surface in the northern hemisphere is the negative
of the corresponding amount in the southern hemisphere.

? Potential vorticity flux lines (i.e., lines everwhere parallel to J ) can either close
in on themselves or begin and end at boundaries (e.g., the ground, the ocean sur-
face). However, J may change its character. Thus, for example, at the base of the
oceanic mixed layer J may change from from being a diabatic flux above to an
adiabatic advective flux below. There may be a similar change in character at the
atmospheric tropopause.

? The flux vector J is defined only to within the curl of a vector. Thus the vector
J 0 D J C r � A, where A is an arbitrary vector, is as valid as is J in the above
derivations and diagnostics.

Notes

1 The theorem was first obtained by Silberstein (1896), but it was Bjerknes (1898)
who applied it to meteorological and oceanographic problems and realized its
importance (Thorpe et al. 2003). ‘Bjerknes’ theorem’ is sometimes stated to be
that the evolution of circulation around a circuit is determined by the number of
solenoids passing through any surface bounded by that circuit, but the meaning is
that of (4.52).

Vilhelm Bjerknes (1862–1951) was a physicist and hydrodynamicist who in 1917
moved to the University of Bergen as founding head of the Bergen Geophysical
Institute. Here, late in his career, he did what is probably his most influential work
in meteorology, setting up and contributing to the ‘Bergen School of Meteorology’.
Among other things he and his colleagues were the first to consider, as a practi-
cal proposition, the use of numerical methods — initial data in conjunction with
the fluid equations of motion — to forecast the state of the atmosphere, based
on earlier work describing how that task might be done (Bjerknes 1904). Innac-
curate initial velocity fields compounded with the shear complexity of the effort
ultimately defeated them, but the effort was continued (also unsuccessfully) by L.
F. Richardson (Richardson 1922), before J. Charney, R. Fjortoft and J. Von Neumann
eventually made what may be regarded as the first successful numerical forecast
(Charney et al. 1950). Their success can be attributed to the used of a simplified,
filtered, set of equations and the use of an electronic computer.

Vilhelm’s son, Jacob Bjerknes (1897-1975) was a leading player in the Bergen
school. He was responsible for the now-famous frontal model of cyclones (Bjerk-
nes 1919), and was one of the first to seriously discuss the role of cyclones in
the general circulation of the atmosphere. In collaboration with Halvor Solberg
and Tor Bergeron the frontal model lead to a prescient picture of the life-cycle
of extra-tropical cyclones (see chapter 9), in which a wave grows initially on the
polar front (akin to baroclinic instability with the meridional temperature gradi-
ent compressed to a front, but baroclinic instability theory was not yet devel-
oped), develops into a mature cyclone, occludes and decays. In 1939 Bjerknes
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moved to the U.S. and, largely because of WWII, stayed, joining UCLA and head-
ing its Dept. of Meteorology after its formation in 1945. He developed an interest
in air-sea interactions, and notably proposed the essential mechanism governing
El Niño, a feedback between sea-surface temperatures and the strength of the
trade winds (Bjerknes 1969). [See also Friedman (1989), Cressman (1996), arti-
cles in Shapiro and Grønas (1999), and a memoir by Arnt Eliassen available from
http://www.nap.edu/readingroom/books/biomems/jbjerknes.html.]

2 The result (4.60) is sometimes attributed to Bjerknes (1902), although it was evi-
dently known to Poincaré (1893).

3 The first derivation of the PV conservation law was given for the shallow water
equations Rossby (1936), with a generalization to multiple layers in Rossby (1938).
In the 1936 paper Rossby notes [his eq. (75)] that a fluid column satisfies f C � D

cD where c is a constant and D is the thickness of a fluid column; equivently,
.f C �/=D is a material invariant. In Rossby (1940) this was generalized slightly
to an isentropic layer, in which � is computed using horizontal derivates taken at
constant density or potential temperature. In this paper Rossby also introduces
the expression ‘potential vorticity’, as follows: ‘This quantity, which may be called
the potential vorticity, represents the vorticity the air column would have it it were
brought, isopycnally or isentropically, to a standard latitude (f0) and stretched or
shrunk vertically to a standard depth D0 or weight �0.’ (Rossby’s italics.) That is,

Potential Vorticity D �0 D

�
� C f

D

�
D0 � f0; (4.153)

which follows from his eq. (11), and this is the sense he uses it in that paper.
However, potential vorticity has come to mean the quantity .� C f /=D, which of
course does not have the dimensions of vorticity. We use it in this latter, now
conventional, sense throughout this book. Ironically, quasi-geostrophic potential
vorticity as usually defined does have the dimensions of vorticity.

The expression for potential vorticity in a continuously stratified fluid was given
by Ertel (1942a), and its relationship to circulation was given by Ertel (1942b). It
is now commonly known as the Ertel potential vorticity. Interestingly, in Rossby
(1940) we find the Fermat-like comment ‘It is possible to derive corresponding
results for an atmosphere in which the potential temperature varies continuously
with elevation. . . . The generalized treatment will be presented in another place.’(!)
Opinions differ as to whether Rossby’s and Ertel’s derivations were independent:
Charney (in Lindzen et al. 1990) suggests they were, and Cressman (1996) re-
marks that the origin of the concept of potential vorticity is a ‘delicate one that
has aroused some passion in private correspondences’. In fact, Ertel visited MIT
in autumn 1937 and presumably talked to Rossby and became aware of his work.
The likeliest scenario is that Ertel did know of Rossby’s shallow water theorems,
and that he subsequently provided an independent and significant generalization.
Rossby and Ertel apparently remained on good terms, but further collaboration was
stymied by WWII. They did later publish a short joint paper, with both German and
English versions, describing their conservation theorems (Ertel and Rossby 1949) .
(I thank A. Persson and R. Samelson for some historical details.)

4 Truesdell (1951, 1954) and Obukhov (1962) were early explorers of the conse-
quences of heating and friction on potential vorticity.

5 Schubert et al. (2001) provide more discussion of this topic. They derive a ‘moist
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PV’ that, although not materially conserved, is an extension of the dry Ertel PV to
moist atmospheres and has an impermeability result.

6 Haynes and McIntyre (1987, 1990). See also Danielsen (1990), Schär (1993) [who
obtained the result in (4.151)], Bretherton and Schär (1993) and Davies-Jones (2003).

7 See for example McIntyre and Norton (1990) and Marshall and Nurser (1992). The
latter use J vectors to study the creation and transport of potential vorticity in the
oceanic thermocline.

Further Reading

Truesdell, C. 1954. The Kinematics of Vorticity.
A unique book, written in Truesdell’s inimitable style, on many aspects of vorticity
and with many historical references (and with a generous definition of what consti-
tutes a ‘kinematic’ result).

Batchelor, G. K. 1967. An Introduction to Fluid Dynamics.
This contains an extensive discussion of vorticity and vortices.

Salmon, R. S. 1998. Geophysical Fluid Dynamics.
Chapter 4 contains a brief discussion of potential vorticity, and chapter 7 a longer
discussion of Hamiltonian fluid dynamics, in which the particle relabeling symmetry
that gives rise to potential vorticity conservation is discussed.

Problems

4.1 For the vr vortex, choose a contour of arbitrary shape (e.g., a square) with segments
neither parallel nor perpendicular to the radius, and not enclosing the origin. Show
explicitly that the circulation around the contour is zero. (This problem is a little
perverse.)

4.2 � Vortex stretching and viscosity.
Suppose there is an incompressible swirling flow given in cylindrical coordinates
.r; �; z/:

v D .vr ; v� ; vz / D .�
1

2
˛r; v� ; ˛z/ (P4.1)

Show that this satisfies the mass conservation equation. Show too that vorticity
is only non-zero in the vertical direction. Show that the vertical component of the
vorticity equation contains only the stretching term and that in steady state it is

�
1

2
˛r
@�

@r
D �˛ C �

1

r

@

@r

�
r
@�

@r

�
: (P4.2)

Show that this may be integrated to � D �0 exp.�˛r2=4�/. Thus deduce that there
is a rotational core of thickness ro D 2 .�=˛/1=2, and that the radial velocity field is
given by

v�.r/ D �
1

r

2�

˛
�0 exp

"
�
˛r2

4�

#
C

A

r
(P4.3)

where A D 2��0=˛. What is the swirling velocity field? (Batchelor 1967)

4.3 (a) Beginning with the three-dimensional vorticity equation in a rotating frame of
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reference [either (4.68) or (4.69)] show that in Cartesian coordinates the evolu-
tion of the vertical component of vorticity is given by

D�
Dt

D � .� C f /

�
@u

@x
C
@v

@y

�
C

�
@v

@z

@w

@x
�
@u

@z

@w

@y

�
C

�
@�

@x

@p

@y
�
@�

@y

@p

@x

� (P4.4)

where ‘vertical’ means the direction parallel to the rotation vector.

(b) � Repeat this derivation, but in now spherical coordinates where vertical means
the radial direction, and discuss the differences (if any) between the resulting
equation and (P4.4). Show carefully how the ˇ-term arises, and in particular
that it may be interpreted as arising from tilting term in the vorticity equation.

4.4 � Making use of Kelvin’s circulation theorem obtain an expression for the potential
vorticity that is conserved following the flow (for an adiabatic and unforced fluid)
and that is appropriate for the hydrostatic primitive equations on a spherical planet.
Express this in terms of the components of the spherical coordinate system.

4.5 � In pressure coordinates for hydrostatic flow on the f-plane, the horizontal mo-
mentum equation takes the form

Du

Dt
C f � u D �r� (P4.5)

On taking the curl of this, there appears to be no baroclinic term. Show that Kelvin’s
circulation theorem is nevertheless not in general satisfied, even for unforced, adi-
abatic flow. By appropriately choosing a path on which to evaluate the circulation
obtain an expression for potential vorticity, in this coordinate system, that is con-
served following the flow. Hint: look at the hydrostatic equation.

4.6 Solenoids and sea-breezes.
A land-sea temperature con-
trast of 20 K forces a sea
breeze in the surface "mixed
layer" (potential temperature
nearly uniform with height),
as illustrated schematically.
The layer extends through the
lowest 10% of the mass of the
atmosphere.

T = 300 K
x

z

L = 50 km

T = 280 K

(a) In the absence of dissipation and diffusion, at what rate does the circulation
change on a material circuit indicated? You may assume the horizonal flow is
isobaric, and express your answer in m/s per hour.

(b) Suppose the sea breeze is equilibrated by a nonlinear surface drag of the form

dV

dt
D �

V 2

LF

(P4.6)

with LF D .3 m s�1/.3600 s/. What is the steady speed of the horizontal wind
in the case L = 50 km?
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(c) Suppose that the width of the circulation is determined by a horizontal thermal
diffusion of the form

D�
Dt

D �H

@2�

@x2
(P4.7)

Provide an estimate of �H that is consistent with L D 50 km. Comment on
whether you think the extent of real sea breezes is really determined this way.





This extreme generality whereby the equations of motion apply to the
entire spectrum of possible motions — to sound waves as well as cy-
clone waves — constitutes a serious defect of the equations from the
meteorological point of view.

Jule Charney, On the scale of atmospheric motions, 1948.

CHAPTER 5

Simplified Equations for the Ocean
and Atmosphere

L
ARGE-SCALE FLOW IN THE OCEAN AND ATMOSPHERE is characterized by an approximate

balance in the vertical between the pressure gradient and gravity (hydrostatic bal-
ance), and in the horizontal between the pressure gradient and the Coriolis force

(geostrophic balance). In this chapter we exploit these balances to simplify the Navier-
Stokes equations and thereby obtain various sets of simplified ‘geostrophic equations’.
Depending on the precise nature of the assumptions we make, we are led to the quasi-
geostrophic system for horizontal scales similar to that on which most synoptic activity
takes place and, for very large-scale motion, to the planetary-geostrophic set of equa-
tions. By eliminating unwanted or unimportant modes of motion, in particular sound
waves and gravity waves, and by building in the important balances between flow fields,
these filtered equation sets allow the investigator to better focus on a particular class of
phenomenon and to potentially achieve a deeper understanding than might otherwise be
possible.1

Simplifying the equations in this way relies first on scaling the equations. The idea
is that we choose the scales we wish to describe, typically either on some a priori basis
or by using observations as a guide. We then attempt to derive a set of equations that
is simpler than the original set but that consistently describes motion of the chosen
scale. An asymptotic method is one approach to this, for it systematically tells us which
terms we can drop and which we should keep. The combined approach — scaling plus
asymptotics — has proven enormously useful, but it is useful to always remember two
things: (i) that scaling is a choice; (ii) that the approach does not explain the existence
of particular scales of motion, it just describes the motion that might occur on such
scales.

209
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5.1 GEOSTROPHIC SCALING

I have no satisfaction in formulas unless I feel their numerical magnitude.

William Thomson, Lord Kelvin (1824–1907).

5.1.1 Scaling in the Shallow Water Equations

Postponing the complications that come with stratification, we begin with the shallow
water equations. With the odd exception, we will denote the scales of variables by
capital letters; thus, if L is a typical length scale of the motion we wish to describe, and
U a typical velocity scale, and assuming the scales are horizontally isotropic, we write

.x;y/ � L or .x;y/ D O.L/
.u; v/ � L or .u; v/ D O.U /:

(5.1)

and similarly for other variables. We may then nondimensionalize the variables by
writing

.x;y/ D L.yx; yy/; .u; v/ D U.yu; yv/ (5.2)

where the hatted variables are nondimensional and, by supposition, are O.1/. The vari-
ous terms in the momentum equation then scale as:

@u

@t
C u � ru � f � u D �gr� (5.3a)

U

T

U 2

L
f U g

H
L

(5.3b)

where the r operator acts in the x, y plane and H is the amplitude of the variations
in the surface displacement. (We use � to denote the height of the free surface above
some arbitrary reference level, as in Fig. 3.1. Thus, � D H C ��, where �� denotes
the variation of � about its mean position.)

The ratio of the advective term to the rotational term in the momentum equation
(5.3) is .U 2=L/

ı
.f U / D U=fL; this is the Rossby number, first encountered in chap-

ter 2.2 Using values typical of the large-scale circulation (e.g., from table 2.1) we find
that Ro � 0:1 for the atmosphere and Ro � 0:01 for the ocean, small in both cases. If
we are interested in motion that has the advective timescale T D L=U then we scale
time by L=U so that

t D
L

U
yt ; (5.4)

and the local time derivative and the advective term then both scale as U 2=L, and both
are order Rossby number smaller than the rotation term. Then, either the Coriolis term
is the dominant term in the equation, in which case we have a state of no motion with
�f v D 0, or else the Coriolis force is balanced by the pressure force, and the dominant
balance is

� f v D �g
@�

@x
; (5.5)
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namely geostrophic balance, as encountered in chapter 2. If we make this nontrivial
choice, then the equation informs us that variations in � scale according to

�� � H D
f UL

g
(5.6)

We can also write H as

H D Ro
f 2L2

g
D RoH

L2

L2
d

: (5.7)

where Ld D
p

gH=f is the deformation radius, and H is the mean depth of the fluid.
The variations in fluid height thus scale as

��

H
� Ro

L2

L2
d

; (5.8)

and the height of the fluid may be written as

� D H

 
1 C Ro

L2

L2
d

y�

!
and �� D Ro

L2

L2
d

H y�; (5.9)

where y� is the O.1/ nondimensional value of the surface height deviation.

Nondimensional momentum equation

If we use (5.9) to scale height variations, (5.2) to scale lengths and velocities, and (5.4)
to scale time, then the momentum equation (5.3) becomes

Ro
�
@yu

@yt
C .yu � r/yu

�
C yf � yu D �ry� ; (5.10)

where yf D k yf D kf=f0, where f0 is a representative value of the Coriolis parameter.
(If f is a constant, then yf D 1, but it is useful to to keep it in the equations to indicate
the presence of Coriolis parameter. Also, where the operator r operates on a nondi-
mensional variable then the differentials are taken with respect to the nondimensional
variables yx; yy.) All the variables in (5.10) will be supposed to be of order unity, and the
Rossby number multiplying the local time derivative and the advective terms indicates
the smallness of those terms. By construction, the dominant balance in this equation is
the geostrophic balance between the last two terms.

Nondimensional mass continuity (height) equation

The (dimensional) mass continuity equation can be written

1

H

D�
Dt

C

�
1 C

��

H

�
r � u D 0 (5.11)
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Using (5.2), (5.4) and (5.9) this equation may be written

Ro
�

L

Ld

�2 Dy�

Dyt
C

 
1 C Ro

�
L

Ld

�2

y�

!
r � yu D 0 : (5.12)

Equations (5.10) and (5.12) are the nondimensional versions of the full shallow water
equations of motion. Evidently, some terms in the equations of motion are small and
may be eliminated with little loss of accuracy, and the way this done will depend on the
size of the second nondimensional parameter, .L=Ld/

2. We explore this in sections 5.2
and 5.3.

Froude and Burger numbers

The Froude number may be generally defined as the ratio of a fluid particle speed to a
wave speed. In a shallow-water system this gives

Fr �
Up
gH

D
U

f0Ld
D Ro

L

Ld
: (5.13)

The Burger number3 is a useful measure of scale of motion of the fluid, relative to the
deformation radius, and may be defined by

Bu �

�
Ld

L

�2

D
gH

f 2
0

L2
D

�
Ro
Fr

�2

: (5.14)

It is also useful to define the parameter F � Bu�1, which is like the square of a Froude
number but uses the rotational speed fL instead of U in the numerator.

5.1.2 Geostrophic scaling in the stratified equations

We now apply the same scaling ideas, mutatis mutandis, to the stratified primitive equa-
tions. We use the hydrostatic anelastic equations, which we write as:

Du

Dt
C f � u D �rz�; (5.15a)

@�

@z
D b; (5.15b)

Db

Dt
D 0; (5.15c)

r � .z�v/ D 0: (5.15d)

where b is the buoyancy and z� is a reference density profile. Anticipating that the
average stratification may not scale in the same way as the deviation from it, let us
separate out the contribution of the advection of a reference stratification in (5.15c) by
writing

b D zb.z/C b0.x;y; z; t/: (5.16)
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Then the thermodynamic equation becomes

Db0

Dt
C N 2w D 0 (5.17)

where N 2 � @zb=@z . We then let � D z�.z/ C �0 where z� is hydrostatically balanced
by zb, and the hydrostatic equation becomes

@�0

@z
D b0: (5.18)

Equations (5.17) and (5.18) replace (5.15c) and (5.15b).

Non-dimensional equations

We nondimensionalize the basic variables by supposing that

.x;y/ � L; .u; v/ � U; t �
L

U
; z � H; f � f0; (5.19)

where the scaling variables (capitalized, except for f0) are chosen such that the nondi-
mensional values have values of order unity. We presume that the scales chosen are
such that the Rossby number is small, and Ro D U=.foL/ � 1. In the momentum
equation the pressure term then balances the Coriolis force,

jf � uj � jr�0
j (5.20)

and so the pressure scales as
�0

� ˚ D foUL: (5.21)

Using the hydrostatic relation, (5.21) implies that the buoyancy scales as

b0
� B D

f0UL

H
; (5.22)

and from this we obtain
.@b0=@z/

N 2
� Ro

L2

L2
d

; (5.23)

where Ld � NH=f0 is the deformation radius in the continuosly stratified fluid, anal-
ogous to the quantity

p
gH=f0 the shallow water system, and we use the same symbol

for both. In the continuously stratified system, if the scale of motion is the same as or
smaller than the deformation radius, and the Rossby number is small, then the varia-
tions in stratification are small. The choice of scale is the key difference between the
planetary geostrophic and quasi-geostrophic equations.

Finally, we will initially assume that the appropriate scale of vertical motion is given
by the mass conservation equation,

1

z�

@ z�w

@z
D �

�
@u

@x
C
@v

@y

�
; (5.24)
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and that this implies

w � W D
UH

L
: (5.25)

This scaling may not always hold: if the Coriolis parameter is nearly constant the
geostrophic velocity is nearly horizontally non-divergent and the right-hand side of
(5.24) is small, and W � UH=L. We then estimatew by cross-differentiating geostrophic
balance to obtain the linear geostrophic vorticity equation,

ˇv � f
@w

@z
; (5.26)

which leads to the estimate

w � W D
ˇUH

f0

: (5.27)

If variations in the Coriolis parameter are large and ˇ � f0=L, then (5.27) is the same
as (5.25).

Given the scaling above [and using (5.25)] we nondimensionalize our variables by
setting

.yx; yy/ D L�1.x;y/; yz D H �1z; .yu; yv/ D U �1.u; v/; yt D
U

L
t;

yw D
L

UH
w; yf D f �1

0 f; y� D
�0

f0UL
; yb D

H

f0UL
b0:

(5.28)

The horizontal momentum and hydrostatic equations then become

Ro
Dyu

Dyt
C yf � yu D �r y�; (5.29)

and
@ y�

@yz
D yb: (5.30)

The non-dimensional mass conservation equation is simply

1

z�
r � .z�yv/ D

�
@yu

@yx
C
@yv

@yy
C

1

z�

@ z� yw

@yz

�
D 0: (5.31)

and the nondimensional thermodynamic equation is

f0UL

H

U

L

Dyb

Dyt
C N 2 H U

L
yw D 0; (5.32)

or

Ro
Dyb

Dyt
C

�
Ld

L

�2

yw D 0: (5.33)

The nondimensional primitive equations are summarized in the box on the facing page.
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Nondimensional Primitive Equations

Horizontal momentum: Ro
Dyu

Dyt
C yf � yu D �r y� (NDPE.1)

Hydrostatic:
@ y�

@yz
D yb (NDPE.2)

Mass continuity:
�
@yu

@yx
C
@yv

@yy
C

1

z�

@ z� yw

@yz

�
D 0 (NDPE.3)

Thermodynamic: Ro
Dyb

Dyt
C

�
Ld

L

�2

yw D 0 (NDPE.4)

These equations are written for the anelastic equations. The Boussinesq equations
result if we take z� D 1. The equations in pressure coordinates have a very sim-
ilar form to the Boussinesq equations, but with a slight difference in hydrostatic
equation.

5.2 THE PLANETARY GEOSTROPHIC EQUATIONS

We now use the low Rossby number scalings above to derive equation sets that are
simpler than the original, ‘primitive’, ones. The planetary geostrophic equations are
probably the simplest such set of equations, and we derive these equations first for the
shallow water equations, and then for the stratified primitive equations.

5.2.1 Using the shallow water equations

Informal derivation

The advection and time derivative terms in the momentum equation (5.10) are order
Rossby number smaller than the Coriolis and pressure terms (the term in square brack-
ets is multiplied by Ro), and therefore let us neglect them. The momentum equation
straightforwardly becomes

yf � yu D �ry�: (5.34)

The mass conservation equation (5.12), contains two nondimensional parameters,
Ro and F and we must make a choice as to the relationship of these two numbers. We
will choose

FRo D O.1/; (5.35)

which implies
L2

� L2
d or equivalently Bu � 1: (5.36)

That is to say, we suppose that the scales of motion are much larger than the deforma-
tion scale. Given this choice, all the terms in the mass conservation equation, (5.12),
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are of roughly the same size, and we retain them all. Thus, the shallow water planetary
geostrophic equations are the full mass continuity equation along with geosrophic bal-
ance and a geometric relationship between the height field and fluid thickness, and in
dimensional form these are:

Dh

Dt
C hr � u D 0

f � u D �gr�; � D h C �b

: (5.37a,b)

We emphasize that the planetary geostrophic equations are only valid for scales of
motion much larger than the deformation radius. The height variations are then as large
as the mean height field itself; that is, using (5.8), ��=H D O.1/.

Formal derivation

We assume that:
(i) The Rossby number is small. Ro D U=f0L � 1.
(ii) The scale of the motion is significantly larger than the deformation scale. That is,

(5.35) holds or

F D Bu�1
D

�
L

Ld

�2

� 1 (5.38)

and in particular
FRo D O.1/: (5.39)

(iii) Time scales advectively, so that T D L=U .
The idea is now to expand the nondimensional variables velocity and height fields in
an asymptotic series with Rossby number as the small parameter, substitute into the
equations of motion, and derive a simpler set of equations. It is a nearly trivial exercise
in this instance, and so it illustrates well the methodology. The expansions are

yu D yu0 C Royu1 C Ro2
yu1 C � � � (5.40a)

and
y� D y�0 C Roy�1 C Ro2

y�1 C � � � (5.40b)

Then substituting (5.40a) and (5.40b) into the momentum equation gives

Ro
�
@yu0

@yt
C yu0 � ryu0 C yf � yu1

�
C yf � yu0 D �ry�0 � Ro Œr0y�1�C O.Ro2/ (5.41)

The Rossby number is now an asymptotic ordering parameter; thus, the sum of all the
terms at any particular order in Rossby number must vanish. At lowest order we obtain
the simple expression

yf � yu0 D �ry�0: (5.42)

Note that although f0 is a representative value of f , we have made no assumptions
about the constancy of f . In particular, f is allowed to vary by an order one amount,
provided that it does not become so small that the Rossby number .U=f0L/ is not small.
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The appropriate height (mass conservation) equation is similarly obtained by substi-
tuting (5.40a) and (5.40b) into the shallow water mass conservation equation. Because
FRo D O.1/ at lowest order we simply retain all the terms in the equation to give

FRo
�
@y�0

@t
C yu0 � ry�0

�
C Œ1 C FRoy��r � yu0 D 0: (5.43)

Equations (5.42) and (5.43) are a closed set, and constitute the nondimensional plane-
tary geostrophic equations. The dimensional forms of these equations are just (5.37).

Variation of the Coriolis parameter

Suppose then that f is a constant (f0), or nearly so. Then, from the curl of (5.42),
r � u0 D 0. This means that we can define a streamfunction for the flow and, from
geostrophic balance, the height field is just that streamfunction. That is, in dimensional
form,

 D
g

f0

�; u D �k � r ; (5.44)

and (5.43) becomes

@�

@t
C u � r� D 0; or

@�

@t
C J. ; �/ D 0: (5.45)

where J.a; b/ � axby � aybx . But since � /  the advective term is proportional
to J. ;  /, which is zero. Thus, the flow does not evolve at this order. The planetary
geostrophic equations are uninteresting if the scale of the motion is such that the Cori-
olis parameter is not variable. On earth, the scale of motion on which this parameter
regime exists is rather limited, since the planetary geostrophic equations require that the
scale of motion is also larger than the deformation radius. In the earth’s atmosphere,
any scale that is larger than the deformation radius will be such that the Coriolis pa-
rameter varies significantly over it, and we do not encounter this parameter regime. On
the other hand, in the earth’s ocean the deformation radius is relatively small and there
exists a small parameter regime that has scales larger than the deformation radius but
smaller than that on which the Coriolis parameter varies.4

Potential vorticity

The shallow water PG equations may be written as an evolution equation for an ap-
proximated potential vorticity. A little manipulation reveals that (5.37) are equivalent
to:

DQ

Dt
D 0

Q D
f

h
; f � u D �gr�; � D h C �b

(5.46)

Thus, potential vorticity is a material invariant in the approximate equation set, just as
it is in the full equations. The other variables — the free surface height and the velocity
— are diagnosed from it, a process known as inverting potential vorticity. In the plan-
etary geostrophic approxmation, the inversion proceeds using the approximate form
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f=h rather than the full potential vorticity, .f C �/=h. (We do not, strictly speaking,
approximate potential vorticity, because this is the evolving variable. Rather, we ap-
proximate the inversion relations from which we derive the height and velocity fields.)
The simplest way of all to derive the shallow water PG equations is to begin with the
conservation of potential vorticity, and to note that at small Rossby number the expres-
sion .� C f /=h may be approximated by f=h. Then, noting in addition that the flow
is geostrophic, (5.46) immediately emerges. We will find that every approximate set of
equations that we derive in this chapter may be expressed as the evolution of potential
vorticity, with the other fields being obtained diagnotically from it.

5.2.2 The Planetary Geostrophic Equations for Stratified Flow

To explore the stratified system we will use the (inviscid and adiabatic) Boussinesq
equations of motion with the hydrostatic approximation. The derivation carries through
easily enought using the anelastic or pressure-coordinate equations, but as the PG equa-
tions have more oceanographic importance than atmospheric using the incompressible
equations is quite appropriate.

Simplifying the equations

The nondimensional equations we begin with are (5.29)–(5.33). As in the shallow water
case we expand these in a series in Rossby number, so that:

yu D yu0 C �yu1 C �2
yu2 C � � � ; yb D yb0 C �yb1 C �2yb2 C � � � ; (5.47)

and similarly for yv, yw and y�, where � D Ro, the Rossby number. Substituting into the
nondimensional equations of motion (on page 215) and equating powers of � gives the
lowest order momentum, hydrostatic, and mass conservation equations:

yf � yu0 D �r y�0; (5.48a)

@ y�0

@yz
D yb0; (5.48b)

r � yv0 D 0: (5.48c)

If we also assume that Ld=L D O.1/, then the thermodynamic equation (5.33) becomes�
Ld

L

�2

yw0 D 0: (5.49)

Of course we have neglected any diabatic terms in this equation, which would in general
provide a non-zero right-hand side. Nevertheless, this is not a useful equation, because
the set of the equations we have derived, (5.48)–(5.48c), can no longer evolve: all the
time derivatives have been scaled away! Thus, although instructive, these equations
are not very useful. If instead we assume that the scale of motion is much larger than
the deformation scale then the other terms in the thermodynamic equation will become
equally important. Thus, we suppose that Ld � L2 or, more formally, that L2 D

O.Ro�1/L2
d , and then all the terms in the thermodynamic equation are retained. A

closed set of equations is then given by (5.48) and the thermodynamic equation (5.33).
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Dimensional equations

Restoring the dimensions, dropping the asymptotic subscripts, and allowing for the pos-
sibility of a source term, denoted S Œb0�, in the thermodynamic equation, the planetary-
geostrophic equations of motion are:

Db0

Dt
C wN 2

D S Œb0�

f � u D �r�0

@�0

@z
D b0

r � v D 0

: (5.50)

The thermodynamic equation may also be written simply as

Db

Dt
D Pb (5.51)

where b now represents the total stratification. The relevant pressure, �, is then the pres-
sure that is in hydrostatic balance with b, so that geostrophic and hydrostatic balance
are most usefully written as

f � u D �r�;
@�

@z
D b: (5.52a,b)

Potential vorticity

Manipulation of (5.50) reveals that we can equivalently write the equations as an evo-
lution equation for potential vorticity. Thus, the evolution equations may be written

DQ

Dt
D PQ

Q D f
@b

@z

; (5.53)

where PQ D f @ Pb=@z , and the inversion — i.e., the diagnosis of velocity, pressure and
buoyancy — is carried out using the hydrostatic, geostrophic and mass conservation
equations.

Applicability to the ocean and atmosphere

In the atmosphere a typical deformation radius NH=f is about 1,000 km. The con-
straint that the scale of motion be much larger than the deformation radius is thus quite
hard to satisfy, since one quickly runs out of room on a planet whose equator-to-pole
distance is 10,000 km. Thus, only the largest planetary waves can satisfy the planetary-
geostrophic scaling in the atmosphere and we should then also write the equations in
spherical coordinates.

In the ocean the deformation radius is about 100 km, so there is lots of room for the
planetary-geostrophic equations to hold, and indeed much of the theory of the large-
scale structure of the ocean involves the planetary-geostrophic equations.
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5.3 THE SHALLOW WATER QUASI-GEOSTROPHIC EQUATIONS

We now derive a set of geostrophic equations that is valid (unlike the PG equations)
when the horizontal scale of motion is similar to that of the deformation radius. These
equations are called the quasi-geostrophic equations, and are perhaps the most widely
used set of equations for theoretical studies of the atmosphere and ocean. The specific
assumptions we make are:

(i) The Rossby number is small, so that the flow is in near-geostrophic balance.

(ii) The scale of the motion is not significantly larger than the deformation scale.
Specifically, we shall require that

Ro
�

L

Ld

�2

D O.Ro/: (5.54)

For the shallow water equations, this assumption implies, using (5.9), that the
variations in fluid depth are small compared to its total depth. For the continuously
stratified system it implies, using (5.23), that the variations in stratification are
small compared to the background stratification.

(iii) Variations in the Coriolis parameter are small. That is, jˇLj � jf0j where L is
the length-scale of the motion.

(iv) Time scales advectively; that is, the scaling for time is given by T D L=U .

The second and third of these differ from the planetary geostrophic counterparts: we
make the second assumption because we wish to explore a different parameter regime,
and we then find that the third assumption is necessary to avoid a rather trivial state
(i.e., a leading order balance of ˇv D 0, see the discussion surrounding (5.78)). All
of the assumptions are the same whether we consider the shallow water equations or a
continuously stratified flow, and in this section we consider the former.

5.3.1 Single-layer shallow water quasi-geostrophic equations

The algorithm is, again, to expand the variables yu; yv; y� in an asymptotic series with
Rossby number as the small parameter, substitute into the equations of motion, and
derive a simpler set of equations. Thus we let

yu D yuo C Royu1 C Ro2
yu2 C � � � ; yv D yvo C Royv1 C Ro2

yv2 C � � � (5.55a)

y� D y�0 C Roy�1 C Ro2
y�2 � � � : (5.55b)

We will recognize the smallness of ˇ compared to f0=L by letting ˇ D y̌U=L2, where
y̌ is assumed to be a parameter of order unity. Then the expression f D f0 C ˇy

becomes
yf D f=f0 D yf0 C Ro y̌yy: (5.56)
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where yf0 is the nondimensional value of f0; its value is unity, but it is helpful to denote
it explicitly. Substitute (5.55) into the nondimensional momentum equation (5.10), and
equate powers of Ro. At lowest order we obtain

yf0yu0 D �
@y�0

@yy
; yf0yv0 D

@y�0

@yx
: (5.57)

Cross-differentiating gives
r � yu0 D 0; (5.58)

where, when r operates on a nondimensional variable, the derivatives are taken with
respect to the nondimensional variables yx and yy. From (5.58) we see that the velocity
field is divergence-free, and that this arises from the momentum equation rather than
the mass conservation equation.

The mass conservation equation is also, at lowest order, r � yu0 D 0, and at next
order we have

F
@y�0

@yt
C F yu0 � ry�0 C r � yu1 D 0 (5.59)

This equation is not closed, because the evolution of the zeroth order term involves
evaluation of a first order quantity. For closure, we go to next order in the momentum
equation:

@yu0

@yt
C .yu0 � r/yu0 C y̌yyk � yu0 � yf0k � yu1 D �ry�1 (5.60)

We obtain the vorticity equation by taking the curl of this to give

@y�0

@yt
C .yu0 � r/.y�0 C y̌yy/ D � yf0r � yu1: (5.61)

The term on the right hand side is the vortex stretching term. Only vortex stretching
by the background or planetary vorticity is present, because the vortex stretching by the
relative vorticity is a factor Rossby number smaller. This equation is also not closed.
However, we may use (5.59) to eliminate the divergence term in (5.61) to give

@y�0

@yt
C .yu0 � r/.y�0 C y̌yy/ D yf0

�
F
@y�0

@t
C F yu � ry�0

�
; (5.62)

or
@

@yt
.y�0 � yf0F y�0/C .yu0 � r/.y�0 C y̌y � F y�0/ D 0: (5.63)

The final step is to note that the lowest order vorticity and height fields are related
through geostrophic balance, so that using (5.57) we can write

yu0 D �
@ y 0

@yy
; yv0 D

@ y 0

@yx
; y�0 D r

2 y 0; (5.64)

where y 0 D y�0= yf0 is the streamfunction. Eq. (5.63) can thus be written,

@

@yt
.r2 y 0 � yf 2

0 F y 0/C .yu0 � r/.y�0 C y̌yy � yf 2
0 F y 0/ D 0; (5.65)
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or
D0

Dyt
.r2 y 0 C y̌yy � yf 2

0 F y 0/ D 0; (5.66)

where the subscript ‘0’ on the material derivative indicates that the lowest order velocity,
the geostrophic velocity, is the advecting velocity. Restoring the dimensions, (5.66)
becomes

D
Dt
.r2 C ˇy �

1

L2
d

 / D 0 ; (5.67)

where  D .g=f0/� and the advective derivative is

D
Dt

D
@

@t
C ug

@

@x
C vg

@

@y
D

@

@t
�
@ 

@y

@

@x
C
@ 

@x

@

@y
D

@

@t
C J. ; �/: (5.68)

Noting that L2
d

D gH=f 2
0

, another form of (5.67) is

D
Dt
.� C ˇy �

f0

H
�/ D 0; (5.69)

with � D .g=f0/r
2�. Equations (5.67) and (5.69) are both known as the shallow-water

quasi-geostrophic potential vorticity equation. The quantity

q � � C ˇy �
f0

H
� D r

2 C ˇy �
1

L2
d

 (5.70)

is the shallow water quasi-geostrophic potential vorticity.

Connection to shallow water potential vorticity

The quantity q given by (5.70) is an approximation (except for dynamically unimportant
constant additive and multiplicative factors) to the shallow water potential vorticity. To
see the truth of this statement, begin with the expression for the shallow water potential
vorticity,

Q D
f C �

h
: (5.71)

Now let h D H.1 C �0=H /, where �0 is the perturbation of the free-surface height, and
assume that �0=H is small to obtain

Q �
1

H
.f C �/

�
1 �

�0

H

�
�

1

H

�
f0 C ˇy C � � f0

�
0
H
�
: (5.72)

Because f0=H is a constant it has no effect in the evolution equation, and the quantity
given by

q D ˇy C � � f0

�0

H
(5.73)

is materially conserved. Using geostrophic balance we have � D r2 and �0 D f0 =g

so that (5.73) is identical to (5.70). [Note that only the variation in � are important in
(5.69) or (5.70).]
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The approximations needed to go from (5.71) to (5.70) are the same as those used
in our earlier, more long-winded, derivation of the quasi-geostrophic equations. That
is, we assumed that f itself were nearly constant, and that f0 were much larger than �,
equivalent to a low Rossby number assumption. It was also necessary to assume that
H � �0 to enable the expansion of the height field which, using assumption (ii) on
page 220, is equivalent to requiring that scale of motion not be significantly larger than
the deformation scale. This derivation of the quasi-geostrophic system is completed by
noting that the advection of the potential vorticity should be by the geostrophic velocity
alone, and we recover (5.67) or (5.69).

Two interesting limits

There are two interesting limits to the quasi-geostrophic potential vorticity equation:

(i) Motion on scales much smaller than the deformation radius.
That is, L � Ld and thus Bu � 1 or F � 1. Then (5.66) becomes

@�

@t
C u � r� D 0 or

@�

@t
C J. ; �/ D 0; (5.74)

where � D r2 and J. ; �/ D  x�y �  y�x . Thus, the motion obeys the two-
dimensional vorticity equation. Physically, on small length scales the deviations
in the height field are very small and may be neglected.

(ii) Motion on scales much larger than the deformation radius.
Although scales are not allowed to become so large that Ro.L=Ld/

2 is of order
unity, we may, a posteriori, still have L � Ld, whence the potential vorticity
equation becomes

@�

@t
C u � r� D 0 or

@�

@t
C J. ; �/ D 0: (5.75)

However, because  D g�=f0, the Jacobian term vanishes. Thus, one is left
with a trivial equation that implies there is no advective evolution of the height
field. There is nothing wrong with our reasoning; the mathematics have indeed
pointed out a limit interesting in its uninterestingness. From a physical point of
view, however, such (lack of) motion is likely to be rare, because on such large
scales the Coriolis parameter varies considerably, and we are led to the planetary
geostrophic equations.

In practice, often the most severe restriction of quasi-geostrophy is that variations in
layer thickness are small: what does this have to do with geostrophy? If we scale �
assuming geostrophic balance then � � f UL=g and �=H � Ro.L=Ld/

2. Thus, if Ro
is to remain small, �=H can only be order one if .L=Ld/

2 � 1. That is, the height
variations must occur on a large scale, or we are led to a scaling inconsistency. Put
another way, if there are order-one height variations over a length-scale less than or
order of the deformation scale, the Rossby number will not be small. Large height
variations are allowed if the scale of motion is large, but this contingency is described
by the planetary geostrophic equations.
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Another flow regime

Although perhaps of little terrestrial interest, we can imagine a regime in which the
Coriolis parameter varies fully, but the scale of motion remains no larger than the defor-
mation radius. This parameter regime is not quasigeostrophic, but it gives an interesting
result. Because �0=H � Ro.L=Ld/

2 deviations of the height field are at least order
Rossby number smaller than the reference height and j�0j � H . The dominant balance
in height equation is then

Hr � u D 0; (5.76)

presuming that time still scales advectively. This zero horizontal divergence must re-
main consistent with geostrophic balance

f � u D �gr�; (5.77)

where now f is a fully variable Coriolis parameter. Taking the curl of (i.e., cross-
differentiating) (5.77) gives

ˇv C f r � u D 0; (5.78)

whence, using (5.76), v D 0, and the flow is purely zonal. Although not at all useful
as an evolution equation, this illustrates the constraining effect that differential rotation
has on meridional velocity. This effect may be the cause of the banded, highly zonal
flow on some the the giant planets, and we will revisit this issue in our discussion of
geostrophic turbulence.

5.3.2 The Two-layer and Multi-layer Quasi-Geostrophic Systems

Just as for the one-layer case, the multi-layer shallow water equations simplify to a cor-
responding quasi-geostrophic system in appropriate circumstances. The assumptions
are virtually same as before, although we assume that the variation in the thickness
of each layer is small compared to its mean thickness. The basic fluid system for a
two-layer case is sketched in Fig. 5.1 (and see also Fig. 3.5).

Let us proceed directly from the potential vorticity equation for each layer. We will
also stay in dimensional variables, foregoing a more systematic approach for the sake
of informality and perhaps insight. For each layer the potential vorticity equation is just

DQi

Dt
D 0; Qi D

�i C f

hi

: (5.79)

Let hi D Hi C h0
i where jh0

i j << Hi . The potential vorticity then becomes

Qi �
1

Hi

.�i C f /

�
1 �

h0
i

Hi

�
— variations in layer thickness are small

(5.80a)

�
1

Hi

�
f C �i � f

h0
i

Hi

�
— the Rossby number is small (5.80b)
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Fig. 5.1 A quasi-geostrophic fluid system consisting of two immiscible
fluids of different density. The quantities �0 are the interface displacemens
from the resting basic state, denoted with dashed lines.

�
1

Hi

�
f C �i � f0

h0
i

Hi

�
— variations in Coriolis parameter are small

(5.80c)

Now, because Q appears in the equations only as an advected quantity, it is only the
variations in Coriolis parameter that are important in the the first term on the right-
hand side of (5.80c), and with this all three terms are of the same asymptotic order.
Then, because mean layer thicknesses are constant, we can define the quasi-geostrophic
potential vorticity in each layer by

qi D

�
ˇy C �i � f0

h0
i

Hi

�
; (5.81)

and this will evolve according to Dqi=Dt D 0, where the advective derivative is by the
geostrophic wind. As in the one-layer case, quasi-geostrophic potential vorticity has
different dimensions from the full shallow water potential vorticity.

To obtain a closed set of equations we must obtain an advecting field from the
potential vorticity, and for simplicity we begin with the two-layer case in the Boussinesq
approximation. Because the flow is geostrophically balanced we have, neglecting the
advective derivative in (3.52) on page 139,

f0 � u1 D �gr.h0
1 C h0

2 C �b/ (5.82a)

f0 � u2 D �gr.h0
1 C h0

2 C �b/ � g0
r.h2 C �b/ (5.82b)

where g0 D .�2 � �1/=�1 and �b is the height of any bottom topography, and, because
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variations in the Coriolis parameter are presumptively small, we use a constant value of
f (i.e., f0) on the left-hand side. We thus define the streamfunction for each layer by

 1 D
g

f0

.h0
1 C h0

2 C �b/;  2 D
g

f0

.h0
1 C h0

2 C �b/C
g0

f0

.h0
2 C �b/; (5.83a,b)

and these two equations may be manipulated to give

h0
1 D

f0

g0
. 1 �  2/C

f0

g
 1; h0

2 D
f0

g0
. 2 �  1/ � �b: (5.84a,b)

We note as an aside that the interface displacements are given by

�0
0 D

f0

g
 1; �0

1 D
f0

g0
. 2 �  1/: (5.85a,b)

Using (5.81) and (5.84) the quasi-geostrophic potential vorticity for each layer be-
comes

q1 D ˇy C r
2 1 C

f 2
0

g0H1

. 2 �  1/C
f 2

0

gH1

 1

q2 D ˇy C r
2 2 C

f 2
0

g0H2

. 1 �  2/C f0

�b

H2

: (5.86a,b)

In the rigid-lid approximation the last term in (5.86a) is neglected. The potential vor-
ticity in each layer is just advected by the geostrophic velocity, so that the evolution
equation for each layer is just

@qi

@t
C J. i ; qi/ D 0; i D 1; 2: (5.87)

* Multi-layer model

A multi-layer quasi-geostrophic model may be constructed by a straightforward exten-
sion of the above two-layer procedure (see Fig. 5.2). The quasi-geostrophic potential
vorticity for each layer is still given by (5.81). The pressure field in each layer can be ex-
pressed in terms of the thickness of each layer using (3.47) and (3.48) on page 138, and
by geostrophic balance the pressure is proportional to the streamfunction,  i , for each
layer. Carrying out these steps we obtain (after some algebra, but the general form is re-
vealed by the three-layer equations) the following expression for the quasi-geostrophic
potential vorticity of an interior layer, in the Boussinesq approximation:

qi D ˇy C r
2 i C

f 2
0

Hi

�
 i�1 �  i

g0
i�1

�
 i �  iC1

g0
i

�
; (5.88)

and for the top and bottom layers,

q1 D ˇy C r
2 1 C

f 2
0

H1

�
 2 �  1

g0
1

�
C

f 2
0

gH2

 1; (5.89a)
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Fig. 5.2 A multi-layer quasi-geostrophic fluid system. Layers are numbered
from the top down, i denotes a general interior layer and N denotes the
bottom layer.

qN D ˇy C r
2 N C

f 2
0

HN

�
 N �1 �  N

g0
N �1

�
C

f0

HN

�b: (5.89b)

In these equations Hi is the basic-state thickness of the i ’th layer, and g0
i D g.�iC1 �

�i/=�1. In each layer the evolution equation is (5.87), now for i D 1 � � � N . The
displacements of each interface are given, similarly to (5.85), by

�0
0 D

f0

g
 1; �0

i D
f0

g0
i

. iC1 �  i/: (5.90a,b)

5.3.3 * Non-asymptotic and intermediate models

The form of the derivation of the previous section suggests that we might be able
to improve on the accuracy and range of applicability of the quasi-geostrophic equa-
tions, whilst still filtering gravity waves. For example, a seemingly improved set of
geostrophic evolution equations might be

@qi

@t
C ui � rqi D 0; (5.91)

with

qi D
f C �i

hi

; �i D
@vi

@x
�
@ui

@y
; (5.92a,b)

and with the velocities given by geostrophic balance. In this set of equations, poten-
tial vorticity is not linearized about a resting state [compare (5.92a) with (5.81)], and
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we might also choose to keep the full variation of the Coriolis parameter in (5.82).
Thus, the equation set contains both the planetary geostrophic and quasi-geostrophic
equations. However, the informality of the derivation hides the fact that this is not an
asymptotically consistent set of equations: it mixes asymptotic orders in the same equa-
tion, and good conservation properties are not assured. The set above does not, in fact,
exactly conserve energy. Models that are either more accurate or more general than the
quasi-geostrophic or planetary geostrophic equations yet that still filter gravity waves
are called ‘intermediate models’, and they can be useful and insightful.5

A model that is derived asymptotically will, in general, maintain the conservation
properties of the original set. To see this in a abstract way, suppose that the origi-
nal equations (e.g., the primitive equations) may be written, symbolically and in non-
dimensional form, as

@�

@t
D F.�; �/ (5.93)

where � is a set of variables, F is some operator, and � is a small parameter, like the
Rossby number. Suppose also that this set of equations has various invariants (such as
energy and potential vorticity) that hold for any value of �. The asymptotically-derived
lowest order model (such as quasi-geostrophy) is simply a version of this equation set
valid in the limit � D 0, and therefore it will preserve the invariants of the original set.
These invariants may seem to have a different form in the simplified set: for example,
in deriving the hydrostatic primitive equations from the Navier-Stokes equations the
small parameter is the aspect ratio, and this multiplies the vertical velocity. Thus, in the
limit of zero aspect ratio, and therefore in the primitive equations, the conserved kinetic
energy has contributions only from the horizontal velocity. Indeed, in some cases some
conservation properties may be reduced to trivialities in the simplified set. Also, and on
the other hand, there is nothing to preclude new invariants emerging that hold only in
the limit � D 0, and enstrophy (considered later in this chapter) is one example.6

5.4 THE CONTINUOUSLY STRATIFIED QUASI-GEOSTROPHIC SYSTEM

We now consider the quasi-geostrophic equations for the continuously stratified hydro-
static system. The primitive equations of motion are given by (5.15), and we extract the
mean stratification so that the thermodynamic equation is given by (5.17). We also stay
on the ˇ-plane for simplicity. Readers who wish for a briefer, more informal deriva-
tion may peruse the box on page 235; however, it is important to realize that there is
a systematic asymptotic derivation of the quasi-geostrophic equations, for it is this that
ensures that the resulting equations have good conservation properties, as explained in
section 5.3.3.

5.4.1 Scaling and assumptions

The scaling assumptions we make are just those we made for the shallow water system
on page 220, with a deformation radius now given by Ld D NH=f0. The nondimen-
sionalization and scaling is initially precisely that of section 5.1.2, and so we obtain the
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following non-dimensional equations:

Horizontal momentum: Ro
Dyu

Dyt
C yf � yu D �yrz

y�; (5.94)

Hydrostatic:
@ y�

@yz
D yb; (5.95)

Mass continuity:
�
@yu

@yx
C
@yv

@yy
C

1

z�

@ z� yw

@yz

�
D 0; (5.96)

Thermodynamic: Ro
Dyb

Dyt
C

�
Ld

L

�2

yw D 0: (5.97)

In Cartesian coordinates we may express the Coriolis parameter as

f D f0 C ˇy k (5.98)

where f0 D f0k. The variation of the Coriolis parameter is assumed small (this is
a key difference between the quasi-geostrophic system and the planetary geostrophic
system), and in particular we shall assume that ˇy is approximately the size of the
relative vorticity, and so much smaller than f0 itself.7 Thus,

ˇy �
U

L
; ˇ �

U

L2
; (5.99)

and so we define an O.1/ non-dimensional beta parameter by

y̌ D
ˇL2

U
D

ˇL

Rof0

: (5.100)

From this it follows that if f D f0 C ˇy, the corresponding nondimensional version is

yf D yf0 C Ro y̌yy: (5.101)

where yf D f=f0 and yf0 D f0=f0 D 1.

5.4.2 Asymptotics

We now expand the nondimensional dependent variables in an asymptotic series in
Rossby number, and write

yu D yu0 CRoyu1 C� � � ; y� D y�0 CRoy�1 C� � � ; yb D yb0 CRoyb1 C� � � : (5.102)

Substituting these into the equations of motion, the lowest order momentum equation is
simply geostrophic balance,

yf0 � yu0 D �r y�0 (5.103)

with a constant value of the Coriolis parameter. (For the rest of this chapter we drop the
subscript z from the r operator.) From (5.103) it is evident that

r � yu0 D 0: (5.104)
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Thus, the horizontal flow is, to leading order, non-divergent; this is a consequence of
geostrophic balance, and is not a mass conservation equation. (We henceforth drop the
subscript from the r operator). Using (5.104) in the mass conservation equation, (5.96),
gives

@

@yz
.z� yw0/ D 0; (5.105)

which implies that if w0 is zero somewhere (e.g., at a solid surface) then w0 is zero
everywhere (essentially the Taylor-Proudman effect). Thus, a nontrivial result of the
scaling is that the lowest order vertical velocity is zero. A physical way of saying
this is that the scaling estimate W D UH=L is an overestimate of the size of the
vertical velocity, because even though @w=@z � �r � u, the horizontal divergence of
the geostrophic flow is small if f is nearly constant and jr �uj � U=L. We might have
anticipated this from the outset, and scaled w differently, perhaps using the geostrophic
vorticity balance estimate, w � ˇUH=f0 D RoUH=L as the scaling factor for w, and
the end result would be the same.

At next order the momentum equation is

D0yu0

Dyt
C y̌yyk � yu0 C yf � yu1 D �r y�1; (5.106)

where D0=Dt D @=@yt C .yu0 � r/, and the next order mass conservation equation is

rz � .z�yu1/C
@

@z
.z� yw1/ D 0: (5.107)

From (5.97), the lowest order thermodynamic equation is just�
Ld

L

�2

yw0 D 0 (5.108)

provided that, as we have assumed, the scales of motion are not sufficiently large that
Ro.L=Ld/

2 D O.1/. (This is a key difference between quasi-geostrophy and planetary
geostrophy.) At next order we obain an evolution equation for the buoyancy, and this is

D0
yb0

Dyt
C yw1

�
Ld

L

�2

D 0: (5.109)

The potential vorticity equation

To obtain a single evolution equation for lowest order quantities we eliminate w1 be-
tween the thermodynamic and momentum equations. Cross differentiating the first or-
der momentum equation (5.106) gives the vorticity equation,

@y�0

@yt
C .yu0 � r/y�0 C yv0

y̌ D � yf0rz � yu1: (5.110)
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(In dimensional terms, the divergence on the right-hand side is small, but is multiplied
by the large term f0, and their product is the same order as the terms on the left-hand
side.) Using the mass conservation equation (5.107), (5.110) becomes

D0

Dyt
.�0 C yf / D

yf0

z�

@

@z
.w1 z�/ (5.111)

Combining (5.111) and (5.109) gives

D0

Dyt
.�0 C yf / D �

yf0

z�

@

@yz

�
D0

Dyt
.F z�b0/

�
(5.112)

where F � .L=Ld/
2. The right-hand side of this equation is

@

@yz

 
D0

yb

Dyt

!
D

D0

Dyt

 
@yb

@yz

!
C
@yu0

@yz
� ryb: (5.113)

The second term on the right-hand side vanishes identically using the thermal wind
equation

k �
@yu0

@yz
D �

1

yf0

rb0; (5.114)

and so (5.112) becomes

D0

Dyt

"
�o C yf C

yf0

z�

@

@z
.z�Fb0/

#
D 0; (5.115)

or, using the hydrostatic equation,

D0

Dyt

"
�0 C yf C

yf0

z�

@

@z

�
z�F
@�0

@z

�#
D 0: (5.116)

Since the lowest-order horizontal velocity is divergence-free, we can define a stream-
function  such that

yu0 D �
@ y 

@y
; yv0 D

@ y 

@x
(5.117)

where also, using (5.103), �0 D yf0
y . The vorticity is then given by y�0 D r2 y and

(5.116) becomes a single equation in a single unknown, to wit

D0

Dyt

"
r

2 y C y̌yy C

yf 2
0

z�

@

@yz

 
z�F
@ y 

@yz

!#
D 0 ; (5.118)

where the material derivative is evaluated using yu0 D k � r y . This is the nondimen-
sional form of the quasi-geostrophic potential vorticity equation, one of the most im-
portant equations in dynamical meteorology and oceanography. In deriving it we have
reduced the Navier Stokes equations, which are six coupled nonlinear partial differen-
tial equations in six unknowns (u; v; w;T;p; �) to a single (albeit nonlinear) first-order
partial differential equation in a single unknown.8
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Dimensional equations

The dimensional version of the equation may be written,

Dq

Dt
D 0;

q D r
2 C f C

f 2
0

z�

@

@z

�
z�

N 2

@ 

@z

� : (5.119a,b)

where only the variable part of f (e.g., ˇy) is relevant in the second term on the right-
hand side of the expression for q. The quantity q is known as the quasi-geostrophic
potential vorticity. It is analogous to the exact (Ertel) potential vorticity (see section 5.5
for more about this), and it is conserved when advected by the horizontal geostrophic
flow. All the other dynamical variables may be obtained from potential vorticity as
follows:

(i) Streamfunction [2nd line of (5.119)]
(ii) Velocity: u D k � r Œ� r? D �r � .k /�.
(iii) Relative vorticity: � D r2 .
(iv) Perturbation pressure: � D f0 .
(v) Perturbation buoyancy: b0 D f0@ =@z .

The length-scale Ld D NH=f0, emerges naturally from the QG dynamics. It is the
scale at which buoyancy and relative vorticity effects contribute equally to the potential
vorticity, and is called the deformation radius; it is analogous to the quantity

p
gH=f0

arising in shallow water theory. In the upper ocean, with N � 10�2 s�1, H � 103 m,
and f0 � 10�4 s�1, then Ld � 100 km. At high latitudes the ocean is much less
stratified and N 2 � 10�3 s�1, and f is somewhat larger, and the deformation radius
is correspondingly smaller. In the atmosphere, with N � 10�2 s�1, H � 104 m, then
Ld � 1000 km. It is this order of magnitude difference in the deformation scales that
accounts for a great deal of the quantitative difference in the dynamics of the ocean
and atmosphere. If we take the limit Ld ! 1 then the stratified quasi-geostrophic
equations reduce to

Dq

Dt
t D 0; q D r

2
C f (5.120)

This is the two-dimensional vorticity equation, identical to (4.77). The high stratifica-
tion of this limit has suppressed all vertical motion, and variations in the flow become
confined to the horizontal plane. Finally, we note that it is typical in quasi-geostrophic
applications to omit the prime on the buoyancy perturbations, and write b D f0@ =@z ;
however, we will keep the prime in this chapter.

5.4.3 Buoyancy advection at the surface

The solution of the elliptic equation in (5.119) requires vertical boundary conditions on
 at the ground and at the top of the atmosphere, and these are given by use of the
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thermodynamic equation. For a flat, slippery, rigid surface the vertical velocity is zero
so that the thermodynamic equation may be written

Db0

Dt
D 0; b0

D f0

@ 

@z
: (5.121)

We apply this at the ground and at the tropopause, treating the latter as a lid on the lower
atmosphere. In the presence of friction and topography the vertical velocity is not zero,
but is given by

w D rr
2 C u � r�b (5.122)

where the first term represents Ekman friction (with the constant r proportional to the
thickness of the Ekman layer) and the second term represents topographic forcing. The
boundary condition becomes

@

@t

�
@ 

@z

�
C u � r

�
@ 

@z
C N 2�b

�
C N 2rr

2 D 0; (5.123)

where all the fields are evaluated at z D 0 and z D H , the height of the lid. Thus,
the quasi-geostrophic system is characterized by the horizontal advection of potential
vorticity in the interior and the advection of buoyancy at the boundary. Instead of a
lid at the top, then in a compressible fluid like the atmosphere we may suppose that all
disturbances tend to zero as z ! 1.

* A potential vorticity sheet at the boundary

Rather than regarding buoyancy advection as providing the boundary condition, it is
sometimes useful to think of there being a very thin sheet of potential vorticity just
above the ground and another just below the lid, specifically with a vertical distribution
proportional to ı.z ��/ or ı.z �H C�/. The boundary condition (5.121) or (5.123) can
be replaced by this, along with the condition that there are no variations of buoyancy at
the boundary and @ =@z D 0 at z D 0 and z D H .9

To see this, we first note that the differential of a step function is a delta function.
Thus, a discontinuity in @ =@z at a level z D z1 is equivalent to a delta function in
potential vorticity there:

q.z1/ D

"
f 2

0

N 2

@ 

@z

#z1C

z1�

ı.z � z1/: (5.124)

Now, suppose that the lower boundary condition, given by (5.121), has some arbitrary
distribution of buoyancy on it. We can replace this condition by the simpler condition
@ =@z D 0 at z D 0, provided we also add to our definition of potential vorticity a term
given by (5.124) with z1 D �. This term is then advected by the horizontal flow, as are
the other contributions. A buoyancy source at the boundary must similarly be treated as
a sheet of potential vorticity source in the interior. Any flow with buoyancy variations
over a horizontal boundary is thus equivalent to a flow with uniform buoyancy at the
boundary, but with a spike in potential vorticity adjacent to the boundary. The concep-
tual advantage is that now everything is expressed in terms of potential vorticity and its
advection. However, in practice there may be little to be gained, because the boundary
terms must still be included in any particular calculation that is to be performed.



234 Chapter 5. Simplified Equations for Ocean and Atmosphere

5.4.4 Quasi-geostrophy in pressure coordinates

The derivation of the quasi-geostrophic system in pressure coordinates is very similar
to that in height coordinates, with the main difference coming at the boundaries, and
we give only the results. The starting point is the primitive equations in pressure coor-
dinates, (2.152). In pressure coordinates quasi-geostrophic potential vorticity is found
to be

q D f C r
2 C
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f 2

0

S2

@ 

@p

!
; (5.125)

where  is the streamfunction and
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(5.126)

where z� is a reference profile, a function of pressure only. In log-pressure coordinates,
with Z D �H ln p, this may be written
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; (5.127)

where

N 2
Z D S2

� p
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�2
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�� d z�

dZ
(5.128)

is the buoyancy frequency and �� D exp.�z=H /. Temperature and potential tempera-
ture are related to the streamfunction by

T D �
f0p
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D
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; (5.129a)
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The surface boundary condition again is derived from the thermodynamic equation.
This is, in log-pressure coordinates,

D
Dt

�
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@Z

�
C

N 2
Z

f0

W D 0: (5.130)

where W D DZ=Dt . This is not the real vertical velocity, w, but it is related to it by

w D
f0

g
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@t
C

RT

gH
W: (5.131)

Thus, choosing H D RT .0/=g, we have, at Z D 0,
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w; (5.132)

where
w D u � r�b C rr

2 : (5.133)

This differs from the expression in height coordinates only by the second term in the
local time derivative. In applications where accuracy is not the main issue the simpler
boundary condition D.@Z /=Dt D 0 is sometimes used.
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Informal Derivation of Stratified QG Equations

For simplicity we use the Boussinesq equations, but similar derivations could be given
for the anelastic equations or in pressure coordinates. The first ingredient is the vertical
component of the vorticity equation, (4.76); in the Boussinesq version (or the pressure
coordinate or anelastic versions) there is no baroclinic term and:

D3

Dt
.� C f / D �.� C f /

�
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@x
C
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@y

�
C

�
@u

@z

@w

@y
�
@v

@z

@w

@x

�
: (QG.1)

We now apply the assumptions on page 220. The advection and the vorticity on the
left-hand side become geostrophic, but we keep the horizontal divergence (which is
purely ageostrophic, and therefore small) on the right-hand side where it is multiplied
by the big term f . Furthermore, because f is nearly constant we replace it with f0

except where it is differentiated. The tilting term is smaller than the advection terms by
the ratio ŒU W =.HL/�

ı
ŒU 2=L2� D ŒW =H �

ı
ŒU=L� � 1, because w is small (@w=@z

being equal to the divergence of the ageostrophic velocity). We therefore neglect it, and
given all this (QG.1) becomes

Dg

Dt
.�g C f / D �f0

�
@u

@x
C
@v

@y

�
D f0

@w

@z
; (QG.2)

where the second equality uses mass continuity and Dg=Dt D @=@t C ug � r.

The second major ingredient is the thermodynamic equation,

D3b=Dt D 0: (QG.3)

The stratification is assumed nearly constant, so we write b D zb.z/ C b0.x;y; z; t/

where zb is the basic state buoyancy. Furthermore, because w is small it only advects
the basic state, and with N 2 D @zb=@z (QG.3) becomes

Dgb0=Dt C wN 2
D 0: (QG.4)

Hydrostatic and geostrophic wind balance enable us to write the geostrophic velocity,
vorticity, and buoyancy in terms of streamfunction  [D p=.f0�0/]:

ug D k � r ; �g D r
2 ; b0

D f0@ =@z : (QG.5)

The quasi-geostrophic potential vorticity equation is obtained by eliminating w be-
tween (QG.2) and (QG.4), and this gives

Dgq

Dt
D 0; q D �g C f C

@

@z

�
f0b0

N 2

�
: (QG.6)

This equation is the Boussinesq version of (5.119), and using (QG.5) it may be ex-
pressed entirely in terms of the streamfunction, with Dg �=Dt D @=@t C J. ; �/. The
vertical boundary conditions, at z D 0 and z D H say, are given by (QG.4) with w D 0,
with straightforward generalizations if topography or friction are present.
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Fig. 5.3 The two-level quasi-geostrophic system with a flat bottom and
rigid lid at which w D 0.

5.4.5 The Two-Level Quasi-Geostrophic System

The quasi-geostrophic system derived above has continuous variation in the vertical
(and horizontal, of course). By finite-differencing the continuous equations we can ob-
tain a multi-level model, and a crude but important special case of this is the two-level
model, which allows only two-degrees of freedom in the vertical. To obtain the equa-
tions of motion one way to proceed is to take a crude finite difference of the continuous
relation between potential vorticity and streamfunction given in (5.119b), but here as
a variation we will apply the quasi-geostrophic vorticity equation to levels 1 and 2,
and the thermodynamic equation in the center. In the Boussinesq case (or in pressure
coordinates, with a slight reinterpretation of the meaning of the symbols) we have

q D � C f C
@

@z

�
f0b0

N 2

�
(5.134)

where b0 D f0@b0=@z . In the case with a flat bottom and rigid lid at the top (and
incorporating topography is an easy extension) the boundary condition of w D 0 is
satisfied by D@z =Dt D 0 at the top and bottom, and then an obvious finite differencing
of (5.134) in the vertical (see Fig. 5.3) gives

q1 D �1 Cf C
2f 2

0

N 2H1H
. 2 � 1/; q2 D �2 Cf C

2f 2
0

N 2H2H
. 1 � 2/: (5.135)

In atmospheric problems it is common to choose H1 D H2, whereas in oceanic prob-
lems we might choose to have a thinner upper layer, representing the flow above the
main thermocline. Note that the boundary conditions of w D 0 at the top and bottom
are already taken care of (5.135): they are incorporated into the definition of the poten-
tial vorticity — a finite-difference analog of the delta-function construction of section
5.4.3. At each level the potential vorticity is advected by the streamfunction so that the
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evolution equation for each level is:

Dqi

Dt
D
@qi

@t
C ui � qi D

@qi

@t
C J. i ; qi/ D 0; i D 1; 2: (5.136)

Models with more than two levels can be easily constructed by extending the finite-
differencing procedure.

Connection to the layered system

The two-level expressions, (5.135), have an obvious similarity with the two-layer ex-
pressions, (5.86). Noting that N 2 D @yb=@z and that b D �gı�=�0 it is natural to
let

N 2
D �

g

�0

�1 � �2

H=2
D

g0

H=2
: (5.137)

With this identification we find that (5.135) becomes

q1 D �1 C f C
f 2

0

g0H1

. 2 �  1/; q2 D �2 C f C
f 2

0

g0H2

. 1 �  2/: (5.138)

These expressions are identical with (5.86) in the flat-bottomed, rigid lid case. This is an
example of the similarity between layered models and the finite difference representa-
tion of the continuous representation, and indeed a multi-layered system with n layers,
is equivalent to a finite-difference representation with n levels. However, in the pan-
theon of quasi-geostrophic models the two-level and two-layer models hold preeminent
places.

5.5 * QUASI-GEOSTROPHY AND ERTEL POTENTIAL VORTICITY

When using the shallow water equations, quasi-geostrophic theory could be naturally
developed beginning with the expression for potential vorticity. Is such an approach
possible for the stratified primitive equations? The answer is yes, but the approach is
more complicated, as we see.

5.5.1 Using height coordinates

We begin with the expression for potential vorticity in the Boussinesq hydrostatic equa-
tions [c.f., (4.127)]

Q D
�
.vx � uy/bz � vz�x C uz�y C f �z

�
; (5.139)

where the x;y; z subscripts denote derivatives. Without approximation, we write the
stratification as b D zb.z/C b0.x;y; z; t/, and the potential vorticity becomes

Q D Œf0N 2�C Œ.ˇy C �/N 2
C f0b0

z �C Œ.ˇy C �/b0
z � .vzb0

x � uzb0
y/�; (5.140)

where, under quasi-geostrophic scaling, the terms in square brackets are in decreasing
order of size. Neglecting the third term, and taking the velocity and buoyancy fields
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to be in geostrophic and thermal wind balance, we can write the potential vorticity as
Q � zQ C Q0, where zQ D f0N 2 and

Q0
D .ˇy C �/N 2

C f0b0
z D .ˇy C r

2 /N 2
C f 2

0

@ 

@z
: (5.141)

The potential vorticity evolution equation is then

DQ0

Dt
C w

@ zQ

@z
D 0: (5.142)

The vertical advection is important only in advecting the basic state potential vorticity
zQ. Thus, after dividing by N 2, (5.142) becomes

@q�

@t
C ug � rq� C

w

N 2

@yq

@z
D 0; (5.143)

where

q� D .ˇy C �/C
f0

N 2
b0

z : (5.144)

This is the approximation to the (perturbation) Ertel potential vorticity in the quasi-
geostrophic limit. However, it is not the same as the expression for the quasi-geostrophic
potential vorticity, (5.119) and, furthermore, (5.143) involves a vertical advection. (Thus,
we might refer to the expression in (5.119) as the ‘quasi-geostrophic pseudo-potential
vorticity’, but the prefix ‘quasi-geostrophic’ alone normally suffices.) We can derive
(5.119) (taking z� D 1 for simplicity) by eliminating w between (5.143) and the quasi-
geostrophic thermodynamic equation @b0=@t C ug � rb0 C w@zb=@z D 0.

5.5.2 Using isentropic coordinates

An illuminating path from Ertel potential vorticity to the quasi-geostrophic equations
goes by way of isentropic coordinates.10 We begin with the isentropic expression for
Ertel potential vorticity for an ideal gas,

Q D
f C �

�
(5.145)

where � D �@p=@� is the thickness density (which we will just call the thickness),
and in adiabatic flow potential vorticity is advected along isopycnals. We now employ
quasi-geostrophic scaling to derive an approximate equation set from this. First assume
that variations in thickness are small compared to the reference state, so that

� D z�.�/C � 0; j� 0
j � j� j: (5.146)

and similarly for pressure and density. Assuming also that the variations in Coriolis
parameter are small, (5.145) becomes

Q �

�
f0

z�

�
C

�
1

z�
.� C ˇy/ �

f0

z�

� 0

z�

�
: (5.147)
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We now use geostrophic and hydrostatic balance to express the terms on the right-hand
side in terms of a single variable, noting that the first term does not vary along isentropic
surfaces. Hydrostatic balance is

@M

@�
D ˘ (5.148)

where M D cpT C gz and ˘ D cp.p=pR/
� . Writing M D zM .�/ C M 0 and

˘ D z̆ .�/C˘ 0, where zM and z̆ are hydrostatically balanced reference profiles, we
obtain

@M 0

@�
D ˘ 0

�
d z̆

dp
p0

D
1

� z�
p0 (5.149)

where the last equality follows using the equation of state for an ideal gas and z� is a
reference profile. The perturbation thickness field may then be written as

� 0
D �
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@�

�
z��
@M 0

@�

�
: (5.150)

Geostrophic balance is f0 � u D �r�M 0 where the velocity, and the horizontal deriva-
tives, are along isentropic surfaces. This enables us to define a flow streamfunction
by

 �
M 0

f0

: (5.151)

and we can then write all the variables in terms of  :
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(5.152)

Using (5.147) (5.151) and (5.152), the quasi-geostrophic system in isentropic coordi-
nates may be written

Dq

Dt
D 0

q D f C r
2
� C

f 2
0
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@

@�

�
z��
@ 

@�

� : (5.153a,b)

where the advection of potential vorticity is by the geostrophically balanced flow, along
isentropes. The variable q is an approximation to the second term in square brackets in
(5.147), multiplied by z� ,

Projection back to height coordinates

We can recover the height or pressure coordinate quasi-geostrophic systems by project-
ing (5.153) onto height coordinates. This is straightforward because, by assumption,
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the isentropes in a quasi-geostrophic system are nearly flat. Recall that [c.f., (2.144)] a
transformation between vertical coordinates may be effected by
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; (5.154)

but the second term is O.Ro/ smaller than the first because, under quasi-geostrophic
scaling, isentropic slopes are small. Thus r2

�
 in (5.153b) may be replaced by r2

p or
r2

z . The vortex stretching term in (5.153) becomes
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(5.155)

where S2 is given by (5.126). The expression for the quasi-geostrophic potential vor-
ticity in isentropic coordinates is thus approximately equal to the quasi-geostrophic po-
tential vorticity in pressure coordinates. This near-equality holds because the isentropic
expression, (5.153b), does not contain a component proportional to the mean stratifica-
tion: the second term on the right-hand side (5.147) is the only dynamcally relevant one,
and its evolution along isentropes is mirrored by the evolution along isobaric surfaces
of quasi-geostrophic potential vorticity in pressure coordinates.

5.6 * ENERGETICS OF QUASI-GEOSTROPHY

If the quasi-geostrophic set of equations is to represent a real fluid system in a physically
meaningful way, then it should have a consistent set of energetics. In particular, total
energy should be conserved, and there should be analogs of kinetic and potential energy
and conversion between the two. We now show that this is indeed the case, using the
Boussinesq set as an example.

Let us write the governing equations as a potential vorticity equation in the interior,
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@z

 
f 2
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!#
C ˇ
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@x
D 0; 0 < z < 1; (5.156)

and buoyancy advection at the boundary,

D
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@z

�
D 0; z D 0; 1: (5.157)

For lateral boundary conditions we may assume that  D constant, or impose
periodic conditions. If we multiply (5.156) by � and integrate over the domain, using
the boundary conditions, we easily find
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f 2
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�2
#

dV: (5.158a,b)

The term involving ˇ makes no direct contribution to the energy budget. Eq. (5.158)
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is the fundamental energy equation for quasi-geostrophic motion, and it states that in
the absence of viscous or diabatic terms the total energy is conserved. The two terms
in (5.158b) can be identified as the kinetic and available potential energy of the flow,
where

KE D
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Z
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.r /2 dV; APE D
1

2
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dV: (5.159a,b)

The available potential energy may also be written as

APE D
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dV; (5.160)

where Ld is the deformation radius NH=f0 and we may choose H such that z � H .
At some scale L the ratio of the kinetic energy to the potential energy is thus, roughly,

KE
APE

�
L2

d

L2
: (5.161)

For scales much larger than Ld the potential energy dominates the kinetic energy, and
contrariwise.

5.6.1 Conversion between APE and KE

Let us return to the vorticity and thermodynamic equations,

D�
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D f
@w

@z
(5.162)

where � D r2 , and
Db0

Dt
C N 2w D 0 (5.163)

where b0 D f0@ =@z . From (5.162) we form a kinetic energy equation namely
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From (5.163) we form a potential energy equation, namely
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Thus, the conversion from APE to KE is represented by

d
dt

KE D �
d
dt

APE D

Z
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f0w
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@z
dV: (5.166)

Because the buoyancy is proportional to @ =@z , when warm fluid rises there is a cor-
relation between w and @ =@z and available potential energy is converted to kinetic
energy. Whether such a phenomenon occurs depends of course on the dynamics of the
flow; however, such a conversion is in fact a common feature of geophysical flows, and
in particular of baroclinic instability, as we see in chapter 6.
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5.6.2 Energetics of two-layer flows

Two-layer or two-level flows are an important special case. For layers of equal thickness
let us write the evolution equations as
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D 0 (5.167a)
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where k2
d
=2 D .2f0=NH /2. On multiplying these two equations by � 1 and � 2 re-

spectively and integrating over the horizontal domain, the advective term in the material
derivatives and the beta term all vanish, and we obtain
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d
dt

Z
A

�
1

2
.r 2/

2
�

1

2
k2

d 2. 1 �  2/

�
dA D 0: (5.168b)

Adding these gives
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�
dA D 0: (5.169)

This is the energy conservation statement for the two layer model. The first two terms
represent the kinetic energy and the last term the available potential energy.

Energy in the baroclinic and barotropic modes

A useful partitioning of the energy is between the energy in the barotropic and baroclinic
modes. The barotropic streamfunction,  is the vertically averaged streamfunction and
the baroclinic mode is the difference between the streamfunctions in the two layers.
That is, for equal layer thicknesses,

 �
1

2
. 1 C  2/; � �

1

2
. 1 �  2/ (5.170)

Substituting (5.170) into (5.169) reveals that

d
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Z
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h
.r /2 C .r�/2 C k2

d�
2
i

dx D 0 (5.171)

The energy density in the barotropic mode is thus just .r /2, and that in the baro-
clinic mode is .r�/2 C k2

d
�2. This partitioning will prove particularly useful when we

consider baroclinic turbulence in chapter 9.
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5.6.3 Enstrophy conservation

Potential vorticity is advected only by the horizontal flow, and thus it is materially
conserved on the horizontal surface at every height and

Dq

Dt
D
@q

@t
C u � rq D 0: (5.172)

Furthermore, the advecting flow is divergence-free so that u � rq D r � .uq/. Thus,
on multiplying (5.172) by q and integrating over a horizontal domain, A, using either
no-normal flow or periodic boundary conditions, we straightforwardly obtain

d yZ

dt
D 0; yZ D

1

2

Z
A

q2 dA: (5.173)

The quantity yZ is known as the enstrophy, and this is conserved at each height as well
as, naturally, over the entire volume.

The enstrophy is just one of an infinity of invariants in quasi-geostrophic flow. Be-
cause the potential vorticity of a fluid element is conserved, any function of the potential
vorticity must be a material invariant and we can immediately write

D
Dt

F.q/ D 0: (5.174)

To verify that this is true, simply note that (5.174) implies that .dF=dq/Dq=Dt D 0,
which is true by virtue of (5.172). (However, by virtue of the material advection, the
function F.q/ need not be differentiable function in order for (5.174) to hold.) Each of
the material invariant corresponding to different choices of F.q/ has a corresponding
integral invariant; that is

d
dt

Z
A

F.q/ dA D 0: (5.175)

The enstrophy invariant corresponds to choosing F.q/ D q2; it plays a particularly
important role because, like energy, it is a quadratic invariant, and its presence pro-
foundly alters the behaviour of two-dimensional and quasi-geostrophic flow compared
to three-dimensional flow (see section 8.3).

5.7 ROSSBY WAVES

Consider now what wave motion is possible in the quasi-geostrophic shallow water sys-
tem. We will consider a flat-bottomed ˇ-plane system, for which the unforced, inviscid
quasi-geostrophic equation of motion is

D
Dt
.� C f �  =L2

d/ D 0; (5.176)

where � D r2 is the vorticity and  the streamfunction.
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Infinite deformation radius

Consider first the simple case in which the scale of motion is much less than the defor-
mation scale. For flow on the ˇ-plane the equation of motion is then

D
Dt
.� C ˇy/ D 0: (5.177)

Expanding the material derivative gives
@�

@t
C u � r� C ˇv D 0 or
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C J. ; �/C ˇ
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@x
D 0: (5.178)

The idea now is to linearize this equation — that is, to suppose that the flow con-
sists of a time-independent component (the ‘basic state’) plus a perturbation, with the
perturbation being small compared to the mean flow. Such a mean flow must satisfy
the time independent equation of motion, and purely zonal flow will do this, and for
simplicity we choose a flow with no meridional dependence. To achieve all this we let

 D 	 C  0.x;y; t/ (5.179)

where 	 D �Uy and j 0j � j	 j. (The symbol U now represents the mean zonal flow,
not a magnitude for scaling purposes.) Substitute (5.179) into (5.178) and neglect the
nonlinear terms involving products of  0 to give
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D 0; (5.180)

or
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2 0
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@r2�0
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C ˇ

@ 0

@x
D 0: (5.181)

Solutions to this equation may be found in the form of a plane-wave,

 0
D Re z ei.kxCly�!t/; (5.182)

where Re indicates the real part of the function (and this will sometimes be omitted
if no ambiguity is so-caused). The amplitude of the oscillation is given by z and the
phase by kx C ly � !t , where k and l are the x- and y-wavenumbers and ! is the
frequency of the oscillation.

Substituting (5.182) into (5.181) yields

Œ.�! C Uk/.K2/C ˇk� z D 0; (5.183)

where K2 D k2 C l2. For nontrivial solutions this implies

! D Uk �
ˇk

K2
: (5.184)

This is the dispersion relation for Rossby waves. For reference, the phase speed and
group velocity in the x-direction are11
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!
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D U �

ˇ

K2
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g �
@!

@k
D U C

ˇ.k2 � l2/

.k2 C l2/2
: (5.185a,b)

The velocity U provides a uniform translation, and doppler shifts the frequency. Note
that current speed required to hold the waves of a particular wavenumber stationary
(i.e., cx

p D 0) is U D ˇ=K2.
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Finite deformation radius

For finite deformation radius the basic state 	 D �Uy is still a solution of the origi-
nal equations of motion, but the potential vorticity corresponding to this state is Q D

Uy=L2
d C ˇy and its gradient is rQ D .ˇ C U=L2

d/j. The linearized equation of
motion is thus,�
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Substituting  0 D z ei.kxCly�!t/ we obtain the dispersion relation,
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: (5.187)

The corresponding phase speed and group velocity in the x-direction are
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(5.188a,b)
where kd D 1=Ld . The uniform velocity field now no longer provides just a sim-
ple Doppler shift of the frequency. From (5.188a) the waves are stationary when
K2 D K2

s � ˇ=U ; that is, the current speed required to hold waves of a particular
wavenumber stationary is U D ˇ=K2. However, this is not simply the magnitude of
the phase speed of waves of that wavenumber in the absence of a current — this is given
by
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p D �
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K2
s C k2

d
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1 C k2
d
=K2

s

: (5.189)

Why is there a difference? It is because the current does not just provide a uniform
translation, but, for finite Ld, also modifies the basic potential vorticity gradient. The
basic state height field �0 is sloping, that is �0 D �.f0=g/	y, and the ambient potential
vorticity field increases with y, that is Q D .ˇCU=L2

d/y. Thus, the basic state defines
a preferred frame of reference, and the problem is not Galilean invariant.12

5.7.1 Rossby waves in two layers

Now consider the dynamics of the two-layer model, linearized about a state of rest. The
two (coupled) linear equations describing the motion in each layer are
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where F1 D f 2
0
=g0H1 and F2 D f 2

0
=g0H2. By inspection these may be transformed

into two uncoupled equations: one equation is obtained by multiplying the first by F2
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and the second by F1 and adding, and the other is obtained by subtracting the two.
Then, defining

 D
F1 2 C F2 1

F1 C F2

; � D
1

2
. 1 �  2/; (5.191a,b)

(think ‘� for temperature’), (5.190) become

@

@t
r

2 C ˇ
@ 

@x
D 0; (5.192a)

@

@t

h
.r2

� k2
d /�

i
C ˇ

@�

@x
D 0: (5.192b)

where now we define kd D .F1 C F2/
1=2. The internal radius of deformation for this

problem is the inverse of this, namely

Ld D k�1
d D

1

f0

�
g0H1H2

H1 C H2

�1=2

: (5.193)

The variables  and � are the vertical normal coordinates for the two layer model;
they oscillate independently of each other, and the solution in physical space is just their
superposition. [For the continuous equations the analogous eigenfunctions are given by
solutions of @z Œ.f

2
0
=N 2/@z�� D �2�, where eigenvalue, �, is inversely proportional

tos the deformation radius.] The equation for  is identical to that of the single-layer,
rigid-lid model, namely (5.181) with U D 0, and its dispersion relation is just

! D �
ˇk

K2
: (5.194)

The barotropic mode corresponds to synchronous, depth-independent, motion in the
two layers with a flat interface — the interface slope is given by 2f0�=g

0, proportional
to the amplitude of the baroclinic mode. The dispersion relation for the baroclinic mode
is

! D �
ˇk

K2 C k2
d

: (5.195)

The mass transport associated with this mode is identically zero, since from (5.191) we
have

 1 D  C
2F1�

F1 C F2

;  2 D  �
2F2�

F1 C F2

; (5.196a,b)

and this implies
H1 1 C H2 2 D .H1 C H2/ : (5.197)

The left-hand side is proportional to the total mass transport, which is evidently associ-
ated with the barotropic mode.

The deformation radius only affects the baroclinic mode. For scales much smaller
than the deformation radius, k2

x; k
2
y � k2

d
, the baroclinic mode obeys the same equation

as the barotropic mode so that

@

@t
r

2� C ˇ
@�

@x
D 0: (5.198)
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Fig. 5.4 Left: The dispersion relation for barotropic (!t , solid line) and
baroclinic (!c , dashed line) Rossby waves in the two-layer model, calculated
using (5.194) and (5.195) with ky D 0, plotted for both positive and negative
zonal wavenumbers and, consequently, frequencies. The x-wavenumber is
nondimensionalised by kd , and the frequency is non-dimensionalized by
ˇ=kd . Right: the corresponding zonal group and phase velocities, cg D

@!=@kx and cp D !=kx , with superscript ‘t’ or ‘c’ for the barotropic or
baroclinic mode. The velocities are non-dimensionalized by ˇ=k2

d
. The

phase velocities are always negative, or westward. The group veloctity of
these barotropic waves is always eastward, but long baroclinic waves have
a westward group velocity. For very short waves, k2 � k2

d
, the baroclinic

and barotropic velocities coincide and their phase and group velocities are
equal and opposite.

For a purely baroclinic mode F2 1 C F1 2 D 0 and using this in (5.198) gives

@

@t
r

2 i C ˇ
@ i

@x
D 0; i D 1; 2: (5.199)

That is to say, the two layers are uncoupled from each other. At the other extreme,
for very long baroclinic waves the relative vorticity is unimportant. The phase speed
is negative, westward, for both baroclinic and barotropic Rossby waves but the group
velocity may be positive for sufficiently long waves — see Fig. 5.4. In the figure the
frequencies, velocities and wavenumbers are all non-dimensional. With a deformation
radius of 50 km, typical for the mid-laititude ocean, then a nondimensional frequency
of unity corresponds to a dimensional frequency of 5 � 10�7 s�1 or a period of about
100 days. In an atmosphere with a deformation radius of 1000 km a non-dimensional
frequency of unity corresponds to 1 � 10�5 s�1 or a period of about 7 days. Nondi-
mensional velocities of unity correspond to respective dimensional velocities of about
0:25 m s�1 (ocean) and 10 m s�1 (atmosphere).
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5.8 ROSSBY WAVES IN STRATIFIED QUASI-GEOSTROPHIC FLOW

5.8.1 Preliminaries

Let us now consider the dynamics of linear waves in stratified quasi-geostophic flow,
with a resting basic state. Our emphasis will be on the basic dynamics; in chapter ??
we explore the role of Rossby waves in a more realistic setting.

The quasi-geostrophic equations, linearized about a state of rest, are: (i) the poten-
tial vorticity equation,

@

@t

�
r

2 C
1

z�.z/

@

@z

�
z�.z/F.z/

@ 

@z

��
C ˇ

@ 

@x
D 0; (5.200)

which describes flow in the interior; and (ii) the thermodynamic equation with w D 0,

@

@t

�
@ 

@z

�
D 0; (5.201)

which describes flow at a flat, rigid surface such as the ground and, with somewhat
less justification, at the tropopause where the higher static stability of the stratosphere
inhibits vertical motion. An alternative upper boundary condition is to require that per-
turbations decay to zero as z ! 1. If the ground is not flat or if friction provides a
vertical velocity by way of an Ekman layer the boundary condition must be correspond-
ingly modified, but we will stay with the simplest case here and apply (5.201) at z D 0

and z D H . The variable z� is the density profile of the basic state, and F.z/ D f 2
0
=N 2,

the square of the inverse Prandtl ratio, N=f0. In the Boussinesq approximation z� D �0,
a constant.

5.8.2 Wave motion

For simplicity we will consider motion on a horizontally doubly-periodic Cartesian ˇ-
plane. We seek solutions of the form

 D Re z .z/ei.kxCly�!t/ (5.202)

where z .z/ will determine the vertical structure of the waves. The case of a zonal
channel is an easy step from this — assume a horizontal variation proportional of the
form sin ly. The case of a sphere is more complicated but introduces no truly new
physical phenomena.

Substituting (5.202) into (5.200) gives

!

"
�K2 z .z/C

1

z�

@

@z

 
z�F.z/

@ z 

@z

!#
� ˇk z .z/ D 0: (5.203)

Now, if z satisfies
1

z�

@

@z

 
z�F.z/

@ z 

@z

!
D �� z (5.204)
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then the equation of motion becomes

� !
h
K2

C �
i

z � ˇk z D 0; (5.205)

and the dispersion relation follows, namely

! D �
ˇk

K2 C �
: (5.206)

Equation (5.204), which is to be solved with boundary conditions at the vertical limits
of the domain, constitues an eigenvalue problem for the vertical structure. The resulting
eigenvalues, � are proportional to the inverse of the squares of the deformation radii
for the problem and the eigenfunctions are the vertical structure functions.

A simple example

Consider the case in which F.z/ and z� are constant, and in which the domain is confined
between two rigid surfaces at z D 0 and z D H . Then the eigenvalue problem for the
vertical structure is

F
@2 z 

@z2
D �� z (5.207a)

with boundary conditions of

@ y 

@z
D 0; at z D 0; 1: (5.207b)

There is a sequence of solutions to this, namely

z n.z/ D cos.n z=H /; n D 1; 2 : : : (5.208)

with corresponding eigenvalues

�n D n2 F 2

H 2
D .n /2

�
f0

NH

�2

; n D 1; 2 : : : : (5.209)

This last expression may be used to define the deformation radii for this problem, the
successive radii being given by

�n �
NH

n f0

: (5.210)

The first deformation radius is the same as the expression obtained by dimensional
analysis NH=f , except for a factor of  . Definitions of the deformation radii both with
and without the factor of   are common in the literature, and neither is obviously more
correct. In this book we shall, unless noted, use a definition of deformation radius that
does not include the factor of  , so that the first deformation radius in a problem with
uniform stratification is given by NH=f , equal to  =

p
�1.

In addition to these baroclinic modes, it is clear that the case with n D 0, that is
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with z D 1, is also a solution of (5.207) for any F.z/. Using (5.206) and (5.209) the
dispersion relation becomes

! D �
ˇk

K2 C .n /2.f0=NH /2
; n D 0; 1; 2 : : : (5.211)

and, of course, the horizontal wavenumbers k and l are also quantized in a finite domain.
The dynamics of the barotropic mode are independent of height and independent of
the stratification of the basic state, and so these Rossby waves are identical with the
Rossby waves in a homogeneous fluid contained between two flat rigid surfaces. The
structure of the baroclinic modes, which in general depends on the structure of the
stratification, becomes increasingly complex as the vertical wavenumber n increases.
This increasing complexity naturally leads to a certain delicacy, making it rare that they
can be unambiguosly identified in nature.

5.8.3 More general stratification

In the more general case, for example with profiles of N.z/ taken from observations in
the atmosphere or ocean, it is not possible to analytically calculate the vertical normal
modes, but they may be calculated numerically. The results of one such calculation
are given in Fig. 5.5. The case with uniform stratification reproduces cosine modes,
whereas in the more realistic case the modes tend to have highest amplitude in the upper
ocean, where the stratification is strongest — a result is typical of oceanic profiles.13

The eigenproblem for a realistic atmospheric profile is more complex because of
the lack of a rigid lid at the top of the atmosphere.14 Nevertheless, the problem again
succumbs to a numerical approach.

Notes

1 The phrase ‘quasi-geostrophic’ seems to have been introduced by Durst and Sut-
cliffe (1938) and the ideas used in Sutcliffe’s development theory of baroclinic sys-
tems (Sutcliffe 1939, 1947). The first systematic derivation of the quasi-geostrophic
equations based on scaling theory was given by Charney (1948). The planetary
geostrophic equations were used by Robinson and Stommel (1959) and Welander
(1959) in studies of the thermocline (and were first known as the ‘thermocline
equations’), and were put in the context of other approximate equation sets by
Phillips (1963).

2 Carl-Gustav Rossby (1898-1957) played a dominant role in the development of
dynamical meteorology in the early and middle parts of the 20th century, and his
work permeates all aspects of dynamical meteorology today. Perhaps the most
fundamental non-dimensional number in rotating fluid dynamics, the Rossby num-
ber, is named for him, as is the perhaps the most fundamental wave, the Rossby
wave. He also discovered the conservation of potential vorticity (later generalised
by Ertel) and contributed important ideas to atmospheric turbulence and the the-
ory of air masses. Swedish born, he studied first with V. Bjerknes before taking
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Fig. 5.5 (a): two density profiles [1C .�0 ��/=�0], a fairly realistic oceanic
case with enhanced stratification in the upper ocean (profile A), and uni-
form stratification (profile B). (b) and (c): the corresponding four baroclinic
modes [eigenfunctions of .@=@z/ŒN 2.z/@�=@z � D �2� using N 2 calculated
from the profiles and with boundary conditions of @�=@z D 0 at top and
bottom]. With profile B the eigenmodes are cosines, whereas in the whereas
in profile A they have largest amplitude in the upper ocean. The number of
zero crossings is equal to the mode number.

a position in Stockholm in 1922 with the Swedish Meteorological Hydrologic Ser-
vice and receiving a ‘Licentiat’ from the University of Stockholm in 1925. Shortly
thereafter he moved to the United States, joining the Government Weather Bureau,
a precursor of NOAA’s National Weather Service. In 1928 he moved to MIT, play-
ing an important role in developing the meteorology department there, while still
maintaining connections with the Weather Bureau. In 1940 he moved to the Uni-
versity of Chicago, where he similarly helped develop meteorology there. In 1947
he became director of the newly-formed Institute of Meteorology in Stockholm, and
subsequently divided his time between there and the United States. Thus, as well
as his scientific contributions, he played a very influential role in the institutional
development of the field.

3 Burger (1958)

4 This is the so-called ‘frontal geostrophic’ regime (Cushman-Roisin 1994).

5 Numerical integrations of the potential vorticity equation using (5.92), and per-
forming the inversion without linearizing potential vorticity, do in fact indicate im-
proved accuracy over either the quasi-geostrophic or planetary geostrophic equa-
tions (Mundt et al. 1997). In a similar vein, McIntyre and Norton (2000) show how
useful potential vorticity inversion can be, and Allen et al. (1990a,b) demonstrate
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the high accuracy of certain intermediate models. Certainly, asymptotic correct-
ness should not be the only criterion used in constructing a filtered model, because
the parameter range in which the model is useful may be too limited. (Note the dif-
ference between extending the parameter range in which a filtered model is useful,
and going to higher asymptotic order accuracy in a given parameter regime, as in
Allen (1993) and Warn et al. (1995).) Using Hamiltonian mechanics it is possible to
derive equations that span different asymptotic regimes, and that also have good
conservation properties (Salmon 1983, Allen et al. 2002).

6 I thank T. Warn for a conversation on this matter.

7 There is a difference between the dynamical demands of the quasi-geostrophic
system in requiring ˇ to be small, and the geometric demands of the Cartesian
geometry. On earth the two demands are similar in practice. But without dynamical
inconsistency we may imagine a Cartesian system in which ˇy � f , and indeed
this is common in idealized, planetary geostrophic, models of the large-scale ocean
circulation.

8 Atmospheric and oceanic sciences are sometimes thought of as not being ‘beau-
tiful’ in the same way as are some branches of theoretical physics. Yet surely
quasi-geostrophic theory, and the quasi-geostrophic potential vorticity equation,
are quite beautiful, both for their austerity of description and richness of be-
haviour.

9 Bretherton (1966). Schneider et al. (2003) look at the non QG extension. The
equivalence between boundary conditions and delta-function sources is a common
feature of elliptic problems, and is analogous to the generation of electromagnetic
fields by point charges. It is sometimes exploited in the numerical solution of
elliptic equations, both as a simple way to include non-homogeneous boundary
conditions and, using the so-called capacitance matrix method, to solve problems
in irregular domains (e.g., Hockney 1970, Pares-Sierra and Vallis 1989).

10 Charney and Stern (1962). See also Vallis (1996).

11 We won’t make use of group velocity until chapter 12. Treatments of group velocity
are given by, in order of increasing generality, Pedlosky (1987), Lighthill (1978) and
Whitham (1974), among others.

12 This non-Doppler effect also arises quite generally, even in models in height coor-
dinates. See White (1977) and problem 5.9.

13 For example Kundu et al. (1975).

14 Chapman and Lindzen (1970) have argued that for a realistic atmospheric strati-
fication profiles no baroclinic modes of a resting atmosphere exist. For our pur-
poses, the importance of such a Rossby wave analysis is not that any particular
form of waves do or do not exist, but that it provides a foundation for more com-
plete analyses with non-resting basic states, leading into the theory of baroclinic
instability discussed in chapter 6, as well as an understanding of the propagation
of Rossby waves.

Further Reading

Majda, A. 2003. Introduction to PDEs and waves for the atmosphere and ocean.
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Provides a compact, mathematical introduction to various equation sets and their
properties, including quasi-geostrophy.

Problems

5.1 In the derivation of the quasi-geostrophic equations, geostrophic balance leads to
the lowest order velocity being divergence-free — that is, rz � u0 D 0. It seems
that this can also be obtained from the mass conservation equation at lowest order.
Is this a coincidence? Suppose that the Coriolis parameter varied, and that the
momentum equation yielded r2 � u0 ¤ 0. Would there be an inconsistency?

5.2 � In the planetary geostrophic approximation, obtain an evolution equation and
corresponding inversion conditions that conserves potential vorticity and that is ac-
curate to one higher order in Rossby number than the usual shallow water planetary
geostrophic equations.

5.3 Consider the flat-bottomed shallow water potential vorticity equation in the form

D
Dt

� C f

h
D 0 (P5.1)

(a) Suppose that deviations of the height field are small compared to the mean
height field, and that the Rossby number is small (so j�j � f ). Further consider
flow on a ˇ-plane such that f D f0 C ˇy where jˇyj � f0. Show that the
evolution equation becomes

D
Dt

�
� C ˇy �

f0�

H

�
D 0 (P5.2)

where h D H C � and j�j � H . Using geostrophic balance in the form f0u D

�g@�=@y , f0v D g@�=@x , obtain an expression for � in terms of �.
(b) Linearize (P5.2) about a state of rest, and show that the resulting system sup-

ports two-dimensional Rossby waves that are similar to those of the usual two-
dimensional barotropic system. Discuss the limits in which the wavelength is
much shorter or much longer than the deformation radius.

(c) Linearize (P5.2) about a geostrophically balanced state that is translating uni-
formly eastwards. Note that this means that:

u D U C u0 � D �.y/C �0 (P5.3)

where �.y/ is in geostrophic balance with U . Obtain an expression for the form
of �.y/.

(d) Obtain the dispersion relation for Rossby waves in this system. Show that their
speed is different from that obtained by adding a constant U to the speed of
Rossby waves in part (b), and discuss why this should be so. (That is, why is the
problem not Galilean invariant?)

5.4 Obtain solutions to the two-layer Rossby wave problem by seeking solutions of the
form

 1 D Re z 1ei.kxxCkyy�!t/;

 1 D Re z 2ei.kxxCkyy�!t/:
(P5.4)

Substitute (P5.4) directly into (5.190) to obtain the dispersion relation, and show
that the ensuing two roots correspond to the baroclinic and barotropic modes.
Show that the baroclinic mode has no net (vertically integrated) transport associated
with it, and that the motion of the barotropic is independent of depth.
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5.5 � (Not difficult, but messy.) Obtain the vertical normal modes and the dispersion
relationship of the two-layer quasi-geostrophic problem with a free surface, for
which the equations of motion linearized about a state of rest are

@

@t

h
r

2 1 C F1. 2 �  1/
i

C ˇ
@ 1

@x
D 0 (P5.5a)

@

@t

h
r

2 2 C F2. 1 �  2/ � Fext 1

i
C ˇ

@ 2

@x
D 0: (P5.5b)

where Fext D f0=.gH2/.

5.6 Given the baroclinic dispersion relation

! D �
ˇkx

k2
x C k2

d

; (P5.6)

for what value of kx is the x-component of group velocity the largest (i.e., the most
positive), and what is the corresponding value of the group velocity?

5.7 Beginning with the vorticity and thermodynamic equations for a two layer model,
obtain an expression for the conversion between available potential energy and
kinetic energy in the two-layer model. Show that these expressions are consistent
with the conservation of total energy as expressed by (5.169). Show also that the
expression might be considered to be a simple finite-difference approximation to
(5.166).

5.8 � The vertical normal modes are the eigenfunctions of

1

z�

@

@z

�
z�

N 2

@	

@z

�
D �� 	 (P5.7)

along with boundary conditions on 	.z/. Numerically obtain the vertical normal
modes for some or all of the following profiles, or others of your choice.

(a) z� D 1, N 2.z/ D 1, 	z D 0 at z D 0; 1. (This is profile ‘b’ of Fig. 5.5. An analytic
solution is possible.)

(b) z� D 1 and an N 2.z/ profile corresponding to a density profile similar to profile
‘a’ of Fig. 5.5 (e.g., an exponential), and 	z D 0 at z D 0; 1.

(c) An isothermal atmosphere, with 	z D 0 at z D 0; 1. (Similar to (i), except that
z� varies with height.)

(d) An isothermal atmosphere, now assuming that  ! 0 as z ! 1.
(e) An fluid with N 2 D 1 for 0 < z < 0:5 and N 2 D 4 for 0:5 < z < 1, with

continuous b, and with 	z D 0 at z D 0; 1.

In the atmospheric cases it is easiest to do the problem first with z� D 1 (the Boussi-
nesq case) and then extend the problem (and the code) to the compressible case.
Then remove the upper boundary to larger and larger values of z.

5.9 � The non-Doppler effect arises relatively straightforwardly in the layered formula-
tion of the quasi-geostrophic equations. Show that it also arises when the problem
is formulated using geometric height as the vertical coordinates, using the modified
quasi-geostrophic set of White (1977). In particular, obtain the dispersion relation
for stratified quasi-geostrophic flow with a resting basic state. Then obtain the
dispersion relation for the equations linearized about a uniformly translating state,
paying attention to the lower boundary condition, and note the conditions under
which the waves are stationary. Discuss.
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5.10 Using log-pressure as a vertical coordinate, show that the linearized lower boundary
condition equivalent to (??) is

@

@t

 
@ 0

@Z
�

N 2

g
 0

!
C u

@

@x

@ 0

@Z
� v0 @u

@Z
D �

N 2

f0

�
u
@hb

@x
C ˛r

2 0

�
: (P5.8)

In particular, show how first term on left-hand side arises.
Optional (�): Show that essentially the same lower boundary condition arises us-
ing the geometric-height as a vertical coordinate in the modified quasi-geostrophic
system of White (1977).

5.11 Derive the quasi-geostrophic potential vorticity equation in isopycnal coordinates
for a Boussinesq fluid. Show that the isopycnal expression for potential vorticity is
approximately equal to the corresponding expression in height coordinates, care-
fully stating any assumptions that may be necessary to show this.

5.12 (a) Obtain the dispersion relationship for free Rossby waves for the single-layer
quasi-geostrophic potential vorticity equation with linear drag [i.e., for (13.10)
with yh D 0].

(b) Obtain the dispersion relation for free Rossby waves in the linearized two-layer
potential vorticity equation with linear drag in the lowest layer.

(c) � Obtain the dispersion relation for free waves in the continuously stratified
quasi-geostrophic equations, with the effects of linear drag appearing in the
thermodynamic equation for the lower boundary condition. That is, the bound-
ary condition at z D 0 is @t .@z / C N 2w D 0 where w D ˛� where ˛ is
a constant. You may make the Boussinesq approximation and assume N 2 is
constant if you like.
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Ceci n’est pas une pipe.

René Magritte (1898–1967), title of painting.

CHAPTER 6

Barotropic and Baroclinic Instability

W
HAT HYDRODYNAMIC STATES ACTUALLY OCCUR IN NATURE? Any flow must clearly
be a solution of the equations of motion, and there are, in fact, many steady
solutions to the equations of motion — a purely zonal flow, for example.

However, steady solutions do not abound in nature because, in order to persist, they
must be stable to those small perturbations that inevitably arise. Indeed, all the steady
solutions that are known for the large-scale flow in the earth’s atmosphere and ocean
have been found to be unstable.

There are a myriad forms of hydrodynamic instability, but our focus in this chapter
is on barotropic and baroclinic instability. The latter is at the heart of the large- and
mesoscale motion in the atmosphere and ocean — it gives rise to atmospheric weather
systems, for example. Barotropic instability is important to us for two reasons. First,
it is important in its own right as an instability mechanisms for jets and vortices, and
is a driving mechanism in both two- and three-dimensional turbulence. Second, many
problems in barotropic and baroclinic instability are formally and dynamically similar,
so that the solutions and insight we obtain in the often simpler problems in barotropic
instability are often useful in the baroclinic problem.

6.1 KELVIN-HELMHOLTZ INSTABILITY

To introduce the issue, we will first consider, rather informally, perhaps the simplest
physically interesting instance of a fluid-dynamical instability — that of a constant-
density flow with a shear perpendicular to the fluid’s mean velocity, this being an exam-
ple of a Kelvin-Helmholtz instability.1 Let us consider two fluid masses of equal density,
with a common surface at y D 0, moving with velocities �U and CU in the x-direction
respectively (Fig. 6.1). There is no variation in the basic flow in the z-direction (into
the page), and we will assume this is also true for the instability (these restrictions are

259
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Figure 6.1 A simple basic state giving
rise to shear-flow instability. The veloc-
ity profile is discontinuous, the density
uniform.

�→

�
→

y = 0

y

x

not essential). This flow is clearly a solution of the the Euler equations. What happens
if the flow is perturbed slightly? If the perturbation is initially small then even if it
grows we can, for small times after the onset of instability, neglect the nonlinear in-
teractions in the governing equations because these are the squares of small quantities.
The equations determining the evolution of the initial perturbation are then the Euler
equations linearized about the steady solution. Thus, denoting perturbation quantities
with a prime and basic state variables with capital letters, for y > 0 the perturbation
satisfies

@u0

@t
C U

@u0

@x
D �rp0; r � u0

D 0 (6.1a,b)

and a similar equation hold for y < 0, but with U replaced by �U . Given periodic
boundary conditions in the x-direction, we can represent the perturbations by a Fourier
expansion of the form

�0.x;y; t/ D Re
X

k

z�k.y; t/ exp.ikx/; (6.2)

where � is any field variable (e.g., pressure or velocity), and Re denotes that only the
real part should be taken. (Typically we use tildes over variables to denote Fourier-like
modes, and we will often omit the marker ‘Re’.) Because (6.1a) is linear, the Fourier
modes do not interact and we may confine attention to just one. Taking the divergence
of (6.1a), the left-hand side vanishes and the pressure satisfies Laplace’s equation

r
2p0

D 0 (6.3)

For y > 0, this has solutions in the form

p0
D Re zp1eikx�kye� t : (6.4)

where we assume that the time dependence has the form e� t . In general the growth-
rate � is complex: if it has a positive real component, the amplitude of the perturbation
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will grow and there is an instability; if � has a non-zero imaginary component, then
there will be oscillatory motion, and there may of course be both oscillatory motion
and an instability. To obtain the dispersion relationship, we consider the y-component
of (6.1a), namely (for y > 0)

@v0
1

@t
C U

@v0
1

@x
D �

@p0
1

@y
(6.5)

Substituting a solution of the form v0
1

D zv1 exp.ikx C � t/ yields, with (6.4),

.� C ikU /zv1 D k zp1 (6.6)

But the velocity normal to the discontinuity is, at the discontinuity, nothing but the rate
of change of the discontinuity itself. That is, at the interface y D C0

v1 D
@�

@t
C U

@�

@x
; (6.7)

or
zv1 D .� C ikU /z�: (6.8)

where � is the displacement of the interface from its equilibrium state. Using this in
(6.6) gives

.� C ikU /2z� D k zp1: (6.9)

The above few equations pertain to motion on the y > 0 side of the interface. Similar
reasoning on the other side gives (at y D �0)

.� � ikU /2z� D �k zp2: (6.10)

But at the interface p1 D p2 (because pressure must be continuous). The dispersion
relationship then emerges from (6.9) and (6.10), giving

�2
D k2U 2: (6.11)

This equation has two roots, one of which is positive. Thus, the amplitude of the per-
turbation grows exponentially, like e� t , and the flow is unstable. The instability itself
can be seen in the natural world when billow clouds appear wrapped up into spirals: the
clouds are acting as tracers of fluid flow, indicating a shear in the atmosphere.

6.2 INSTABILITY OF PARALLEL SHEAR FLOW

We now consider a little more systematically the instability of parallel shear flows, such
as are illustrated in Fig. 6.2.2 This is a classic problem in hydrodynamic stability theory,
and there are two particular reasons for our own interest:

(i) The instability is an example of barotropic instability, which abounds in the ocean
and atmosphere. Loosely, barotropic instability arises when a flow is unstable by
virtue of its shear, with gravitational and buoyancy effects being secondary.
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(ii) The instability is in many ways analagous to baroclinic instability, which is the
main instability giving rise to weather systems in the atmosphere and similar phe-
nomena in the ocean.

We will define these instabilities more precisely later on. For now, we will restrict
attention to two dimensional, incompressible flow. This illustrates the physical mech-
anisms in the most transparent way, in part because it allows for the introduction of
a streamfunction and the automatic satisfaction of the mass conservation equation. In
fact, for parallel two-dimensional shear flows the most unstable disturbances are two-
dimensional ones.3

The vorticity equation for incompressible two-dimensional flow is just

D�
Dt

D 0: (6.12)

We suppose the basic state to be a parallel flow in the x-direction that may vary in
y-direction. That is

u D U.y/i: (6.13)

The linearized vorticity equation is then

@�0

@t
C U

@�0

@x
C v0 @Z

@y
D 0 (6.14)

where Z D �Uy . Because the mass conservation equation has the simple form

@u0

@x
C
@v0

@y
D 0; (6.15)

we may introduce a streamfunction  such that u0 D �@ 0=@y , v0 D @ 0=@x and
�0 D r2 0. The linear vorticity equation is then

@r2 0

@t
C U

@r2 0

@x
C
@Z
@y

@ 0

@x
D 0: (6.16)

The coefficients of the x-derivatives are not themselves functions of x. Thus we may
seek solutions that are harmonic functions (sines and cosines) in the x-direction, but
the y-dependence must remain arbitrary at this point. Thus, anticipating our interest in
wavelike or exponentially growing solutions, we seek solutions of the form,

 0
D Re z .y/eik.x�ct/: (6.17)

We envision that the solution will be a superposition of all wavenumbers, but since the
problem is linear the waves do not interact and it suffices to consider them separately.
The variable c determines the stability, or otherwise, of the solution. If c is purely
real then c is the phase speed of the wave; if c has a positive imaginary component
then the wave will grow exponentially, and any disturbance that has a projection onto
wavenumber k is thus unstable.
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Fig. 6.2 Left: example of smooth velocity profile — both the velocity
and vorticity are continuous. Right: example piecewise continuous profile
— the velocity and vorticity may have finite discontinuities. In general,
it is impossible to analytically solve the linear eigenvalue problem (6.19)
that determines stability for a continuous profile. However, solving the
problem for a piecewise linear profile is often possible, for then the solution
of the eigenvalue problem is effected by solving a finite number of jump
conditions at the discontinuities.

From (6.17) we have

u0
D zu.y/eik.x�ct/

D � z yeik.x�ct/; (6.18a)

v0
D zv.y/eik.x�ct/

D ik z eik.x�ct/; (6.18b)

�0
D z�.y/eik.x�ct/

D .�k2 z C z yy/e
ik.x�ct/; (6.18c)

where the y subscript denotes a derivative. Using (6.18) and (6.17) in (6.14) gives

.U � c/. z yy � k2 z / � Uyy
z D 0 ; (6.19)

sometimes known as Rayleigh’s equation. It is the linear vorticity equation for distur-
bances to parallel shear flow, and in the presence of a ˇ-effect it generalizes slightly
to

.U � c/. z yy � k2 z /C .ˇ � Uyy/ z D 0 : (6.20)

6.2.1 Piecewise linear flows

Although Rayleigh’s equation is linear and has a simple form, it is nevertheless quite
difficult to analytically solve for an arbitrary smoothly varying profile. It is simpler to
consider piecewise linear flows, in which Uy is a constant over some interval, with U

or Uy changing abruptly to another value at a line of discontinuity, as illustrated in Fig.
6.2. The curvature is accounted for through the satisfaction of matching conditions,
analogous to boundary conditions, at the lines of discontinuity, and solutions in each
interval are then exponential functions.
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Matching conditions

The idea, then, is to solve the linearized vorticity equation separately in the continuous
intervals in which vorticity is constant, matching the solution with that in the adjacent
regions. The matching conditions arise from two physical conditions:

(i) That normal stress should be continuous across the interface. For an inviscid fluid
this implies that pressure be continuous.

(ii) That the normal velocity of the fluid on either side of the interface should be con-
sistent with the motion of the interface itself.

Let us consider the implications of these two conditions.

(i) Continuity of pressure:
The linearized momentum equation in the direction along the interface is:

@u0

@t
C U

@u0

@x
C v0 @U

@y
D �

@p0

@x
: (6.21)

For normal modes, u0 D � z yeik.x�ct/ and v0 D ik z eik.x�ct/ and (6.21) be-
comes

ik.U � c/ z y � ik z Uy D �ik yp: (6.22)

Because pressure is continuous across the interface we have the first matching or
jump condition,

�Œ.U � c/ z y � z Uy � D 0 (6.23)

where the operator � denotes the difference in the values of the argument (in
square brackets) across the interface. That is, the quantity .U � c/ z y � z Uy is
continuous.

We can obtain this condition directly from Rayleigh’s equation, (6.20), written in
the form

Œ.U � c/ z y � Uy
z �y C Œˇ � k2.U � c/� z D 0: (6.24)

Integrating across the interface gives (6.23).

(ii) Material interface condition:
At the interface, the normal velocity v is given by the kinematic condition

v D
D�
Dt

(6.25)

where � is the interface displacement. The linear version of (6.25) is

@�

@t
C U

@�

@x
D
@ 0

@x
: (6.26)

If the fluid itself is continuous (no cavitation, for instance) then this equation must
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hold at either side of the interface, giving two equations and their normal mode
counterparts, namely,

@�

@t
C U1

@�

@x
D
@ 0

1

@x
�! .U1 � c/� D z 1; (6.27)

@�

@t
C U2

@�

@x
D
@ 0

2

@x
�! .U2 � c/� D z 2: (6.28)

Material continuity at the interface thus gives the second jump condition

�

"
z 

U � c

#
D 0 : (6.29)

That is, z =.U � c/ is continuous at the interface. Note that if U is continuous
across the interface the condition becomes one of continuity of the normal velocity.

6.2.2 Kevin-Helmholtz instability, revisited

We now use Rayleigh’s equation and the jump conditions to consider the situation il-
lustrated in Fig. 6.1; that is, vorticity is everywhere zero except in a thin sheet at y D 0.
On either side of the interface, Rayleigh’s equation is simply

.U � c/.@yy
z i � K2 z i/ D 0 i D 1; 2 (6.30)

or, assuming that U ¤ c, z yy � K2 z D 0. (This is just Laplace’s equation, coming
from r2 0 D �0, with �0 D 0 everywhere except at the interface.) Solutions of this that
decay away on either side of the interface are

y > 0 W z 1 D 	1e�ky ; (6.31a)

y < 0 W z 2 D 	2eky ; (6.31b)

where 	1 and 	2 are constants. The boundary condition (6.23) gives

.U1 � c/.�k/	1 D .U2 � c/.k/	2; (6.32)

and (6.29) gives
	1

.U1 � c/
D

	2

.U2 � c/
: (6.33)

The last two equations combine to give .U1 � c/2 D �.U2 � c/2, which, supposing
that U D U1 D �U2 gives c2 D �U 2. Thus, since U is purely real, c D ˙iU ,
and the disturbance grows exponentially as exp.kU1t/, just as we obtained in section
6.1. All wavelengths are unstable, and indeed the shorter the wavelength the greater the
instability. In reality, viscosity will damp the smallest waves, but at the same time the
presence of viscosity would mean that initial profile is also not an exact, steady solution
of the equations of motion.
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Figure 6.3 Velocity profile of a stable jet. Although the
vorticity is discontinuous, a small perturbation gives rise
only to edge waves centered at y D 0.

6.2.3 Edge Waves

We now consider a case sketched in Fig. 6.3 in which the velocity is continuous, but
the vorticity is discontinuous. Since on either side of the interface Uyy D 0, Rayleigh’s
equation is just

.U � c/. z yy � K2 z / D 0: (6.34)

Provided c ¤ U this has solutions,

z D

(
˚1e�ky y > 0

˚2eky y < 0:
(6.35)

The value of c is found by applying the jump conditions (6.23) and (6.29) at y D 0.
Using (6.35) these give

�k.U0 � c/˚1 � ˚1U1y D k.U0 � c/˚2 � ˚2U2y (6.36a)

˚1 D ˚2 (6.36b)

where U1 and U2 are the values of U at either side of the interface, and both are equal
to U0 at the interface. After a line of algebra these equations give

c D U0 C
@yU1 � @yU2

2k
: (6.37)

This is the dispersion relationship for edge waves that propagate along the interface a
speed equal to the sum of the fluid speed and a factor proportional to the difference
in the vorticity between the two layers. No matter what the shear is on either side of
the interface, the phase speed is purely real and there is no instability. Eq. (6.37) is
imperfectly analogous to the Rossby wave dispersion relation c D U0 � ˇ=K2, and
reflects a similarity in the physics — ˇ is a planetary vorticity gradient, which in (6.37)
is collapsed to a front and represented by the difference U1y � U2y D �.Z1 � Z2/,
where Z1 and Z2 are the basic-state vorticities on either side of the interface.
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Fig. 6.4 Barotropically unstable velocity profiles. In the simplest case,
on the left, a region of shear is sandwiched between two infinite regions
of constant velocity. The edge waves at y D ˙a interact to produce an
instability. If a D 0, then the situation corresponds to that of Fig. 6.1, giving
Kelvin-Helmholtz instability. In the case on the right, the flow is bounded
at y D ˙b. It may be shown that the flow is still unstable, provided that b

is sufficiently larger than a. If b D a (plane Couette flow) the flow is stable
to infinitesimal disturbances.

6.2.4 Interacting edge waves producing instability

Now we consider a slightly more complicated case in which edge waves may interact
giving rise, as we shall see, to an instability. The physical situation is illustrated in Fig.
6.4. We consider the simplest case, that of a shear layer (which we denote region 2)
sandwiched between two semi-infinite layers, regions 1 and 3, as in the left panel of the
figure. Thus, the basic state is:

y > a W U D U1 D U0 (a constant); (6.38a)

�a < y < a W U D U2 D
U0

a
y; (6.38b)

y < �a W U D U3 D �U0: (6.38c)

We assume a solution of Rayleigh’s equation of the form:

y > a W z 1 D Ae�k.y�a/; (6.39a)

�a < y < a W z 2 D Be�k.y�a/
C C ek.yCa/; (6.39b)

y < �a W z 3 D Dek.yCa/: (6.39c)

Applying the jump conditions (6.23) and (6.29) at the interfaces at y D a and y D �a

gives the following relations between the coefficients:

AŒ.U � c/k� D B

�
.U � c/k C

U

a

�
C C e2ka

�
U

a
� .U � c/k

�
; (6.40a)
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Fig. 6.5 Left: growth rate (� D kci ) calculated from (6.42) with c nondi-
mensionalized by U and k nondimensionalized by 1=a (equivalent to setting
a D U D 1). Right: Real (cr , dashed) and imaginary (ci , solid) wave speeds.
The flow is unstable for k < 0:63, with the maximum instability occurring
at k D 0:39.

A D B C C e2ka; (6.40b)

DŒ.U C c/k� D Be2ka

�
�.U C c/k C

U

a

�
C C

�
U

a
C .U C c/k

�
; (6.40c)

D D Be2ka
C C: (6.40d)

These are a set of four homogeneous equations, with the unknown parameters A; B; C

and D, which may be written in the form of a matrix equation,0BB@
k.U � c/ �k.U � c/ � U=a e2 kaŒk.U � c/ � .U=a/� 0

1 �1 �e2 ka 0

0 e2 kaŒk.U C c/ � .U=a/� �k.U C c/ � .U=a/ k.U C c/

0 e2 ka 1 �1

1CCA
0BB@

A

B

C

D

1CCA
D 0:

(6.41)

For non-trivial solutions the determinant of the matrix must be zero, and solving the
ensuing equation gives the dispersion relationship, first obtained by Rayleigh,

c2
D

�
U

2ka

�2 h
.1 � 2ka/2 � e�4ka

i
; (6.42)

and this is plotted in Fig. 6.5. The flow is unstable for sufficiently long wavelengths,
for then the right-hand side of (6.42) is negative. The critical wavenumber below which
instability occurs is found by solving .1 � 2ka/2 D e�4ka, which gives instability for
ka < 0:63293. A numerical solution of the initial value problem is illustrated in Fig. 6.6
and Fig. 6.7.4 Here, the initial perturbation is small and random, containing components
at all wavenumbers. All the modes in the unstable range grow exponentially, and the
pattern is soon dominated by the mode that grows fastest — a horizontal wavenumber
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Fig. 6.6 A sequence of plots of the vorticity, at equal time intervals, from a numerical
solution of the nonlinear vorticity equation (6.12), with initial conditions as in Fig. 6.4,
plus a very small random perturbation. Time increases first down the left column, then
down the right column. The solution is obtained in a rectangular (4 � 1) domain, with
periodic conditions in the x-direction and slippery walls at y D .0; 1/. The initial shear
is confined to a region 0:4 < y < 0:6 so that a D 0:1, and the maximum instability
thus occurs for a wavelength of 1:57. For a domain of length 4, this corresponds to a
nondimensional wavenumber of 2:55. Since the periodic domain quantizes the allowable
wavenumbers, the maximum instability is at wavenumber 3, and this is what emerges.
Only in the first two or three frames is the linear approximation valid.

three in this problem. Eventually, the perturbation grows sufficiently that the linear
equations are no longer valid and, as is seen in the lower three panels of Fig. 6.6, vortices
form and pinch off. Eventually, the vortices interact and the flow develops into two-
dimensional turbulence, considered in chapter 8.

The mechanism of the instability — an informal view

[A similar mechanism is discussed in section 6.8, and the reader may wish to read the
two descriptions in tandem.] An edge wave in isolation is stable, the instability arising
when two edge waves have sufficient cross-stream extent that they can interact with each
other. This occurs for sufficiently long wavelengths because the cross-stream decay
scale is proportional to the along-stream wavelength — hence the high-wavenumber
cut-off. To see the mechanism of the instability, let us first suppose that the interfaces
are, in fact, sufficiently far away that the edge waves at each interface do not interact.
Using (6.37) the edge waves at y D �a and y D Ca have dispersion relationships

cCa D U0 �
U0=a

2k
; c�a D �U0 C

U0=a

2k
(6.43a,b)

If the two waves are to interact these phase speeds must be equal, giving the condition

c D 0; k D 1=.2a/: (6.44a,b)
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Fig. 6.7 Total streamfunction (top panel) and perturbation streamfunction
from the same numerical calculation as in Fig. 6.6, at a time corresponding
to the second frame. Positive values (a clockwise circulation) are solid lines,
and negative values are dashed. The perturbation pattern grows exponen-
tially, but is locked in place.

That is, the waves are stationary, and their wavelength is proportional to the separation
of the two edges. In fact, (6.44) approximately characterizes the conditions at the crit-
ical wavenumber k D 0:63=a (see Fig. 6.5). In the region of the shear the two waves
have the form

 Ca D Re z Ca.t/e
k.y�a/ei�eikx;  Ca D Re z �a.t/e

�k.yCa/eikx (6.45a,b)

where � is the phase shift between the waves; in the case of pure edge waves we have
z ˙a D A˙ae�ikct where we may take A˙a to be real.

Now consider how the wave generated at y D �a might affect the wave at y D Ca

and vice versa. The contribution of  �a to acceleration of  Ca is given by applying the
x-momentum equation, (6.21), at either side of the interface at y D Ca, and similarly
for the acceleration at y D �a. We obtain

@u0
Ca

@t
� �v0

�a

@U

@y
;

@u0
�a

@t
� �v0

Ca

@U

@y
; (6.46a,b)

at y D Ca and y D �a respectively, omitting the terms that give the neutral edge
waves. If the spatial dependence of the waves (6.45) this gives, at y D ˙a,

� kei� @
z Ca

@t
� �ik z �a

@U

@y
; k

@ z �a

@t
� �ikei� z Ca

@U

@y
; (6.47a,b)

If  Ca and  �a have the right phase with respect to each other, then the two edge
waves can feed back on each other. In particular, from (6.47) we see that the system is
unstable when � D  =2, and the wave at y D Ca lags the wave at y D �a. That is, the
perturbation is unstable when it tilts into the shear, and this is seen in the full solution,
Fig. 6.7.
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6.3 NECESSARY CONDITIONS FOR INSTABILITY

6.3.1 Rayleigh’s criterion

For simple profiles it may be possible to calculate, or even intuit, the instability prop-
erties, but for continuous profiles of U.y/ this is often impossible and it would be nice
to have some general guidelines as to when a profile might be unstable. To this end, we
will derive a necessary condition for instability, or a sufficient criterion for stability that
will at least tell us if a flow might be unstable. We first write Rayleigh’s equation, with
a ˇ-effect, as

z yy � k2 z C
ˇ � Uyy

U � c
z D 0 (6.48)

Multiply by z � (the complex conjugate of z ) and integrate over the domain of interest.
After integrating the first term by parts, this gives

Z y2

y1

24ˇ̌̌̌ˇ@ z 

@y

ˇ̌̌̌
ˇ
2

C k2
j z j

2

35 dy �

Z y2

y1

ˇ � Uyy

U � c
j z j

2 dy D 0: (6.49)

assuming that z vanishes at the boundaries. (The limits to the integral may be infinite,
in which case it is assumed that z decays to zero as jyj approaches 1.) The only
variable in this expression that is complex is c, and thus the first integral is real. The
imaginary component of the second integral is

ci

Z
ˇ � Uyy

jU � cj2
j z j

2 dy D 0: (6.50)

Thus, either ci vanishes or the integral does. For there to be an instability, ci must be
nonzero and because the eigenvalues of Rayleigh’s equation come in pairs (because it
is a second order ODE), for each decaying mode (negative ci) there is a corresponding
growing mode (positive ci). Therefore:

A necessary condition for instability is that the expression

ˇ � Uyy

change sign somewhere in the domain.

Equivalently, a sufficient criterion for stability is that ˇ � Uyy not vanish in the domain
interior; it may vanish at the boundaries, or tend to zero for large jyj. This condition is
known as Rayleigh’s inflexion point criterion.5

An alternate, more general, derivation

Consider again the vorticity equation, linearized about a parallel shear flow,

@�

@t
C U

@�

@x
C v

�
@Z
@y

C ˇ

�
D 0: (6.51)
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(dropping the primes on the perturbation quantities). Multiply by � and divide by ˇCZy

to obtain
@

@t

�
�2

ˇ C Zy

�
C

U

ˇ C Zy

@�2

@x
C v� D 0; (6.52)

and then integrate with respect to x to give

d
dt

Z �
�2

ˇ C Zy

�
dx D �

Z
v� dx: (6.53)

Now,

v� D �
@

@y
.uv/C

1

2

@

@x
.u2

C v2/: (6.54)

That is, the flux of vorticity is the divergence of some quantity. Its integral therefore
vanishes provided there are no contributions from the boundary, and integrating (6.53)
with respect to y gives

d
dt

Z �
�2

ˇ C Zy

�
dx dy D 0: (6.55)

If there is to be an instability � must grow, but the integral is identically zero. These two
conditions can only be simultaneously satisfied if ˇ C Zy , or equivalently ˇ � Uyy , is
zero somewhere in the domain.

This derivation shows that the Rayleigh-Kuo criterion applies even if disturbances
are not of normal-mode form. The quantity �2=.ˇCZy/ is an example of a wave-activity
density — a wave activity being a conserved quantity, quadratic in the amplitude of the
wave. Such quantities play an important role in instabilities, and we consider then
further in chapter 7.

6.3.2 Fjørtoft’s criterion

Another necessary condition for instability was obtained by Fjørtoft.6 From the real
part of (6.49) we findZ y2

y1

.ˇ � Uyy/
.U � cr /

jU � cj2
j z j

2 dy D

Z y2

y1

ˇ̌̌̌
ˇ@ z 

@y

ˇ̌̌̌
ˇ
2

C k2
j z j

2 dy > 0: (6.56)

Now, for an instability we also know thatZ y2

y1

ˇ � Uyy

jU � cj2
j z j

2 dy D 0: (6.57)

Using this and (6.56) it is clear that, for an instability,Z y2

y1

.ˇ � Uyy/
.U � Us/

jU � cj2
j z j

2 dy > 0 (6.58)

where Us is any real constant. It is most useful to choose this constant to be the value
of U.y/ at which ˇ � Uyy vanishes. This leads directly to the criterion:
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A necessary condition for instability is that the expression

.ˇ � Uyy/.U � Us/

where Us is the value of U.y/ at which ˇ � Uyy vanishes, be positive
somewhere in the domain.

This is equivalent to saying that the magnitude of the vorticity must have a maximum
inside the domain, and not at the boundary or at infinity, as can be seen by perusing Fig.
6.8. Why choose Us in the manner we did? Suppose we chose Us to have a very large
negative or large positive value, so that U � Us is of one sign everywhere. Then (6.58)
just implies that ˇ�Uyy must be negative somewhere and must be positive somewhere,
which is already known from Rayleigh’s criterion. The most stringent criterion is ob-
tained by choosing Us to be the value of U.y/ at which ˇ � Uyy vanishes. Again it
should be noted that both Fjørtoft’s and Rayleigh’s criteria are necessary conditions for
instability, and examples may be constructed which do satisfy their criterion, yet which
are stable to infinitesimal perturbations. Note that the ˇ-effect can stabilize the middle
two profiles of Fig. 6.8, because if it is large enough ˇ � Uyy will be one-signed. How-
ever, the ˇ-effect can destabilize a westward point jet, U.y/ D �.1 � jyj/ (the negative
of the jet in Fig. 6.3), because ˇ � Uyy is negative at y D 0 and positive elsewhere. An
eastward point jet is stable, with or without ˇ.

6.4 BAROCLINIC INSTABILITY

Baroclinic instability is a hydrodynamic instability that occurs in stably stratified, rotat-
ing fluids, and it is ubiquitous in the planetary atmospheres and oceans. It gives rise to
weather, and thus is the form of hydrodynamic instability that most affects the human
condition.

6.4.1 A physical picture

We will first draw a picture of baroclinic instability as a form of ‘sloping convection’ in
which the fluid, although statically stable, is able to release available potential energy
when parcels move along a sloping path. To this end, let us ask: what is the basic state
that is baroclinically unstable? In a stably stratified fluid potential density decreases
with height; we can also easily imagine a state in which the basic state temperature
decreases, and so the potential density increases, polewards. (We will couch most of
our discussion in terms of the Boussinesq equations, and henceforth drop the qualifier
‘potential’ from density.) Can we construct a steady solution from these two conditions?
The answer is yes, provided the fluid is also rotating; rotation is necessary because the
meridional temperature gradient generally implies a meridional pressure gradient; there
is nothing to balance this in the absence of rotation, and a fluid parcel would therefore
accelerate. In a rotating fluid this pressure gradient can be balanced by the Coriolis
force and a steady solution maintained even in the absence of viscosity. Consider a
stably-stratified Boussinesq fluid in geostrophic and hydrostatic balance on an f -plane,
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Fig. 6.8 Example parallel velocity profiles (left column) and their second
derivatives (right column). From the top: Poiseuille flow (u D 1 � y2);
a Gaussian jet; a sinusoidal profile; a polynomial profile. By Rayleigh’s
criterion, the top profile is stable, whereas the lower three are potentially
unstable. However, the bottom profile is stable by Fjørtoft’s criterion (and
note that the vorticity maxima are at the boundaries). If the ˇ-effect were
present and large enough it would stabilize the middle two profiles.

with buoyancy decreasing uniformly polewards. Then f u D �@�=@y and @�=@z D b,
where b D �g�0=�0 is the buoyancy. These together give the thermal wind relation,
@u=@z D @b=@y . If there is no variation of these fields in the zonal direction, then, for
any variation of b with y, this is a steady solution to the primitive equations of motion,
with v D w D 0.

The density structure corresponding to a uniform increase of density in the merid-
ional direction is illustrated in Fig. 6.9. Is this structure stable to perturbations? The
answer is no, although the perturbations must be a little special. Suppose the particle at
‘A’ is displaced upwards; then, since the fluid is (by assumption) stably stratified it will
be denser than its surroundings and hence experience a restoring force, and similarly if
displaced downwards. Suppose, however, we interchange the two parcels at positions
‘A’ and ‘B’. Parcel ‘A’ finds itself surrounded by parcels of higher density that itself, and
it is therefore buoyant; it is also higher than where it started. Parcel ‘B’ is negatively
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Fig. 6.9 A steady basic state giving rise to baroclinic instability. Potential
density decreasing upwards and equatorwards, and the associated horizon-
tal pressure gradient is balanced by the Coriolis force. Parcel ‘A’ is heavier
than ‘C’, and so statically stable, but it is lighter than ‘B’. Hence, if ‘A’ and
‘B’ are interchanged there is a release of potential energy.

buoyant, and at a lower altitude than where is started. Thus, overall, the centre of grav-
ity of the fluid has been lowered, and so its overall potential energy lowered. This loss
in potential energy of the basic state must be accompanied by a gain in kinetic energy
of the perturbation. Thus, the perturbation amplifies and converts potential energy to
kinetic energy.

The loss of potential energy is easily calculated. Since

PE D

Z
�gdz (6.59)

the change in potential energy due to the interchange is

�PE D g.�AzA C �BzB � �AzB � �BzB/

D g.zA � zB/.�A � �B/ D g���z (6.60)

If both �B > �A and zB > zA then the initial potential energy is larger than the final,
energy is released and the state is unstable. If the slope of the isopycnals is � [so that
� D �.@y�/=.@z�/] and the slope of the displacements is ˛, then for a displacement of
horizontal distance L the change in potential energy is given by

�PE D g���z D g

�
L
@�

@y
C L˛

@�

@z

�
˛L D gL2˛

@�

@y

�
1 �

˛

�

�
; (6.61)

if ˛ and � are small. If 0 < ˛ < � then energy is released by the perturbation, and it
is maximized when ˛ D �=2. For the atmosphere the actual slope of the isotherms is
about 10�3, so that the slope and potential parcel trajectories are indeed shallow.

Although intuitively appealing, the thermodynamic arguments presented in this sec-
tion pay no attention to satisfying the dynamical constraints of the equations of motion,
and we now turn our attention to that,



276 Chapter 6. Barotropic and Baroclinic Instability

6.5 LINEARIZED QUASI-GEOSTROPHIC EQUATIONS

To explore the dynamics of baroclinic instability we use the quasi-geostrophic equa-
tions, specifically a potential vorticity equation for the fluid interior and a buoyancy or
temperature equation at two vertical boundaries, one representing the ground and the
other the tropopause, the boundary between the troposphere and stratosphere at about
10 km. (The tropopause is not a true rigid surface, but the higher static stability of
the stratosphere does inhibit vertical motion. We return to this in section 6.10.) For a
Boussinesq fluid the equations are

@q

@t
C u � rq D 0; 0 < z < H;

q D r
2 C ˇy C

@

@z

�
F
@ 

@z

�
;

(6.62)

where F D f 2
0
=N 2, and the buoyancy equation with w D 0,

@b

@t
C u � rb D 0; z D 0;H;

b D f0

@ 

@z
:

(6.63)

A solution of these equations is a purely zonal flow, u D U.y; z/i with a corresponding
temperature field given by thermal wind balance. The potential vorticity of this basic
state is

Q D ˇy � Uy C
@

@z
F
@	

@z
D ˇy C 	yy C

@

@z
F
@	

@z
(6.64)

where 	 is the streamfunction of the basic state, related to U by U D �@	=@y . Lin-
earizing (6.62) about this zonal flow gives the potential vorticity equation for the inte-
rior,

@q0

@t
C U

@q0

@x
C v0 @Q

@y
D 0; 0 < z < H (6.65)

where q0 D r2 0 C @z

�
F@z 

0
�

and v0 D @ 0=@x . Similarly, the linearized buoyancy
equation is

@b0

@t
C U

@b0

@x
C v0 @B

@y
D 0; z D 0;H; (6.66)

where b0 D f0@ 
0=@z and @B=@y D @y.f0@z	/ D �f0@U=@z .

Just as for the barotropic problem, a standard way to of proceeding is to seek
normal-mode solutions of these equations. Since the coefficients of the equations are
functions of y and z, but not of x, we seek solutions of the form

 0.x;y; z; t/ D Re z .y; z/eik.x�ct/; (6.67)

and similarly for the derived quantities u0; v0 and q0. In particular

yq D z yy C
@

@z
F
@ z 

@z
� k2 z : (6.68)
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Substituting (6.67) and (6.68) into (6.65) into (6.66) gives

.U � c/
�

z yy C .F z z/z � k2 z 
�

C Qy
z D 0 0 < z < H; (6.69a)

.U � c/ z z � Uz
z D 0 z D 0;H: (6.69b)

These equations are analogous to Rayleigh’s equations for parallel shear flow, and em-
phasize the similarity between baroclinic instability and that of a parallel shear flow.

6.5.1 Necessary conditions for baroclinic instability

Necessary conditions for instability may be obtained following a procedure analogous
to that used for parallel shear flows. First, integrating by parts, we note thatZ y2

y1

z � z yy dy D

h
z � z y

iy2

y1

�

Z y2

y1

j z y j
2 dy: (6.70)

If the integral is performed between two quiescent latitudes, or the domain is a channel
with  D 0 at the boundaries, then the first term on the right-hand-side vanishes.
Similarly, Z H

0

z �.F z z/z dz D

h
F z � z z

iH

0
�

Z H

0

F j z zj
2 dz

D

"
F Uzj z j2

.U � c/

#H

0

�

Z H

0

F j z zj
2 dz; (6.71)

using (6.69b). Now, multiply (6.69a) by z � and integrate over y and z, and use (6.70)
and (6.71) to obtainZ H

0

Z y2

y1

j y j
2

C F j z zj
2

C k2
j z j

2� dy dz

�

Z y2

y1

8<:
Z H

0

Qy

U � c
j z j

2 dz C

"
F Uzj z j2

U � c

#H

0

9=; dy D 0:

(6.72)

The term on the first line is purely real. The term on the second line is complex, and its
imaginary component is given by

� ci

Z y2

y1

8<:
Z H

0

Qy

jU � cj2
j z j

2 dz C

"
F Uzj z j2

jU � cj2

#H

0

9=; dy D 0: (6.73)

If there is to be instability ci must be non-zero, and the integrand must therefore van-
ish. This gives the Charney-Stern-Pedlosky (CSP) necessary condition for instability,
namely that one of the following criteria be satisfied:7
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(i) Qy changes sign in the interior.
(ii) Qy is the opposite sign to Uz at the upper boundary, z D H .
(iii) Qy is the same sign as Uz at the lower boundary, z D 0.
(iv) Uz is the same sign at the upper and lower boundaries, a condition which differs

from (ii) or (iii) if Qy D 0.
In the earth’s atmosphere, Qy is often dominated by ˇ, and is positive everywhere, as,
frequently, is the shear. The instability criterion is then normally satisfied through (iii):
that is, both Qy and Uz.0/ are positive.

6.6 THE EADY PROBLEM

We now proceed to explicitly calculate the stability properties of a particular configu-
ration that has become to be known as the Eady problem. This was one of the first two
mathematical descriptions of baroclinic instability, the other being the Charney prob-
lem.8 The two were formulated independently, each being the (largely unsupervised)
Ph.D. thesis of its respective author, and although the Charney problem is in some re-
spects more complete (for example in allowing a ˇ-effect) the Eady problem displays
the instability in a more transparent form. The Charney problem in its entirety is also
quite mathematically opaque,9 and for these reasons we will first consider the Eady
problem. The ˇ-effect can be incorporated relatively simply in the two-layer model
(the ‘Phillips problem’) considered in the next section, and in section 6.10.1 we look at
some aspects of the Charney problem approximately. These models were all initially
envisioned as models for instabilities in the atmosphere, but the process of baroclinic in-
stability is also ubiquitous in the ocean. To begin, let us make the following simplifying
assumptions:

(i) The motion is on the f -plane (ˇ D 0). This assumption, although not particularly
realistic, greatly simplifies the analysis.

(ii) The fluid is uniformly stratified. That is, N 2 is a constant. This is a reasonable
approximation for the atmosphere below the tropopause, but less so for the ocean
where the stratification is quite non-uniform, being much larger in the upper ocean.

(iii) The basic state has uniform shear; that is, U0.z/ D �z D Uz=H where � is the
(constant) shear and U is the zonal velocity at z D H where H the domain depth.
Again, this profile is more appropriate for the atmosphere than the ocean — below
the thermocline the ocean is relatively quiescent and the shear small.

(iv) The motion is contained between two rigid, flat horizontal surfaces. In the atmo-
sphere this corresponds to the ground and a ‘lid’ at a constant-height tropopause.

Assumptions (ii)–(iv) are rather inappropriate for the ocean, and will preclude us from
drawing any quantitative conclusions about that system from our analysis. The most
restrictive assumption vis-a-vis the atmosphere is (i), and we explore the role of the
ˇ-effect in baroclinic instability later on.
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6.6.1 The linearized problem

With a basic state streamfunction of 	 D ��zy, the basic state potential vorticity, Q,
is

Q D r
2	 C

H 2

L2
d

@

@z

�
@	

@z

�
D 0: (6.74)

The fact that Q D 0 makes the Eady problem a special case, albeit an illuminating one.
The linearized potential vorticity equation is�

@

@t
C�z

@

@x

� 
r

2 0
C

H 2

L2
d

@2 0

@z2

!
D 0 (6.75)

This equation has no x-dependent coefficients and in a periodic channel we may seek
solutions in the form (6.67), namely  0.x;y; z; t/ D Re z .y; z/eik.x�ct/. Substituting
this into (6.75) yields

.�z � c/

 
@2 z 

@y2
C

H 2

L2
d

@2 z 

@z2
� k2 z 

!
D 0; (6.76)

which is (6.69a) applied to the Eady problem.

Boundary Conditions

There are two sets of boundary conditions to satisfy, the vertical boundary conditions at
z D 0 and z D 1 and the lateral boundary conditions. In the horizontal plane we may
either consider the flow to be confined to a channel, periodic in x and confined between
two meridional walls, or, with a slightly greater degree of idealization but with little
change to the essential dynamics, suppose that domain is doubly-periodic. Either case
is dealt with easily enough by the choice of geometric basis function; we will choose a
channel of width L and impose  D 0 at y D CL=2 and y D �L=2 and, to satisfy
this, seek solutions of the form 	 D ˚.z/ sin ly or, using (6.67)

 0.x;y; z; t/ D Re˚.z/ sin lyeik.x�ct/: (6.77)

where l D n =L where n is a positive integer.
The vertical boundary conditions are that w D 0 at z D 0 and z D H . We follow

the procedure of section 6.5 and from (6.66) we obtain�
@

@t
C�z

@

@x

�
@ 0

@z
��

@ 0

@x
D 0; at z D 0;H: (6.78)

Solutions

Substituting (6.77) into (6.76) gives the interior potential vorticity equation

.�z � c/

"
H 2

L2
d

@2˚

@z2
� .k2

C l2/˚

#
D 0; (6.79)
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and substituting (6.77) into (6.78) gives, at z D 0 and z D H ,

c
d˚
dz

C�˚ D 0 and .c ��H /
d˚
dz

C�˚ D 0: (6.80a,b)

These are equivalent to (6.69b) applied to the Eady problem. If �z ¤ c then (6.79)
becomes10

H 2 d2˚

dz2
� �2˚ D 0; (6.81)

where �2 D L2
d.k

2 C l2/. The nondimensional parameter � is a horizontal wavenum-
ber, scaled by the inverse of the Rossby radius of deformation. Solutions of (6.81) are

˚.z/ D A cosh�yz C B sinh�yz; (6.82)

where yz D z=H ; thus, � determines the vertical structure of the solution. The boundary
conditions (6.80) are satisfied if

A � Œ�H �C B � Œ�c� D 0;

A � Œ.c ��H /� sinh�C�H cosh��C B � Œ.c ��H /� cosh�C�H sinh�� D 0:

(6.83)

Equations (6.83) are two coupled homogeneous equations in the two unknowns A and
B. Non-trivial solutions will only exist if the determinant of their coefficients (the terms
in square brackets) vanishes, and this leads to

c2
� Uc C U 2.��1 coth� � ��2/ D 0; (6.84)

where U � �H and coth� D cosh�= sinh�. The solution of (6.84) is

c D
U

2
˙

U

�

h��
2

� coth
�

2

� ��
2

� tanh
�

2

�i1=2

: (6.85)

The waves, being proportional to exp.�ikct/, will grow exponentially if c has an imag-
inary part. Since �=2 > tanh.�=2/ for all �, for an instability we require that

�

2
< coth

�

2
; (6.86)

which is satisfied when � < �c where �c D 2:399. The growth rates of the instabilities
themselves are given by the imaginary part of (6.85), multiplied by the x-wavenumber.
That is

� D kci D k
U

�

h�
coth

�

2
�
�

2

� ��
2

� tanh
�

2

�i1=2

: (6.87)

These solutions suggest a natural nondimensionalization: scale length by Ld, height
by H and time by Ld=U . The Eady growth rate is the inverse of the time scaling, and
is defined by

�E �
�H

Ld
D

U

Ld
(6.88)
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Its inverse, the Eady timescale, may also be written as

TE D
Ld

U
D

NH

f0U
D

1

Frf0

D

p
Ri
f0

; (6.89)

where Fr D U=.NH / and Ri D N 2=�2 are the Froude and Richardson numbers for
this problem.

From (6.87) we may determine that the maximum growth rate occurs when � D

�m D 1:61, with associated (nondimensional) growth rate of kci=�E D 0:31, and
phase speed cr=U D 0:5. Note that for any given x-wavenumber, the most unstable
wavenumber has l D 0, so that Ldk D �. The unstable x-wavenumbers and corre-
sponding wavelengths occur for

k < kc D
�c

Ld
D

2:4

Ld
; � > �c D

2 Ld

�c

D 2:6Ld: (6.90a,b)

The wavenumber and wavelength at which the instability is greatest are:

km D
1:6

Ld
; �m D

2 Ld

�m

D 3:9Ld: (6.91a,b)

These properties are illustrated in the left panels of Fig. 6.10 and in Fig. 6.11.
Given c, we may use (6.83) to determine the vertical structure of the Eady wave

and this is, to within an arbitrary constant factor,

˚.z/ D cosh�yz �
U

�c
sinh�yz D

�
cosh�yz �

Ucr sinh�yz

�jc2j
C

iUci sinh�yz

�jc2j

�
:

(6.92)

The wave therefore has a phase, �.z/, given by

�.z/ D tan�1

�
Uci sinh�z

�jc2j cosh�yz � Ucr sinh�yz

�
: (6.93)

These are plotted in the right panels of Fig. 6.10,

6.6.2 Atmospheric and oceanic parameters

To get a qualitative sense of the nature of the instability we may choose some typical
parameters, as follows.

For the atmosphere

Let us choose

H � 10 km; U � 10 m s�1; N � 10�2 s�1: (6.94)

We then obtain:

Deformation Radius: Ld D
NH

f
�

10�2104

10�4
� 1000 km; (6.95)
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Fig. 6.10 Solution of the Eady problem, in non-dimensional units. (a) Growth rate, kci , of
the most unstable Eady modes (i.e., those with the gravest meridional scale) as a function
of scaled wavenumber �, from (6.87) with � D H D 1. The scaled x-wavenumber k.
(b) The real (solid) and imaginary (dashed) wave speeds of those modes, as a function of
horizontal wavenumber. (c) The phase of the single most unstable mode as a function of
height. (d) The amplitude of that mode as a function of height. To obtain dimensional
values, multiply the growth rate by �H=Ld and the wavenumber by 1=Ld.

Figure 6.11 Contours of
growth rate, � , in the Eady prob-
lem, in the k–l plane using
(6.87), nondimensionalized as in
Fig. 6.10. The growth rate peaks
near the deformation scale, and
for any given zonal wavenumber
the most unstable wavenumber
is that with the gravest merid-
ional scale.
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Fig. 6.12 Left column: Vertical structure of the most unstable Eady mode. Top: con-
tours of streamfunction. Middle: temperature, proportional to @ =@z . Bottom: merid-
ional velocity, proportional to @ =@y . Negative contours are dashed, and two complete
wavelengths are present in the horizontal. Poleward flowing (positive v) air is generally
warmer than equatorward flowing air. Right column: Same, but now for a wave just be-
yond the short-wave cut-off. There is no phase-tilt in the vertical, and the temperature
perturbations at the upper and lower boundaries are no longer able to interact.

Scale of maximum instability: Lmax � 3:9Ld � 4000 km; (6.96)

Growth Rate: � � 0:3
U

Ld
�

0:3 � 10

106
s�1

� 0:26 day�1:

(6.97)

For the ocean

For the main thermocline in the ocean let us choose

H � 1 km U � 0:1 m s�1 N � 10�2 s�1: (6.98)
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Summary of Results from the Eady Problem

? The length-scales of the instability are characterized by the deformation scale.
The most unstable scale has a wavelength about four times the deformation
radius Ld, where Ld D NH=f0.

? The growth rate of the instability is approximately

� �
U

Ld
D �

f0

N
: (1)

That is, it is proportional to the shear, and scaled by the Prandtl ratio f0=N .
The value � is known as the Eady growth rate.

? The most unstable waves for a given zonal scale are those with the gravest
meridional scale.

? There is a short-wave cutoff beyond which (i.e., at higher wavenumber than)
there is no instability. This occurs near the deformation radius.

? The instability relies on an interaction between waves at the upper and lower
boundaries. If either boundary is removed, the instability dies. This point is
be considered further in section 6.8.

We then obtain:

Deformation Radius: Ld D
NH

f
�

10�21000

10�4
D 100 km; (6.99)

Scale of maximum instability: Lmax � 3:9Ld � 400 km; (6.100)

Growth Rate: � � 0:3
U

Ld
�

0:3 � 0:1

105
s�1

� 0:026 day�1:

(6.101)

In the ocean, the Eady problem is not quantitatively applicable because of the non-
unifomity of the stratification and non-zonality of the flow. Nevertheless, the above
estimates give a qualitative sense of the scale and growth rate of the instability relative
to the corresponding values in the atmosphere. A summary of the main points of the
Eady problem is given in the shaded box above.

6.7 TWO-LAYER BAROCLINIC INSTABILITY

The eigenfunctions displaying the largest growth rates in the Eady problem have a rela-
tively simple vertical structure. This suggests that an even simpler mathematical model
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of baroclinic instability might be constructed in which the vertical structure is a priori
restricted to a very simple form, namely the two-layer QG model. One notable ad-
vantage over the Eady model is that it is possible to include the ˇ–effect in a simple
way.

6.7.1 Posing the problem

We begin with the two-layer potential vorticity equations, which we write in the dimen-
sional form,

D
Dt

"
�i C ˇy C

k2
d

2
. j �  i/

#
D 0; i D 1; 2; j D 3 � i; (6.102)

where
k2

d

2
D

�
2f0

NH

�2

! kd D

p
8

Ld
; (6.103)

where H is the total depth of the domain, as in the Eady problem. The basic state we
choose is:

	1 D �U1y; 	2 D �U2y D CU1y: (6.104)

There is no topography and so the system is Galilean invariant, and without loss of
generality we choose U2 D �U1. The basic basic state potential vorticity gradient is
then given by

Q1 D ˇy C k2
dUy; Q2 D ˇy � k2

dUy (6.105)

where U D U1. (Note that this differs by a constant factor from the U in the Eady
problem.) Even in the absence of ˇ there is a non-zero potential vorticity gradient. Why
should this be different from the Eady problem? — after all, the shear is uniform in both
problems. The difference arises from the vertical boundary conditions. In the standard
layered formulation the temperature gradient at the boundary conditions is absorbed
into the definition of the potential vorticity in the interior. This results in a nonzero inte-
rior potential vorticity gradient at the two levels adjacent to the boundary (the only lay-
ers in the two-layer problem), but isothermal boundary conditions D=Dt.@ =@z/ D 0.
In the Eady problem we have a zero interior gradient of potential vorticity but a tem-
perature gradient at the boundary. The two formulations are physically equivalent — a
finite-difference example of the Bretherton boundary layer.

The linearized potential vorticity equation is, for each layer,

@q0
i

@t
C Ui

@q0
i

@x
C v0

i

@Qi

@y
D 0; i D 1; 2 (6.106)

or, more explicitly,�
@

@t
C U

@

@x

�"
r

2 0
1 C

k2
d

2
. 0

2 �  0
1/

#
C
@ 0

1

@x
.ˇ C k2

dU / D 0; (6.107a)
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k2
d

2
. 0

1 �  0
2/

#
C
@ 0

2

@x
.ˇ � k2

dU / D 0: (6.107b)

For simplicity we will set the problem in a square, doubly-periodic domain, and so seek
solutions in the form,

 0
i D Re	ie

i.kxCly�!t/
D Re	ie

ik.x�ct/eily ; i D 1; 2: (6.108)

Here, k and l are the x- and y-wavenumbers, and .k; l/ D .2 =L/.m; n/ where L

is the size of the domain and m and n are integers. The constant 	i is the complex
amplitude.

6.7.2 The solution

Substituting (6.108) into (6.107) we obtain

Œik.U � c/�
h
�K2	1 C kd

2.	2 � 	1/=2
i

C ik	1.ˇ C k2
dU / D 0; (6.109a)

Œ�ik.U C c/�
h
�K2	2 C kd

2.	1 � 	2/=2
i

C ik	1.ˇ � kd
2U / D 0; (6.109b)

where K2 D k2 C l2. Adding and subtracting these two equations givesh
.U � c/.kd

2=2 C K2/ � .ˇ C k2
dU /

i
	1 �

h
k2

d .U � c/=2
i
	2 D 0; (6.110a)

�

h
k2

d .U C c/=
i
	1 C

h
.U C c/.kd

2=2 C K2/C .ˇ � kd
2U /

i
	2 D 0: (6.110b)

These equations are of the form

ŒA�	1 C ŒB�	2 D 0; ŒC �	1 C ŒD�	2 D 0; (6.111)

and for nontrivial solutions the determinant of coefficients must be zero; that is AD �

BC D 0. This gives a quadratic equation in c and solving this we obtain

c D �
ˇ

K2 C k2
d

8<:1 C
kd

2

2K2
˙

k2
d

2K2

"
1 C

4K4.K4 � kd
4/

k4
ˇ
k4

d

#1=2
9=; ; (6.112)

where K4 D .k2 C l2/2 and kˇ D
p
ˇ=U (its inverse is known as the Kuo scale).

We may nondimensionalize this equation using the deformation radius Ld as the length
scale and the shear velocity U as the velocity scale.11 Then, denoting non-dimensional
parameters with hats, we have

k D

yk

Ld
; c D yc U; t D

Ld

U
Ot (6.113)
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and the nondimensional form of (6.112) is just

yc D �

yk2
ˇ

yK2 C yk2
d

8<:1 C

yk2
d

2 yK2
˙

yk2
d

2 yK2

"
1 C

4 yK4. yK4 � yk4
d
/

yk4
ˇ

yk4
d

#1=2
9=; ; (6.114)

where ykˇ D kˇLd and ykd D
p

8, as in (6.103). The nondimensional parameter

 D
1

4
yk2
ˇ D

ˇL2
d

4U
; (6.115)

is often useful as a measure of the importance of ˇ; it is proportional to the square of
the ratio of the deformation radius to the Kuo scale

p
U=ˇ. (It is also the two layer

version of the ‘Charney-Green number’ considered more in section 6.10.1.) Let us look
at two special cases first, before considering the general solution to these equations.

I. Zero Shear
If there is no shear (i.e., U D 0) then (6.110a) and (6.110b) are identical and two
roots of the equation give the purely real phase speeds c

c D �
ˇ

K2
; c D �

ˇ

K2 C k2
d

(6.116)

The first of these is the dispersion relationship for Rossby waves in a purely baro-
tropic flow, and corresponds to the eigenfunction 	1 D 	2. The second solution
corresponds to the baroclinic eigenfunction 	1 C 	2 D 0.

II. Zero ˇ
If ˇ D 0, then (6.110) yields, after a little algebra,

c D ˙U

"
K2 � k2

d

K2 C k2
d

#1=2

(6.117)

or, defining the growth rate � by � D �i!,

� D Uk

"
kd

2
� K2

K2 C k2
d

#1=2

(6.118)

These expressions are very similar to those in the Eady problem. Indeed, as we in-
crease the number of layers (using a numerical method to perform the calculation)
the growth rate converges to that of the Eady problem, as illustrated in Fig. 6.13.
We note that:

? There is an instability for all values of U .

? There is a high-wavenumber cut-off, at a scale proportional to the radius of
deformation. For the two-layer model, if K > kd D 2:82=Ld there is
no growth. For the Eady problem, the high wavenumber cut-off occurs at
2:4=Ld.
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Figure 6.13 Growth rates
for models with varying num-
bers of vertical layers, all with
ˇ D 0 and the same uni-
form stratification and shear.
The dashed line is the solution
to the continuous (Eady) prob-
lem, and the solid lines are re-
sults obtained using two, four
and eight layers. The two
and four layer results are la-
belled, and the eight layer re-
sult is almost coincident with
the dashed line. Results with
16 layers (not shown) are in-
distinguishable from the Eady
result.
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? There is no low wavenumber cut-off.

? For any given k, the highest growth rate occurs for l D 0. In the two-layer
model, from (6.118), for l D 0 the maximum growth rate occurs when k D

0:634kd D 1:79=Ld. For the Eady problem, the maximum growth rate occurs
at 1:61=Ld.

The solution in the case with non-zero ˇ

Using (6.114), the growth rate and wave speeds as function of wavenumber are plotted
in Fig. 6.14. We observe that there still appears to be a high wavenumber cut-off and,
for ˇ D 0, there is a low-wavenumber cut-off. A little analysis elucidates these features.

The neutral curve:
For instability, there must be an imaginary component to the phase speed in
(6.114). That is, we require

k4
ˇk4

d C 4K4.K4
� k4

d / < 0: (6.119)

This is a quadratic equation in K4 for the value of K, Kc say, at which the
growth rate is zero. Solving, we find

K4
c D

1

2
k4

d

�
1 ˙

q
1 � k4

ˇ=k4
d

�
; (6.120)

and this is plotted in Fig. 6.15. From (6.119) useful approximate expressions
can be obtained for the critical shear as a function of wavenumber in the limits
of small K and K � kd , and these are left as exercises for the reader.
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Fig. 6.14 Growth rates and wave speeds for the two-layer baroclinic in-
stability problem, from (6.114), with three (nondimensional) values of ˇ: a,
 D 0 (kˇ D 0); b,  D 0:5 (ykˇ D

p
2); c,  D 1 .ykˇ D 2/. As ˇ increases,

so does the low-wavenumber cut-off to instability, but the high-wavenumber
cut-off is little changed. (The solutions are obtained from (6.114), with
ykd D

p
8 and U1 D �U2 D 1=4.)

Minimum shear for instability:
From (6.119), instability arises when ˇ2 yk4

d
=U 2 < 4K4.yk4

d
� K4/ < 0 The

maximum value of the right-hand-side of this expression arises when K4 D

yk4
d
=2; thus, instability arises only when

ˇ2k4
d

U 2
< 4

k4
d

2

k4
d

2
(6.121)

or

Us >
2ˇ

k2
d

(6.122)

where Us D U1 � U2 D 2U . In terms of the deformation radius itself the
minimum shear for instability is

Us >
1

4
ˇL2

d : (6.123)

Fig. 6.16 sketches how this might vary with latitude in the atmosphere and
ocean. (In (6.123), the shear is the difference in the velocity between level
1 and level 2, whereas the deformation radius, NH=f0, is based on the total
height of the fluid. If we were to use half the depth of the fluid in the definition
of the deformation radius, the factor of 4 would disappear.) If the shear is
just this critical value, the instability occurs at k D 2�1=4kd D 0:84kd D

2:37=Ld. As the shear increases, the wavenumber at which the growth rate is
maximum decreases slightly (see Fig. 6.15), and for a sufficiently large shear
the ˇ-effect is negligible and the wavenumber of maximum instability is, as we
saw earlier, 0:634 kd or 1:79=Ld
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Fig. 6.15 Contours of growth rate in the two-layer baroclinic instabil-
ity problem. The dashed line is the neutral stability curve obtained from
(6.120), and the other curves are contours of growth rates obtained from
(6.114). Outside of the dashed line, the flow is stable. The wavenumber
is scaled by 1=Ld (i.e., by kd=

p
8) and growth rates are scaled by the in-

verse of the Eady timescale (i.e., by U=Ld). Thus, for Ld D 1000 km and
U D 10 m s�1, a nondimensional growth rate of 0:25 corresponds to a di-
mensional growth rate of 0:25 � 10�5 s�1 D 0:216 day�1.
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Fig. 6.16 The minimimum shear (Us D U1 � U2, in m/s) required
for baroclinic instability in a two-layer model, calculated using (6.123),
i.e. Us D ˇL2

d=4 where ˇ D 2˝a�1 cos# and Ld D NH=f , were
f D 2˝ sin# . The left panel uses atmospheric parameters of H D 10 km
and N D 10�2 s�1, the right panel uses oceanic parameters representa-
tive of the main thermocline, H D 1 km and N D 10�2 s�1. Because of
the nonuniform stratification and nonzonal flow in the ocean, these values
are likely to be even less quantitatively accurate than those of the atmo-
sphere. However, the implications that the minimum shear is much less for
the ocean and that in both atmosphere and ocean it increases rapidly at low
latitudes, are quite robust.
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Note the relationship of the minimum shear to the basic state potential vorticity
gradient in the respective layers. In the upper and lower layers the potential
vorticity gradients are given by, respectively,

@Q1

@y
D ˇ C kd

2U;
@Q2

@y
D ˇ � kd

2U (6.124a,b)

Thus, the requirement for instability is exactly that which causes the potential
vorticity gradient to change sign somewhere the domain, in this case in the
lower layer. This is an example of the general rule that potential vorticity
(suitably generalized to include the surface boundary conditions) must change
sign somewhere in the domain in order for there to be an instability.

High-wavenumber cut-off:
Instability can only arise when, from (6.119),

4K4.k4
d � K4/ > k4

ˇk4
d ; (6.125)

so that a necessary condition for instability is

k2
d > K2: (6.126)

Thus, waves shorter than the deformation radius are always stable, no matter
the value of ˇ. We also see from Fig. 6.14 and Fig. 6.15 that the high wavenum-
ber cut-off in fact varies little with ˇ if kd � kˇ . Note that the critical shear
required for instability approaches infinity as k approaches kd .

Low-wavenumber cut-off:
Suppose that k � kd . Then (6.119) simplifies to k4

ˇ
< 4K4. That is, for

instability we require

K2 >
1

2
k2
ˇ D

ˇ

2U
: (6.127)

Thus, using (6.126) and (6.127) the unstable waves lie approximately in the
interval ˇ=.

p
2U / < k < kd .

6.8 AN INFORMAL VIEW OF THE MECHANISM OF BAROCLINIC INSTABILITY

In this section we take a more intuitive look at baroclinic instability, trying to understand
the mechanism without treating the problem in full generality or exactness. We will do
this by way of semi-kinematic argument that shows how the waves in each layer of a
two-layer model, or the waves on the top and bottom boundaries in the Eady model,
can constructively interact to produce a growing instability. It is kinematic in the sense
that we initially treat the waves independently, and only subsequently allow them to
interact — but it is this dynamical interaction that gives the instability. We first revisit
the two-layer model and simplify it to its bare essentials.



292 Chapter 6. Barotropic and Baroclinic Instability

6.8.1 The two-layer model

A simple dynamical model

We first re-derive the instability ab initio from the equations of motion written in terms
of the baroclinic streamfunction � and the barotropic streamfunction  where

� �
1

2
. 1 �  2/;  �

1

2
. 1 C  2/: (6.128)

We linearize about a sheared basic state of with zero barotropic velocity and with ˇ D 0.
Thus, with psi D 0 C  0 and � D �Uy C � 0 the linearized equations of motion,
equivalent to (6.107) with ˇ D 0, are

@

@t
r

2 D �U
@

@x
r

2�; (6.129a)

@

@t
.r2

� k2
d /� D �U

@

@x
.r2

C k2
d / : (6.129b)

Seeking solutions of the form . ; �/ D Re . z ; z�/ expŒik.x � ct/� gives

c z � U z� D 0; (6.130a)

c.K2
C k2

d /z� � U.K2
� k2

d /
z D 0: (6.130b)

These equations have nontrivial solutions if the determinant of the matrix of coefficients
is zero, giving the quadratic equation c2.K2 C k2

d
/ � U 2.K2 � k2

d
/ D 0. Solving this

gives

c D ˙U

 
K2 � k2

d

K2 C k2
d

!1=2

: (6.131)

Instabilities occur for K2 < k2
d

, for which c D ici ; that is, it is purely imaginary. From
(6.130) unstable modes have

z� D i
ci

U
z D ei =2 ci

U
z : (6.132)

That is, � lags  by 90° for a growing wave (ci > 0). Similarly, � leads  by 90° for
a decaying wave. Now, the temperature is proportional to � , and it is advected by the
vertically averaged perturbation meridional velocity, V (with Fourier mode zV ) where
V D @ =@x . Thus, for growing or decaying waves,

zV D z�
kU

ci

(6.133)

and the meridional velocity is exactly in phase with the temperature for growing modes,
and is out of phase with the temperature for decaying modes. That is, for unstable
modes, polewards flow is correlated with high temperatures, and for decaying modes
polewards flow is correlated with low temperatures. For neutral waves, z� D cr

z =U

and so zV D ik�U=cr and the meridional velocity and temperature are  =2 out of
phase. Thus, to summarize:
? Growing waves transport heat (or buoyancy) polewards.
? Decaying waves transport heat equatorward.
? Neutral waves do not transport heat.
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Further simplifications to the two-layer model

First consider (6.129) for waves much larger than the deformation radius; we obtain

@

@t
r

2 D �U
@

@x
r

2�;
@

@t
� D U

@

@x
 : (6.134a,b)

for which we obtain c D ˙iU ; that is, the flow is unstable. To see the mechanism,
suppose that the initial perturbation is barotropic and sinusoidal in x, with no y varia-
tion. Polowards flowing fluid (with @ =@x > 0 will, by (6.134b), generate a positive � ,
and the baroclinic flow will be out of phase with the barotropic flow. Then, by (6.134a),
the advection of � by the mean shear produces growth of  that is in phase with the
original disturbance. Contrast this case with that for very small disturbances, for which
K2 � k2

d
and (6.129) becomes

@

@t
r
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2� D �U
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2 : (6.135a,b)

or, in terms of the equations for each layer,
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2 1;
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2 2 D CU
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@x
r

2 2: (6.136a,b)

That is, the layers are completely decoupled and no instability can arise. Motivated
by this, consider waves that propagate independently in each layer on the potential
vorticity gradient caused by ˇ (if non-zero) and shear. Thus in (6.107) we keep the
potential vorticity gradients but neglect k2

d
where it appears alongside r2 and find�
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C U
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D 0; (6.137a)�
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@x

@Q2

@y
D 0: (6.137b)

where @Q1=@y D ˇ C k2
d
U and @Q1=@y D ˇ � k2

d
U . The phase speeds of the

associated waves are

c1 D U �
@yQ1

K2
; c2 D �U �

@yQ2

K2
; (6.138a,b)

In the upper layer the phase speed is a combination of an eastward advection and a fast
westward wave propagation due to a strong potential vorticity gradient. In the lower
layer the phase speed is a combination of a westward advection and a slow eastward
wave propagation due to the weak potential vorticity gradient. The two phase speeds
are, in general, not equal, but they would need to be so if they are to combine to cause
an instability. From (6.138) this occurs when K2 D k2

d
and c1 D c2 D �ˇ=k2

d
.

These conditions are just those occuring at the high-wavenumber cut-off to instability
in the two-level model. For higher wavenumbers, the waves are unable to synchronize,
whereas lower wavenumbers they may become inextricably coupled.

Let us suppose that the phase of the wave in the upper layer lags that (i.e., is west-
ward of) that in the lower layer, as illustrated in the top panel Fig. 6.17. The lower
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Figure 6.17
Baroclinically unsta-
ble waves in a two layer
model. The streamfunc-
tion is shown in the top
panel,  1 for the top
layer and  2 for the
bottom layer. Given the
westward tilt shown,
the temperature, � , and
meridional velocity, V ,
(bottom panel) are in
phase, and the instability
grows.
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panel shows the temperature field, � D . 1 �  2/=2, and the average meridional ve-
locity, V D @x. 1 C  2/=2. In this configuration, the temperature field is in phase
with the meridional velocity, meaning that warm fluid is advected polewards. Now, let
us allow the waves in the two layers to interact by adding one dynamical equation, the
thermodynamic equation, which in its simplest form is

@�

@t
D �v

@�

@y
D f0v

@u

@z
; (6.139)

where � is the basic state temperature field. The temperature field grows in proportion
to v, which is proportional to � if the waves tilt westward with height, and an insta-
bility results. This dynamical mechanism is just that which is compactly described by
(6.134). It is a straightforward matter to show that if the streamfunction tilts eastward
with height, v is out of phase with � and the waves decay.

6.8.2 Interacting edge waves in the Eady problem

A very similar description applies to the Eady problem. As in the two-layer case, first
consider the case in which the bottom and top surfaces are essentially uncoupled. In-
stead of solutions of (6.81) that have the structure (6.82) (which satisfies both boundary
conditions) consider solutions that separately satisfy the bottom and top boundary con-
ditions and that decay into the interior. These are, including the x-dependence,

 B D Re AB eik.x�c1t/e��z=H ;  T D Re AT ei�eik.x�c2t/e�.z�H /=H :

(6.140a,b)
for the bottom and top surfaces respectively, and � is the phase shift, with AB and AT

being real constants. The boundary conditions (6.80) then determine the phase speeds
of the two systems and we find

cB D
�H

�
; cT D �H

�
1 �

1

�

�
: (6.141a,b)
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These are the phase speeds of edge waves in the Eady problem; they are real and in
general they are unequal. It must therefore be the interaction of the waves on the upper
and lower boundaries that is necessary for instability; this can occur when their phase
speeds are equal and from (6.141) this is when � D 2, giving

k D
2

Ld
and c D

�H

2
(6.142a,b)

This phase speed is just that of the flow at mid-level, and at the critical wavenumber in
the full Eady problem [kc D 2:4=Ld, from (6.90)] the phase speed is purely real and
equal to that of (6.142b) — see Fig. 6.10. Thus, (6.142) approximately characterizes
the critical wavenumber in the full problem.

To turn this kinematic description into a dynamical instability, suppose that the
two rigid surfaces are close enough so that the waves can interact, but still far enough
so that their structure is approximately given by (6.140). (Note that if � is too large,
the waves decay rapidly away from the edges and will not interect.) Specifically, let
the temperature perturbation at a given boundary be advected by the total meridional
velocity perturbation, including that arising from the perturbation at the other boundary,
so that at the top boundary

@b0
T

@t
D �.v0

B C v0
T /
@bT

@y
(6.143)

and similarly for the lower. The waves will reinforce each other if v0
T is in phase with

b0
B at the lower boundary, and if v0

B is in phase with b0
B at the upper boundary. Now,

the velocity and buoyancy associated with (6.140) are given by, omitting the harmonic
x-dependence,

bB D �Re kNAB e��z=H ; bT D Re kNAT ei�e�.z�H /=H ; (6.144a)

vB D Re ikAB e��z=H ; vT D Re ikAT ei�e�.z�H /=H : (6.144b)

The fields bT and vT , and bB and vT , will will be positively correlated if 0 < � <  ,
and will be exactly in in phase if � D  =2, and this case is illustrated in Fig. 6.18. Just
as in the two-layer case, this phase corresponds to a westward tilt with height, and it is
this, in conjunction with geostrophic and hydrostatic balance, that allows warm fluid to
move poleward and available potential energy to be released. From (6.143), the pertur-
bation will grow and an instability will result. The analogy between baroclinic insta-
bility and barotropic instability should be evident from the similarity of this description
and that of section 6.2.4, with z in the baroclinic problem playing the role of y in the
barotropic problem, and b the role of v. However, the analogy is not perfect, on two
grounds. First, the boundary condition that w D 0 does have an exact correspondence
in the barotropic problem; second, the nonlinear development of the baroclinic prob-
lem, discussed in chapterch:geoturb, is generally three-dimensional whereas barotropic
development can remain two-dimensional.
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Figure 6.18 Interacting
edge waves in the Eady
model. The upper panel
shows waves on the top
surface, and the lower
panel waves on the bot-
tom. If the streamfunc-
tion tilts westward with
height, then the tempera-
ture on the top (bottom) is
correlated with the merid-
ional velocity on the bot-
tom (top), the waves can
reinforce each other. See
also Fig. 6.12.
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6.9 * THE ENERGETICS OF LINEAR BAROCLINIC INSTABILITY

In baroclinic instability, warm parcels move poleward and cold parcels move equator-
ward. This motion draws on the available potential energy of the mean state, because
warm light parcels move upward, and cold dense parcels downward and the height of
the mean center of gravity of the fluid falls, and the loss of potential energy is converted
to kinetic energy of the perturbation. However, because the instability is growing, the
energy of the perturbation is of course not conserved, and both the kinetic energy and
the available potential energy of the perturbation will grow. However, we still expect a
conversion of potential energy to kinetic, and the purpose of this section is to demon-
strate that explicitly. For simplicity, we restrict attention to the two-layer model with
ˇ D 0.

As in section 5.6, the energy may be partitioned into kinetic energy and available
potential energy. In a three-dimensional quasi-geostrophic flow the kinetic energy is
given by, in general,

KE D
1

2

Z
.r /2 dV (6.145)

which, in the case of the two-layer model becomes

KE D
1

2

Z
.r 1/

2
C .r 2/

2 dA D

Z
.r /2 C .r�/2 dA: (6.146)

Restricting attention to a single Fourier mode this becomes

KE D k2 z 2
C k2

z�2: (6.147)

The available potential energy in the continuous case is given by

APE D
1

2

Z �
f0

N

�2 �
@ 

@z

�2

dV: (6.148)

For a single Fourier mode in a two layer model this becomes

APE D k2
d z�2: (6.149)
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Now, the nonlinear vorticity equations for each level is

@

@t
r

2 1 C J. 1;r
2 1/ D �2

f0w

H
(6.150a)

@

@t
r

2 2 C J. 2;r
2 2/ D 2

f0w

H
(6.150b)

where w is the vertical velocity between the levels. Multiplying these equation by � 1

and � 2 and adding we find

d
dt

KE D
4f0

H

Z
w� dA (6.151a)

For a single Fourier mode this becomes

d
dt

KE D Re
4f0

H
ywz�� (6.151b)

where w D yw expŒi.kx � ct/�C c.c., and the asterisk denotes complex conjugacy.
The continuous thermodynamic equation is

Db

Dt
C wN 2

D 0 (6.152)

which, using b D f0@ =@z and finite-differencing, becomes in the two-level model

@�

@t
C J. ; �/C

wN 2H

4f0

D 0: (6.153)

The change of available potential energy is obtained from this by multiplying by k2
d
�

and integrating, giving Z �
1

2

d
dt

k2
d�

2
C �w

2f0

H

�
dA D 0 (6.154)

or
d
dt

APE D �
4f0

H

Z
w� dA (6.155a)

or, for a single Fourier mode,

d
dt

APE D �Re
4f0

H
zw z��: (6.155b)

From (6.151) and (6.155) it is clear that in the nonlinear equations the sum of the kinetic
energy and the available potential energy is conserved.

We now specialize by obtaining w from the linear baroclinic instability problem.
Using this in (6.151) and (6.155) will give us the conversion between kinetic energy
and potential energy in the growing baroclinic wave. It is important to realize that the
total energy of the disturbance is not conserved — both the potential and kinetic energy
are growing, exponentially in this problem, because they are extracting energy from
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the mean state. To calculate w we use the linearized thermodynamic equation. From
(6.153) this is

@�

@t
� U

@ 

@x
C

HwN 2

4f0

D 0; (6.156)

omitting the primes on perturbation quantities. For a single Fourier mode, this gives

HN 2

4f0

zw D ik.cz� C U z /: (6.157)

But, from (6.130), c z D U z� in two-layer f -plane baroclinic instability and so

HN 2

4f0

zw D ikcz�

�
1 C

U 2

c2

�
D ikcz�

 
2k2

k2 � k2
d

!
: (6.158)

using (6.131). For stable waves, k2 > k2
d

and c D cr and in that case the vertical
velocity is  =2 out of phase with the temperature, and there is no conversion of APE
to KE. For unstable waves c D ici and k2 < k2

d
, and the vertical velocity is in phase

with the temperature. That is, warm air is rising and so there is a conversion of APE to
KE To see this more formally, recall that the conversion from APE to KE is given by
4W z��f0=H . Thus, using (6.158),

d
dt
.APE ! KE/ D Re 2ikck2

d

 
2k2

k2 � k2
d

!
z�2: (6.159)

If the wave is growing, then k2 < k2
d

and c D ici and the right-hand side is real and
positive. For neutral waves, If c D cr the right-hand side of (6.159) is pure imagi-
nary, and so the conversion is zero. This completes our demonstration that baroclinic
instability converts potential energy into kinetic energy.

6.10 * BETA, SHEAR AND STRATIFICATION IN A CONTINUOUS MODEL

The two-layer model illustrates many of the qualitative effects of ˇ on baroclinic insta-
bility. Do these carry over to the continuously stratified case? The answer by-and-large
is yes, but with some important qualifications that generally concern weak or shallow
instabilities. In particular, we will find that there is no short-wave cut-off in the contin-
uous model with non-zero beta, and that the instability determines its own depth scale.
We will illustrate these properties first by way of scaling arguments, and then by way
of numerical calculations.12

6.10.1 Scaling arguments for growth rates, scales and depth

With finite density scale height and non-zero ˇ, the potential vorticity equation, lin-
earized about a mean zonal velocity U.z/, is�

@

@t
C U

@u

@x

�
q0

C
@ 0

@x

@Q

@y
D 0; (6.160)
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where
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D r

2 0
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; (6.161)
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and � is a specified density profile. If we assume that U D �z where� is constant and
that N is constant, and let H �1

� D ���1@�=@z , then
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The boundary conditions on (6.160) are�
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�
@ 0
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�
@ 0
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@z
D 0; at z D 0 (6.165)

and that  ! 0 as z ! 1. The problem we have defined essentially constitutes
the Charney problem. We can reduce this to the Eady problem by setting ˇ D 0 and
H� D 1, and providing a lid some finite height above the ground.

As in the Eady problem, we seek solutions of the form

 D Re z .z/ei.kxCly�kct/ (6.166)

and substituting into (6.160) gives 
f 2
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The Boussinesq version of this expression for a fluid contained between two horizontal
surfaces is just  

f 2
0

N 2

!
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dz2
�

�
K2

�
ˇ
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�
z D 0 (6.168)

It seems natural to nondimensionalize (6.167) using:

z D H�yz; c D �H�yc; K D

�
f0

NH�

�
yK; (6.169)

whence it becomes
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where h � �f 2
0
=.ˇN 2/. The non-dimensional parameter  is known as the Charney-

Green number.13 The Boussinesq version, (6.168), may be non-dimensionalized using
HD in place of H�, where HD is the depth of the fluid between two rigid surfaces. In
that case

d2 z 

dyz2
�

�
yK2

�


yz � yc

�
z D 0; (6.172)

where here the non-dimensional variables are scaled with HD .
Now, suppose that  is large, for example if ˇ or the static stability are large or the

shear is weak. Eq. (6.170) admits of no non-trivial balance, suggesting that we rescale
the variables using h instead of H� as the vertical scale in (6.169). The rescaled version
of (6.170) is then

d2 z 

dyz2
�

1



d z 

dyz
�

�
yK2

�
1 C �1

yz � yc

�
z D 0; (6.173)

or, approximately,
d2 z 

dyz2
�

�
yK2

�
1

yz � yc

�
z D 0: (6.174)

This is exactly the same equation as results from a similar rescaling of the Boussinesq
system, (6.172), as we might have expected because now the dynamical vertical scale,
h, is much smaller than the scale height H� (or HD) and the system is essentially
Boussinesq. Thus, noting that (6.174) has the same nondimesional form as (6.172) save
that  is replaced by unity, and that (6.174) with  D 1 must produce the same scales
and growth rates as in the Eady problem, we may deduce that:

(i) The wavelength of the instability is O.N h=f0/.
(ii) The growth rate of the instability is O.Kc/ D O.f0�=N /.
(iii) The vertical scale of the instability is O.h/ D O.f 2

0
�=.ˇN 2//.

These are the same as for the Eady problem, except with the dynamical height h replac-
ing the geometric or scale height HD . Effectively, the dynamics has determined its own
vertical scale, h, that is much less than the scale height or geometric height, producing
‘shallow modes’.

In the limit  � 1 (strong shear, weak ˇ), the Boussinesq and compressible prob-
lems differ. The Boussinesq problem reduces to the Eady problem, considered previ-
ously, whereas (6.170) becomes, approximately,

d2 z 

dyz2
�

d z 

dyz
�

�
yK2

�
1

yz � yc

�
z D 0; (6.175)

and in this limit the appropriate vertical scale is the density scale height H�. Because
H� � h these are ‘deep modes’, occupying the entire vertical extent of the domain.

The scale h does not arise in the two-level model, but there is a connection between
it and the critical shear for instability in the two-level model. The condition  � 1, or
h � H , may be written as

H� � ˇ

�
NH

f0

�2

: (6.176)
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Compare this with the necessary condition for instability in a two-level model, (6.123),
namely

.U1 � U2/ > ˇ

�
NH�

f0

�2

(6.177)

where H� is the vertical distance between the two levels. Thus, essentially the same
condition governs the onset of instability in the two-level model as governs the pro-
duction of deep modes in the continuous model. This correspondence is a natural one,
because the two-level model all modes are ‘deep’, and the model fails (as it should)
to capture the shallow modes of the continuous system. For similar reasons, there is a
high-wavenumber cut-off in the two-level model: in the continuous model these modes
are shallow and so cannot be captured by two-level dynamics. Somewhat counter-
intuitively, for these modes the ˇ-effect must be important, even though the modes
have small horizontal scale: when ˇ D 0 the instability arises via an interaction be-
tween edge waves at the top and bottom of the domain, whereas the shallow instability
arises via an interaction of the edge waves at the surface with Rossby waves just above
the surface.

6.10.2 Some numerical calculations

Adding ˇ to the Eady model

Our first step add the ˇ-effect to the Eady problem.14 That is, we suppose a Boussinesq
fluid with uniform stratification, that the shear is zonal and constant, and that the entire
problem is sandwiched between two rigid surfaces. Growth rates and phase speeds of
such an instability calculation are illustrated in Fig. 6.19 and the vertical structure is
shown in Fig. 6.20. As in the two-layer problem, there is a low-wavenumber cut-off to
the main instability, although there is now an additional weak instability at very large-
scales. These so-called Green modes have no counterpart in the two-layer model —
they are deep, slowly growing modes that will be dominated by faster growing modes
in most real situations. Also, the fact that the Green modes have a scale much larger
than the deformation scale suggests a degree of caution in the accuracy of the quasi-
geostrophic calculation is warranted. At high wavenumbers is no cut-off to the instabil-
ity in the continuous problem in the case of non-zero beta; the high-wavenumber modes
are shallow and unstable via an interaction between edge waves at the lower boundary
and Rossby waves in the lower atmosphere, and so have no counterpart in either the
the two-layer problem (where the modes are deep) or the Eady problem (which has no
Rossby waves).

Effects of nonuniform shear and stratification

If the shear or stratification is non-uniform an analytic treatment is, even in problems
without ˇ, usually impossible and the resulting equations must be solved numerically.
However, if we restrict attention to a discontinuity in the shear or the stratification, then
resulting problem is very similar to the problem with rigid boundaries, and this property
provides much of the justification for using the Eady problem to model instabilities in
the earth’s atmosphere: in the troposphere the stratification is (approximately) constant,
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Fig. 6.19 Growth rates and wave speeds for the two-layer (solid) and
continuous (dashed) models, with the same values of the Charney-Green
number,  , and uniform shear and stratification. (In the two-layer case
 D ˇL2

d=Œ2.U1�U2/� D 0:5, and in the continuous case  D ˇL2
d=.H�/ D

0:5.) In the continuous case only the wave speed associated with the unsta-
ble mode is shown. In the two-layer case there are two real wave speeds
which coalesce in the unstable region. The two-layer model has an abrupt
short-wave and long-wave cut-off, whereas the growth rate of the continu-
ous model tails off gradually at small wavelengths, and has a weak instabil-
ity (the ‘Green modes’) at large wavelengths.

and the rapid increase in stratification in the stratosphere can be approximated by a
lid at tropopause. Heuristically, we can see this from the form of the thermodynamic
equation, namely

Db

Dt
C N 2w D 0: (6.178)
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Fig. 6.20 Vertical structure of the most unstable modes in a continuously
stratified instability calculation with ˇ D 0 (dashed lines, the Eady problem)
and ˇ ¤ 0 (solid lines), as in Fig. 6.19. The effect of beta is to depress the
height of maximum amplitude of the instability.
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If N 2 is high this suggests w will be small, and a lid is the limiting case of this. The
oceanic problem is rather more involved, because although both the stratification and
shear are concentrated in the upper ocean, they vary relatively smoothly; furthermore,
the shear is high where the stratification is high, and the two have opposing effects.

To go one step further, consider Boussinesq potential vorticity equation, linearized
about a zonally uniform state 	.y; z/, with a rigid surface at z D 0. The normal-mode
evolution equations are similar to (6.69), namely
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where @yQ D ˇ� @yyU � @z.F@zU /. Now suppose that there is a discontinuity in the
shear and/or the stratification in the interior of the fluid, at some level z D zc .

Integrating (6.179a) across the discontinuity, noting that z is continuous in z, gives
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which has similar form to (6.179b). This construction is evocative of the equivalence of
a delta-function sheet of potential vorticity at a rigid boundary, except that now a dis-
continuity in the potential vorticity in the interior has a similarity with a rigid boundary.

We can illustrate the effects of an interior discontinuity that crudely represents the
tropopause by numerically solving the linear eigenvalue problem. For simplicity, we
pose the problem on the f -plane, in a horizontally doubly-periodic domain, with no
horizontal variation of shear, and between two horizontal rigid lids. The eigenvalue
problem is defined by (6.69), and the numerical procedure then solves for the complex
eigenvalue c and eigenfunction z .z/; various results are illustrated in Fig. 6.21. To
parse this rather complex figure, first look at the solid curves in all the panels. These
arise when the problem is solved with a uniform shear and a uniform stratification, with
a lid at z D 0 and z D 1, so simply giving the Eady problem. The familiar growth
rates and vertical structure of the solution are given by the solid curves in panels (b),
(c) and (d), and these are just the same as in Fig. 6.10. The various dotted and dashed
curves show the results when the lid at z D 1 is replaced by stratosphere stretching from
1 < z < 2 either with high stratification, zero shear, or both, an in all of these cases
the stratosphere acts in the same qualitative way as a rigid lid. The vertical structure
of the solution in the troposphere in all cases is quite similar, and the amplitude decays
rapidly above the idealized tropopause, consistent with the almost uniform phase of
the disturbance illustrated in (panel (d); recall that a tilting of the disturbance with
height is necessary for instability). It is these properties that make the Eady problem,
or more generally any baroclinic instability problem that is posed between two rigid
lids, of more general applicability to the earth’s atmosphere than might be first thought:
the high stratification above the tropopause and consequent decay of the instability is
mimicked by the imposition of a rigid lid. (Of course, the ˇ effect is still absent in the
Eady problem.)
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Fig. 6.21 The effect of a stratosphere on baroclinic instability. (a) the given profiles of
shear and stratification; (b) The growth rate of the instabilities; (c) amplitude of the most
unstable mode as a function of height; (d) phase of the most unstable mode. The instabil-
ity problem is numerically solved with various profiles of stratification and shear. In each
profile, in the idealized troposphere (z < 1) the shear and stratification are uniform and
the same in each case. We consider four idealized stratospheres (z � 1/: 1, A lid at z D 1,
i.e., no stratosphere, so Eady problem itself (profiles A+D, solid lines); 2, Stratospheric
stratification same as the troposphere, but zero shear (profiles a+c, dashed); 3, Strato-
spheric shear same as troposphere, but stratification (N 2) four times the tropospheric
value (b+d, dot-dashed); 4, Zero shear and high stratification in the stratosphere (b+c,
dotted). In the troposphere the amplitude and structure of the instability is similar in all
cases, illustrating the similarity of a rigid-lid and abrupt changes in shear or stratifica-
tion. Either a high stratification or a low shear (or both) will result in weak stratospheric
instability.

In the ocean, the stratification is highest in the upper ocean where the shear is also
strongest, and numerical calculations of the structure and growth rate of idealized pro-
files illustrated in Fig. 6.22. The solid currve shows the Eady problem, and the various
dashed curves show the phase speeds, growth rates and phase with combinations of
the profiles illustrated in panel (a). Much of the ocean is characterized by having both
a higher shear and a higher stratification in the upper 1 km or so, and this case is the
one with the dotted line in Fig. 6.22. In this case the amplitude of the instability is
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Fig. 6.22 The baroclinic instability in an idealized ocean, with four different profiles
of shear or stratification. The panels are: (a) The profiles of velocity and density (and
so N 2) used; (b) the growth rates of the various cases; (c) The vertical structure of the
amplitude of the most unstable models; (d) the phase in the vertical of the most unstable
modes. The instability is numerically calculated with four combinations of shear and
stratification: 1, Uniform stratification and shear i.e. the Eady problem, (profiles b+d, solid
lines). 2, Uniform shear, upper-ocean enhanced stratification (a+d, dashed); 3, Uniform
stratification, upper ocean enhanced shear (b+c, dot-dashed); 4, Both stratification and
shear enhanced in upper ocean (a+c, dotted). Case 2 is really more like to an atmosphere
with a stratosphere (see Fig. 6.21), and the amplitude of the disturbance falls off, rather
unrealistically, in the upper ocean. Case 4 (a+c, dotted) is the most oceanically relevant.

also largely confined to the upper ocean, and unlike the Eady problem it does not arise
through the interaction of edge waves at the top and bottom: the potential vorticity
changes sign because of the interior variations due to the nonuniform shear, mainly in
the upper ocean. Consistently, the phase of the baroclinic waves is nearly constant in
the lower ocean in the two cases in which the shear is confined to the upper ocean.
The ocean itself is still more complicated, because the most unstable regions near in-
tense western boundary currents are often also barotropically unstable, and the mean
flow itself may be meridionally directed. Nevertheless, the result that linear baroclinic
instability is primarily an upper ocean phenomonom is quite robust.15 However, we
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will find in chaper 9 that the nonlinear evolution of baroclinic instability leads to eddies
throughout the water column.

Notes

1 Thomson, W. (Lord Kelvin) (1871), Helmholtz (1868). The more general case, con-
sidered by Lord Kelvin (a.k.a. W. Thomson), allows the fluid’s density to vary.

2 See Drazin and Reid (1981) and Chandrasekhar (1961) for more detail.

3 This is Squire’s theorem, which states that for every three-dimensional disturbance
to a plane-parallel flow there corresponds a more unstable two-dimensional one.
This means that the most unstable disturbances are two-dimensional, and there is
no need to consider three dimensional effects to determine whether such a flow is
unstable. See Drazin and Reid (1981).

4 The solution of Fig. 6.6 is obtained with a gridpoint code with 400 � 400 equally
spaced gridpoints. This kind of problem is also well suited to contour dynamics
approach, as in Dritschel (1989).

5 Rayleigh himself did not consider the case with ˇ; this was added by Kuo in 1949.

6 Fjørtoft (1950).

7 Charney and Stern (1962), Pedlosky (1964).

8 Eady (1949), Charney (1947). Eric Eady (1915–1966) is best remembered today
as the author of the iconic ‘Eady model’ of baroclinic instability, which describes
the fundamental hydrodynamic instability mechanism that gives rise to weather
systems. After an undergraduate education in mathematics he joined the U. K.
Meteorological Office in 1937, becoming a forecaster and upper air analyst, in
which capacity he served throughout the war. In 1946 he joined the Department
of Mathematics at Imperial College, presenting his Ph.D. thesis in 1948 on ‘The
theory of development in dynamical meteorology’, subsequently summarized in
Tellus (Eady 1949). This work, masterly in its combination of austerity and rel-
evance, provides a mathematical description of the essential aspects of cyclone
development that stands to this day as a canonical model in the field. It also in-
cludes, rather obliquely, a derivation of the stratified quasi-geostrophic equations,
albeit in a special form. The impact of the work was immediate and it led to visits
to Bergen (in 1947 with J. Bjerknes), Stockholm (in 1952 with C.-G. Rossby) and
Princeton (in 1953 with J. von Neumann and Charney). Eady followed his baroclinic
instability work with prescient discussions of the general circulation of the atmo-
sphere (Eady 1950, Eady and Sawyer 1951, Eady 1954). A perfectionist who sought
to understand it all, Eady’s subsequent published output was small and he later
turned his attention to fundamental problems in other areas of fluid mechanics,
the dynamics of the sun and the earth’s interior, and biochemistry. He finally took
his own life. There is little published about him, save for the obituary by Charnock
et al. (1966).

Jule Charney (1917–1981) played a defining role in dynamical meteorology in the
second half of the 20th century. He made seminal contributions in many areas
including: the theory of baroclinic instability (Charney 1947); a systematic scal-
ing theory for large-scale atmospheric motions and the derivation of the quasi-
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geostrophic equations (Charney 1948); a theory of stationary waves in the atmo-
sphere (Charney and Eliassen 1949); the demonstration of the feasibility of numer-
ical weather forecasts (Charney et al. 1950); planetary wave propagation into the
stratosphere (Charney and Drazin 1961); a criterion for baroclinic instability (Char-
ney and Stern 1962); a theory for hurricane growth (Charney and Eliassen 1964);
the concept of geostrophic turbulence (Charney 1971). His Ph.D. is from UCLA in
1946 and this, entitled ‘Dynamics of long waves in a baroclinic westerly current’,
became his well-known 1947 paper. After this he spent a year at Chicago and
another at Oslo, and in 1948 joined the Institute of Advanced Study in Princeton
where he stayed until 1956 (and where Eady visited for a while). He spent most of
his subsequent career at MIT, interspersed with many visits to Europe, especially
Norway. For a more complete picture of Charney, see Lindzen et al. (1990) and a
brief biography by N. Phillips available at http://www.nap.edu/readingroom/books/biomems/jcharney.html

9 At least I find it so. My treatment of the Eady problem draws from unpublished
notes by J. S. A. Green.

10 If c is purely real (and so the waves are neutral), then there exists the possibility
that �z � c D 0, and the equation for ˚ is

d2˚

dz2
� �2˚ D Cı.z � zc/; zc D c=�: (6.181)

where C is a constant. Because zc is continuous in the interval Œ0; 1� so is c,
and these solutions have a continuous spectrum of eigenvalues. The associated
eigenfunctions provide formal completeness to the normal modes, enabling any
function to be represented as their superposition.

11 Our nondimensionalization of the two-layer system is such as to be in correpon-
dence with that for the continuous system. Thus we choose H to be the total
depth of the domain. This choice produces growth rates and wavenumbers that
are equivalent to those in the Eady problem.

12 Green (1960) and Branscome (1983). Lindzen and Farrell (1980) also provide an
approximate calculation of growth rates in the Charney problem.

13 After Charney (1947), in whose problem it appears, and Green (1960), who appre-
ciated its importance.

14 Our numerical procedure is to assume a wavelike solution in the horizontal of the
form z expŒi.kx C ly � !t/�, and to finite difference the equations in the vertical.
The resulting eigenvalue equations are solved by standard matrix methods, for
each horizontal wavenumber. See Smith and Vallis (1998).

15 Gill et al. (1974) and Robinson and McWilliams (1974) were among the first to look
at baroclinic instability in the ocean.

Further Reading

Drazin P. and W. H. Reid 1981. Hydrodynamic Stability.
A standard text on hydrodynamic instability theory. It discusses nearly all the clas-
sic cases in a straightforward and clear fashion. It includes a more extensive discus-
sion of the linear instability of parallel shear flow than is contained here, although
the treatment of baroclinic instability is rather brief.

Chandrasekhar, S. 1961. Hydrodynamic and Hydromagnetic Stability.
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A classic text discussing many forms of instability but not, alas, baroclinic instabil-
ity.

Pierrehumbert and Swanson (1995) review many aspects of baroclinic instability from
fairly modern point of view.

Problems

6.1 Derive the jump condition (6.29) without directly considering the motion of the
interface. In particular, from the momentum equation along the interface show that

@

@y

 
z 

U � c

!
D �

z 

.U � c/2
(P6.1)

and show that (6.29) follows. Be explicit about the conditions under which the right-
hand-side vanishes when integrated across the interface. (For help see Drazin and
Reid 1981).

6.2 By applying the matching conditions (6.23) and (6.29) at y D ˙a to Rayleigh’s
equation, explicitly derive the dispersion relationship (6.42).

6.3 Show that for very long waves, or as the shear layer becomes thinner, the growth
rate given by (6.42) reduces to that of Kelvin-Helmholz instability of a vortex sheet.

6.4 Obtain the stability properties of the triangular jet, with a basic state velocity given
by

U.y/ D

8̂<̂
:

0 for z � 1

1 � jyj for � 1 � y � 1

0 for z � �1

(P6.2)

In particular, obtain the eigenfunctions and eigenvalues of the problem, and show
that each eigenfunction is either even or odd. Perturbations with even  0 are known
as ‘sinuous modes’ and those with odd  0 are ‘varicose modes’. Show that sinuous
waves are unstable for sufficiently long wavelengths in the z-direction, but that all
varicose modes are stable.

6.5 Consider the incompressible piecewise linear shear flow below:

u D

8̂<̂
:

AL C b.y � L/; y � L

Ay; �L � y � L

�AL C B.y C L/; y � �L;

(P6.3)

The flow is two-dimensional, and A and B are constants with B > 0.

(a) Find the two normal mode frequencies as a function of zonal wavenumber k.
(b) Find the stability boundaries in terms of k and A and provide a physical inter-

pretation. If A D B is the flow stable or unstable? Why?

(If the algebra defeats you, explain carefully the method for doing the problem.)

6.6 Show numerically or analytically that, in the Eady problem:
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(a) Instability occurs for � < 2:399.
(b) The wavenumber at which the instability is greatest is � D 1:61.
(c) The nondimensional growth rate at that wavenumber is 0:31.

6.7 � Consider the vertical modes of continuously stratified problems:

(a) When solving the continuous form of the eigenvalue stability problem (as in the
Eady problem, for example) the differential equation typically seems to have just
one pair of eigenvalues. However, if the equation is solved on a vertical grid
with N levels, the resulting difference equation has N roots. Does this mean
that N � 2 roots are spurious, and if so how might the ‘correct’ eigenvalues
be identified? Alternatively, are there corresponding additional roots in the
continuously stratified problem?

(b) The N -level problem is equivalent to a physically realizable N -layer system,
in which there are presumably N physically meaningful eigenvalues. As N be-
comes large, with the density differences and thicknesses of each layer chosen
to become smaller in a consistent way, the equations describing the layered
system presumably converge to those describing the continuous system, yet
there are still N eigenvalues in the former. How may this paradox be resolved?
What is the physical nature of the extra eigenvalues in the layered system?

6.8 Show, using the two-layer model (or otherwise) that the presence of ˇ reduces the
efficiency of baroclinic instability. For example, show that it makes the meridional
velocity slightly out of phase with the temperature.

6.9 � Consider the baroclinic instability problem with a discontinuity in the stratifica-
tion, but a uniform shear. For example, suppose the shear is uniform for z 2 .0; 1/

with an abrupt change in stratification at z D 0:5. How does the amplitude of the
instability vary on either side of the discontinuity? Your answer may be an analytical
or a numerical calculation, or both.





A simpler explanation is always useful.

Chinese fortune cookie.

CHAPTER 7

Wave–Mean Flow Interaction

W
AVE–MEAN FLOW INTERACTION is concerned with how some mean flow, perhaps
a time or zonal average, interacts with a departure from that mean, and this
chapter provides an elementary introduction to a number of topics in this

area. It is ‘elementary’ because our derivations and discussion are obtained by direct
and straightforward manipulations of the equations of motion, often in the simplest case
that will illustrate the relevant principle. It is implicit in what we do that it is a sensible
thing to decompose the fields into a mean plus some departure, and one case when
this is so is when the departure is of small amplitude. Departures from the mean —
generically called eddies — are of course not always small; for example, in the mid-
latitude troposphere the eddies are often of similar amplitude to the mean flow, and
chapter 9 and 10 explore this from the standpoint of turbulence. However, here we will
generally assume that eddies are indeed of small amplitude.

A wave is a special case of an eddy that is assumed to satisfy, at least approximately,
a dispersion relation. It is the presence of such a dispersion relation that enables a
number of results to be obtained that would otherwise be out of our reach, and that gives
rise to the appellation ‘wave–mean flow’. In midlatitudes the relevent waves are usually
Rossby waves, as introduced in chapter 5, although gravity waves also interact with the
mean flow. It is implicit in defining waves this way that they are generally of small
amplitude, for it is this that allows the equations of motion to be sensibly linearized and
a disperion relation to be obtained (although an isolated wave may have finite amplitude
and still satisfy a dispersion relation). However, this does not mean that the waves do
not interact with each other and with the mean flow; we may expect, or at least hope, that
the qualitative nature of such interactions, as calculated by wave–mean flow interaction
theory, will carry over and provide insights into the finite-amplitude problem. Thus,
one goal of this chapter is to provide a way of qualitatively understanding more realistic
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situations, and to suggest diagnostics that might be used to analyze both observations
and numerical solutions of the fully nonlinear problem. We will almost exclusively
concern ourselves with a zonal mean, for this is the simplest and often most useful case
because of the presence of periodic boundary conditions. (With care some of our results
can be extended to the case of a temporal mean.) We will also be mainly concerned with
quasi-geostrophic dynamics on a ˇ-plane.

7.1 QUASI-GEOSTROPHIC PRELIMINARIES

To fix our dynamical system and our notation, we write down the quasi-geostrophic
potential vorticity equation

@q

@t
C J. ; q/ D D (7.1)

where D represents any nonconservative terms and the potential vorticity in a Boussi-
nesq system is

q D ˇy C � C
@

@z

�
f0

N 2
b

�
; (7.2)

where � is the relative vorticity and b is the buoyancy perturbation from the background
state characterized by N 2, where N 2 D dzb=dz where zb is a reference profile. [In an
ideal gas we have very similar equations, but with q D ˇyC�C.f0=�s/@=@z

�
�sb=N

2
�
.]

We will refer to lines of constant b as isentropes (and also sometimes loosely refer to b

as the temperature). In terms of streamfunction, the variables are

� D r
2 ; b D f0

@ 

@z
; q D ˇy C

"
r

2
C

@

@z

 
f 2

0

N 2

@

@z

!#
 : (7.3)

where r2 � .@2
x C @2

y/. The potential vorticity equation holds in the fluid interior; the
boundary conditions on (7.3) are provided by the thermodynamic equation

@b

@t
C J. ; b/C wN 2

D J; (7.4)

where J represents heating terms. The vertical velocity at the boundary, w, is zero
in the absence of topography and Ekman friction, and if J is also zero the boundary
condition is just:

@b

@t
C J. ; b/ D 0: (7.5)

Equations (7.1) and (7.5) are the evolution equations for the sytem and if both D and J

are zero they conserve both the total energy and the total enstrophy:

d yE

dt
D 0; yE D

Z
V

.r /2 C
f 2

0

N 2

�
@ 

@z

�2

dV;

d yZ

dt
D 0; yZ D

Z
V

q2 dV:

(7.6)

where V is a volume bounded by surfaces at which the normal velocity is zero, or that
has periodic boundary conditions. The enstrophy is also conserved layerwise — that is,
the horizontal integral of q2 is conserved at every level.
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7.1.1 Potential vorticity and buoyancy fluxes in the linear equations

Let us decompose the fields into a mean (to be denoted with an overbar) plus a pertur-
bation (denoted with a prime), and let us suppose the perturbation fields are of small
amplitude. The linearised quasi-geostrophic potential vorticity equation is

@q0

@t
C u

@q0

@x
C u0 @q

@x
C v

@q0

@y
C v0 @q

@y
D D0: (7.7)

If the mean is a zonal mean, or just if the basic state is not a function of x, then v D 0

and this simplifies to
@q0

@t
C u

@q0

@x
C v0 @q

@y
D D0; (7.8)

where
@q

@y
D ˇ �

@2u

@y2
�
@

@z

 
f 2

0

N 2

@u

@z

!
: (7.9)

Multiplying by q0 and zonally averaging gives the enstrophy equation:

1

2

@

@t
q02 D �v0q0

@q

@y
C D0q0 : (7.10)

The quantity v0q0 is the meridional flux of potential vorticity; this is downgradient
when first term on the right-hand side is positive, and it then acts to increase the vari-
ance of the perturbation. (This occurs, for example, when the flux is diffusive so that
v0q0 D ��@q=@y where � may vary but is everywhere positive.) This argument may
be inverted: for inviscid flow, if the waves are growing, as for example in the canonical
models of baroclinic instability discussed in chapter 6, then the potential vorticity flux
is downgradient. If the second term on the right-hand side is negative, as it will be if
D is a dissipative process (for example if D D �0r2q or if D D �rq, where �0 and
r are positive) then a statistical balance can be achieved between enstrophy production
via downgradient transport, and dissipation. If the waves are steady (by which we mean
statistically steady, neither growing nor decaying in amplitude) and conservative (i.e.,
D0 D 0) then we must have:

v0q0 D 0: (7.11)

Similar results follow for the buoyancy at the boundary. We start by linearizing the
thermodynamic equation (7.5) to give

@b0

@t
C u

@b0

@x
C v0 @b

@y
D J 0; (7.12)

and multiplying by b0 and averaging gives

1

2

@

@t
b02 D �v0b0

@b

@y
C J 0b0 : (7.13)

Thus growing adiabatic waves have a downgradient flux of buoyancy at the boundary.
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In the Eady problem there is no interior gradient of basic-state potential vorticity and
all the terms in (7.10) are zero, but the perturbation grows at the boundary. If the waves
are steady and adiabatic then, analogously to (7.11),

v0b0 D 0: (7.14)

The boundary conditions and fluxes may be absorbed into the interior definition of
potential vorticity and its fluxes by way of Bretherton’s boundary layer construction,
described in chapter 5. This can provide notational and conceptual advantages over
dealing with boundary fluxes explicitly, but if an actual calculation is to be performed
there is often little to be gained, for the boundary terms have to be dealt with one way
or the other.

7.2 THE ELIASSEN-PALM FLUX

In terms of the flux of vorticty and buoyancy the eddy flux of potential vorticity is

v0q0
D v0�0

C f0v
0 @

@z

�
b0

N 2

�
(7.15)

The second term on the right-hand side can be written
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(7.16)

using b0 D f0@ 
0=@z .

Similarly, the flux of relative vorticity can be written

v0�0
D �

@

@y
u0v0

C
1

2

@

@x
.v02

� u02/ (7.17)

Using (7.16) and (7.17), (7.15) becomes

v0q0
D �
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@y
.u0v0/C
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@z
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f0

N 2
v0b0

�
C

@

@x

�
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2
.v02

� u02/ �
b02

N 2

�
(7.18)

Thus the potential vorticity flux, in the quasi-geostrophic approximation, can be written
as the divergence of a vector: v0q0 D r � E where

E �

�
1

2
.v02

� u02/ �
b02

N 2

�
i � .u0v0/ j C

�
f0

N 2
v0b0

�
k: (7.19)



7.2 The Eliassen-Palm Flux 315

A particularly useful form of this arises after zonally averaging, after which (7.18) be-
comes

v0q0 D �
@

@y
u0v0 C

@

@z

�
f0

N 2
v0b0

�
: (7.20)

The vector defined by

F � �u0v0 j C
f0

N 2
v0b0 k (7.21)

is called the Eliassen-Palm flux,1 and its divergence, given by (7.20), gives the pole-
wards flux of potential vorticity:

v0q0 D rx �F; (7.22)

where rx � � .@=@y ; @=@z/ is the divergence in the meridional plane. Unless the mean-
ing is unclear, the subscript x on the meridional divergence will be dropped.

For reference, in spherical coordinates and for an ideal gas the EP flux is (see also
the appendix to chapter 12 on page 559):

F D � cos#u0v0 j C cos#
f0

@z�
v0� 0 k; (7.23)

and multiplying by �R and taking the divergence gives

r ��RF D
��R

a cos#
@

@#
.u0v0 cos2 #/C

@

@z

 
�Rf0

@z�
v0� 0 cos#

!
D �R cos#v0q0 : (7.24)

where �R is a reference profile of density,

7.2.1 The Eliassen-Palm relation

On dividing by @q=@y and using (7.22), the enstrophy equation (7.10) becomes

@A
@t

C r �F D D ; (7.25a)

where

A D
q02

2@q=@y
; D D

D0q0

@q=@y
(7.25b)

Eq. (7.25a) is known as the Eliassen-Palm relation, and it is a conservation law for the
the wave activity density A, for if we integrate this expression over a meridional area
A bounded by walls where the eddy activity vanishes, and if D D 0, we obtain

d
dt

Z
A

A dA D 0: (7.26)

In general, a wave activity is a quantity that is quadratic in the amplitude of the pertur-
bation and that is conserved in the absence of forcing and dissipation. More specifically,
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A is the negative of the pseudomomentum, for reasons we will encounter later. Note
that neither perturbation energy nor perturbation enstrophy are wave activities of the
linearized equations, because there can be an exchange of energy or enstrophy between
mean and perturbation — indeed, this is how a perturbation grows in baroclinic or
barotropic instability! This is already evident from (7.10), or in general take (7.7) with
D0 D 0 and multiply by q0 to give the enstrophy equation

1

2

@q02

@t
C

1

2
u � rq02

C u0q0
� rq D 0 (7.27)

where here the overbar is an average (although it need not be a zonal average). Integrat-
ing this over a volume V gives

d OZ0

dt
�

d
dt

Z
V

1

2
q02 dV D �

Z
V

u0q0
� rq dV: (7.28)

The right-hand side does not in general vanish and so OZ0 is not in general conserved.
The ave activity A is thus both a measure of the amplitude of a wave and a conserved
quantity, in the sense of (7.25a).

7.2.2 The group velocity property and Rossby waves

The vectorF describes how the wave activity propagates. In general, we cannot express
it simply in terms of A, but in the case in which the disturbance is composed of plane
or almost plane waves that permit a group velocity to be defined, thenF D cgA, where
cg is the group velocity and (7.25a) becomes

@A
@t

C r � .Acg/ D 0: (7.29)

We shall now demonstrate this when the waves in question are plane Rossby waves,
although the property holds for waves of other types when a group velocity can be
defined.2

The Boussinesq quasi-geostrophic equation on the ˇ-plane, linearized around a uni-
form zonal flow and with constant static stability, is

@q0

@t
C u

@q0

@x
C v0 @q

@y
D 0 (7.30)

where q0 D Œr2 C .f 2
0
=N 2/@2=@z2� 0 and, if u is constant, @q=@y D ˇ. Thus we have�
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C ˇ

@ 0
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D 0: (7.31)

Seeking solutions of the form

 0
D Re	ei.kxClyCmz�!t/; (7.32)
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we find the dispersion relation,

! D uk �
ˇk

�2
: (7.33)

with group velocities,

cy
g D

2ˇkl

�2
; cz

g D
2ˇkmf 2

0
=N 2

�2
; (7.34)

where �2 D .k2 C l2 C m2f 2
0
=N 2/. Also, if u0 D Re yu expŒi.kx C ly C mz � !t/�,

and similarly for the other fields, then

yu D �Re ik	; yv D Re i l	;

yb D Re imf0	; yq D �Re �2	:
(7.35)

The wave activity is then

A D
1

2

q02

ˇ
D
�4

4ˇ
j	2

j (7.36)

where the additional factor of 2 in the denominator arises from the averaging. Using
(7.35) the EP flux, (7.21), is

Fy
D �u0v0 D
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(7.37)

Using this (7.34) and (7.36) gives

F D .Fy ;Fz/ D cgA : (7.38)

If the properties of the medium are varying, but only on scales larger than the scale of the
waves and we can still define a group velocity, then this is a useful expression to estimate
how the wave activity propagates in the atmosphere and in numerical simulations.

7.2.3 The orthogonality of modes

It is a direct consequence of the conservation of wave activity that disturbance modes are
orthogonal in the wave activity norm, and thus are a useful measure of the amplitude of
a particular mode. To show this, we start with the linearized potential vorticity equation,

@q0

@t
C u

@q0

@x
C v0 @q

@y
D 0: (7.39)

Let us seek solutions of the form  0 D Re	 exp.ikx/ where 	 is the sum of modes

	 D

X
n

 n.y; z/e
�ikcnt : (7.40)
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that satisfy
.u�2

k C qy/ n D cn�
2
k n; (7.41)

where
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The upper and lower boundary conditions (at z D 0;�H ) are given by the thermody-
namic equation

@b0

@t
C u

@b0

@x
C v0 @b

@y
D 0; (7.43)

and if we simplify further by supposing @u=@z D 0 then the boundary condition be-
comes

@ 0
z

@t
C u

@ 0
z

@x
D 0: (7.44)

There are no meridional buoyancy fluxes at the boundary. If N 2 is a constant then we
can let  n.y; z/ D  n.y/ cos mz, with m D j =H where j is an integer, so that
qn D �2

k;m
 n where

�2
k;m D

@2

@y2
� .f 2

0 =N
2/m2

� k2; (7.45)

and the boundary conditions are then built-in to any solution we construct from (7.41)
and (7.45).3 We may then consider a single zonal and a single vertical wavenumber,
with the mode n characterizing the meridional variation. (Of course if there is no
horizontal variation of the shear, then these too are harmonic functions, with  n /

sin.n y=L/ for a channel of width L.)
For a given basic state we may imagine solving (7.41), numerically or analytically,

and determining the modes. However, these modes are not orthogonal in the sense of
either energy or enstrophy. That is, denoting the inner product by

ha; bi � L�1

Z
L

ab dy; (7.46)

then, in general,

IE D h n; qmi ¤ 0;

IZ D hqn; qmi ¤ 0;
(7.47)

for n ¤ m, where qn D �2
k;m
 n. Perturbation energy and enstrophy are thus not

wave activities of the linearized equations, and it is not meaningful to talk about the
energy or enstrophy of a particular mode. However, by the same token we may expect
orthogonality in the wave activity norm. To prove this and understand what it means,
suppose that at t D 0 the disturbance consists of two modes, n and m, so that at a later
time q D .qne�ikcnt C qme�ikcmt C c.c./, where cm ¤ cn and we assume that both are
real. The wave activity is

P �
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˛
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˝
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˛
Cc.c. (7.48)
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The second and third terms of this are the wave activities of each mode, and these are
constants (to see this, consider the case when the disturbance is just a single mode).
Now, because dP=dt D 0 the first term must vanish if cn ¤ cm, implying the modes
are orthogonal and in particular

Re
Z

1

qy

qnq�
m dy D 0; (7.49)

for n ¤ m. Readers who would prefer a more direct derivation of the orthogonality
condition directly from the eigenvalue equation (7.41) should see problem 7.6. Orthog-
onality is a useful result, for it means that the wave activity is a proper measure of the
amplitude of a given mode unlike, for example, energy. The conservation of wave ac-
tivity will lead to a more general derivation of the necessary conditions for stability, in
section 7.6.

7.3 THE TRANSFORMED EULERIAN MEAN

The so-called transformed Eulerian mean, or TEM, provides a useful framework for
discussing eddy effects under a wide range of conditions.4 It is useful because, as we
shall see, it is equivalent to a very natural form of averaging the equations that serves
to eliminate eddy fluxes in the thermodynamic equation and collect them together, in
a simple form, in the momentum equation, highlighting the role of potential vorticity
fluxes. It also provides a natural separation between diabatic and adiabatic effects or
between advective and diffusive fluxes and, in the case in which the flow is adiabatic,
a nice simplification of the equations. In later chapters we will use the TEM to better
understand the mid-latitude troposphere and the dynamics of the Antarctic Circumpolar
current, and as a framework for the parameterization of eddy fluxes. Of course, there
being no free lunch, the TEM brings with it its own difficulties, and in particular the
implementation of boundary conditions can cause difficulties, especially in the actual
numerical integration of the TEM equations.

7.3.1 Quasi-geostrophic form

Recall the conventional zonally averaged Eulerian mean equations for the zonally aver-
aged zonal velocity and the buoyancy on the beta-plane:

@u

@t
� .f C �/v D �

@

@y
u0v0 �

@

@z
u0w0 C F (7.50a)

@b

@t
C w

@b

@z
D �

@

@y
v0b0 �

@

@z
w0b0 C J (7.50b)

where F and J represent frictional and heating terms. Note that the only contribution
to v is from the ageostrophic meridional velocity. Using quasi-geostrophic scaling we
neglect the vertical eddy flux divergences and all ageostrophic velocities except when
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multiplied by f0 or N 2. The equations then become

@u

@t
D f0v �

@

@y
u0v0 C F ; (7.51a)

@b

@t
D �N 2w �

@

@y
v0b0 C J ; (7.51b)

where b is in thermal wind balance with u, f0@u=@z D �@b=@y (in the Boussinesq
approximation). One less-than-ideal aspect of these equations is that in the extratropics
the dominant balance is usually between the first two terms on the right-hand sides of
each equation, even in time-dependent cases. Thus, the Coriolis force closely balances
the divergence of the eddy momentum fluxes, and the advection of the mean stratifi-
cation (N 2w, or ‘adiabatic cooling’) often balances the convergence of eddy heat flux,
with heating being a small residual. This may lead to an underestimation of the im-
portance of diabatic heating, for this is ultimately responsible for the mean meridional
circulation. Thus, in the thermodynamic equation we might seek to combine the terms
N 2w and the eddy flux into a single total (or ‘residual’) heat transport term that in a
steady state is balanced by the diabatic term J . The TEM provides this reformulation,
and in doing so the eddy terms in the momentum equation also take a different form.

To begin, note that because v andw are related by mass conservation, we can define
a mean meridional streamfunction  m such that

.v; w/ D

�
�
@ m

@z
;
@ m

@y

�
: (7.52)

Then, if we define a ‘residual’ streamfunction by

 �
�  m C

1

N 2
v0b0 (7.53)

the components of the residual mean meridional circulation are given by

.v�; w�/ D

�
�
@ �

@z
;
@ �

@y

�
; (7.54)

and

v�
D v �

@

@z

�
1

N 2
v0b0

�
; w�

D w C
@

@y

�
1

N 2
v0b0

�
: (7.55)

Note that by construction, the residual overturning circulation satisfies

@v�

@y
C
@w�

@z
D 0: (7.56)

Substituting (7.55) into (7.51a) and (7.51b) the zonal momentum and buoyancy equa-
tions then take the simple forms

@u

@t
D f0v

�
C v0q0 C F

@b

@t
D �N 2w�

C J

; (7.57)
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which are known as the (quasi-geostrophic) transformed Eulerian mean equations. The
potential vorticity flux is given in terms of the heat and vorticity fluxes by (7.15) or
(7.20). For reference, for an ideal gas in spherical coordinates we have:

�R cos#.v�; w�/ D

�
�
@ �

@z
;

1

a

@ �

@#

�
;  �

D  C �R cos#
v0� 0

@z�
; (7.58a)

so that

v�
D v �

1
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@

@z
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v0� 0

@z�

!
; w�

D w C
1

a cos#
@

@#

 
cos#

v0� 0

@z�

!
: (7.58b)

The TEM equations make it apparent that we may consider the potential vorticity
fluxes, rather than the separate contributions of the vorticity and heat fluxes, to force the
circulation. If we know the potential vorticity flux as well as F and J , then (7.56) and
(7.57), along with thermal wind balance

f0

@u

@z
D �

@b

@y
(7.59)

form a complete set. The meridional overturning circulation is obtained by eliminating
time derivatives from (7.57) using (7.59) to give

f 2
0

@2 �

@z2
C N 2 @

2 �

@y2
D f0

@

@z
v0q0 C f0

@F

@z
C
@J

@y
: (7.60)

Thus, the residual or net overturning circulation is ‘driven’ by the (vertical derivative
of the) potential vorticity fluxes and the diabatic terms — driven in the sense that if we
know those terms we can calculate the overturning circulation. Note that this equation
applies at every instant, even if the equations are not in a steady state.

7.3.2 The TEM in isentropic coordinates

The residual circulation has an illuminating interpretion if we think of the fluid as com-
prising multiple layers of shallow water, or equivalently if we cast the problem in isen-
tropic coordinates (section 3.9). The momentum and mass conservation equation can
then be written as

@u

@t
C u � ru � f v D F (7.61a)

@h

@t
C r � .hu/ D J (7.61b)

In isentropic coordinates h is the thickness between two isentropic surfaces and H D

H.b/ is its mean thickness, and the layer thickness is a measure of the temperature of
the layer. With quasi-geostrophic scaling (so that ˇ and variations in layer thickness are
small) zonally averaging in a conventional way gives

@u

@t
� f0v D v0�0 C F (7.62a)
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@h

@t
C H

@v

@y
D �

@

@y
v0h0 C J Œh� (7.62b)

The overbars in these equations denote averages taken along isentropes, but are other-
wise conventional, and the meridional velocity is purely ageostrophic. We now choose
to define the residual circulation by

v�
D v C

1

H
v0h0 (7.63)

which is analogous to (7.55). Using (7.63) in (7.62) gives

@u

@t
� f0v

�
D v0q0 C F (7.64a)

@h

@t
C H

@v�

@y
D J Œh�: (7.64b)

where

v0q0 D v0�0 C
f0

H
v0h0 : (7.65)

From (7.63) we see that the residual velocity is a measure of the total meridional mass
flux, eddy plus mean, in an isentropic layer. This is often a more useful quantity than the
Eulerian velocity v because it is generally the former, not the latter, that is constrained
by the external forcing. What we have done, of course, is to effectively use a mass-
weighted mean in (7.61b); that is, if we define the mass-weighted mean by

v� �
hv

h
(7.66)

so that

v� D v C
1

h
v0h0 ; (7.67)

then the zonal average of (7.61b) is just

@h

@t
C

@

@y
.hv�/ D J Œh�; (7.68)

which is the same as (7.64b) if h D H . Similarly, if we use the mass weighted velocity
(7.67) in the momentum equation (7.62a) we obtain (7.64a).

Evidently, if the mass-weighted meridional velocity is used in the momentum and
thickness equations then the eddy mass flux does not enter the equations explicitly —
the only eddy flux in (7.64) is that of potential vorticity. That is, in isentropic coor-
dinates the equations in TEM form are equivalent to the equations that arise from a
particular form of averaging — mass weighted averaging — rather that the conven-
tional Eulerian averaging. Does a similar relationship hold in height coordinates? The
answer is yes, as we now see.
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Fig. 7.1 Two isentropic surfaces, �1 and �2, and their mean positions,
�1 and �2. The departure of an isentrope from its mean position is pro-
portional to the temperature perturbation at the isentrope’s mean position,
and the variations in thickness (h0) of the isentropic layer are proportional
to the vertical derivative of this.

7.3.3 Connection between the residual and mass-weighted circulation

We now show that averaging the total transport in isentropic layers is equivalent to the
mass transport evaluated by the TEM formalism in height coordinates.5

Consider two isentropic surfaces, �1 and �2 with mean positions �1 and �2, as in
Fig. 7.1. (We use z to denote the vertical coordinate, and � to denote the location of
isentropic surfaces.) The meridional transport between these surfaces is given by

T D

Z �1

�2

v dz: (7.69)

If the velocity does not vary with height within the layer (and in the limit of layer
thickness going to zero this is the case) then T D vh where h D �1 � �2 is the
thickness of the isentropic layer. The zonally-averaged transport is then given by

T D
1

L

Z
L

T dx D
1

L

Z
L

�Z �1

�2

v dz

�
dx D

Z �1

�2

v dz D vh D vh C v0h0 (7.70)

with obvious notation, and an overbar denoting a zonal average. Letting the distance
between isentropes shrink to zero this result allows us to write

v� D
T

h
D vb

C v0h0
b
=h (7.71)

where now h D @z=@b is the thickness density, a measure of the thickness between two
isentropes, and this result is equivalent to (7.67).
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The averaged quantity v� is not proportional to the average of the velocity at con-
stant height, or even to the average along an isentrope; rather, it is the thickness-
weighted zonal average of the velocity between two isentropic surfaces of mean sep-
aration h. Our goal is to express this transport in terms of Eulerian-averaged quantities,
at a constant height z.

Let us first connect an average along an isentrope of some variable � to its average
at constant height by writing, for small isentropic displacements,

�b
D �.z C �0/

z
� �.z/C �0@�=@z

z
(7.72)

where the superscript explicitly denotes how the zonal average is taken, and �0 is the
displacement of the isotherm from its mean position. This can be expressed in terms of
the temperature perturbation at the location of the mean isentrope by Taylor expanding
b around its value on that mean isentrope. That is,

b.�/ D b.�/C

�
@b

@z

�
zD�

.� � �/C � � � ; (7.73)

giving

�0
�

�b0

@zb.�/
� �

b0

@zb
z ; (7.74)

where �0 D � � � and b0 D b.�/ � b.�/. Using (7.74) in (7.72) (and omitting the
superscript z on @zb) we obtain, with � D v,

vb
D vz

�
b0@zv

0
z

@zb
: (7.75)

Note that if v is in thermal wind balance with b then the second term vanishes identi-
cally, but we will not invoke this.

We now transform the second term on the right-hand side (7.71) to an average at
constant z. The variations in thickness of an isothermal layer are given by

h0
� h

@�0

@z
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@

@z

 
b0

@zb

!
; (7.76)

using (7.74). Thus, neglecting terms that are third-order in amplitude,

v0h0
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(7.77)

Using both (7.75) and (7.77), (7.71) becomes

v� D vz
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b0@zv
0
z
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b0

@zb

!z

D vz
�
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(7.78)
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Aspects of the TEM formulation

Properties and features

? The residual mean circulation is equivalent to the total mass-weighted (eddy
plus Eulerian mean) circulation, and it is this circulation that is driven by the
diabatic forcing.

? There are no explicit eddy fluxes in the buoyancy budget; the only eddy term is
the flux of potential vorticity, and this is divergence of the Eliassen-Palm flux;
that is v0q0 D rx � E .

? The residual circulation, v�, becomes part of the solution, just as v is part of the
solution in an Eulerian mean formulation.

But note

? The TEM formulation does not solve the parameterization problem, and eddy
fluxes are still present in the equations.

? The theory and practice are well developed for a zonal average, less so for three-
dimensional, non-zonal flow.6

? The boundary conditions on the residual circulation are neither necessarily sim-
ple nor easily determined; for example, at a horizontal boundary w� is not zero
if there are horizontal buoyancy fluxes.

Examples of the use of the TEM in the general circulation of the atmosphere and
ocean arise in sections 12.2, 12.5 and 16.6.

The right-hand side of this is just the TEM form of the residual velocity. Thus, we have
shown that:

v� �
vh

h
D vb

C
v0h0

b

h
� vz

�
@

@z

 
v0b0

z

@zb

!
� v� : (7.79)

We see the equivalence of the thickness weighted mean velocity on the left-hand side
and the residual velocity on the right-hand side. In the quasi-geostrophic limit N 2 D

@zb and H D h.
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7.3.4 * The TEM in the primitive equations

We now look at the TEM equations in a slightly more general way, although we will
largely restrict our attention to the thermodynamic budget. The basic idea, as before, is
that we seek to replace the advecting velocity in the equations of motion by the residual
velocity v� where

v�
D v � r � (7.80)

where we choose the vector streamfunction  to simplify the resulting equations as
far as possible, and in particular we will now try to distinguish clearly between dif-
fusive and advective eddy fluxes, in a given coordinate system. The meaning of this
last statement will become clearer below, and at this stage the transformation (7.80) is
purely formal. (See section 10.6 and the ones following for possible applications of this
approach.)

We begin with the standard, incompressible, Boussinesq primitive equations. If we
decompose these into Eulerian mean and eddy terms, denoted with an overbar and a
prime, then the momentum and thermodynamic equations may be written

@u

@t
C v � ru C f � u D �r' C R; (7.81a)

@b

@t
C u � rb D J Œb� � r � F Œb�; (7.81b)

and a tracer, ', obeys

@'

@t
C u � r' D J Œ'� � r � F Œ'�: (7.81c)

The equations are completed with the hydrostatic (@�=@z D b) and mass conservation
(r � v D 0) equations. The term R represents the various Reynolds stress terms, the J

terms are sources such as diffusion and heating, and the r � F terms are eddy fluxes of
the tracer indicated in the square brackets. Thus,

r � F Œ'� D
@u0'0

@x
C
@v0'0

@y
C
@w0'0

@z
D r � v0'0 : (7.82)

and similarly for r � F Œb�. (We will omit the identifying label in quare brackets if
there is no ambiguity. Also, in this section, the divergence and related operators are
three dimensional unless noted.) The fluxes may be divided into components along and
across the tracer gradient,

F D F? C Fk D .n � F /n C .n � F / � n (7.83)

where n D r'=jr'j. Thus,

F? D
F � r'

jr'j2
r'; Fk D

r' � F

jr'j2
� r' (7.84)

so that F? (Fk) is perpendicular to (along) iso-surfaces of tracer. Such a decomposition
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is possible for any vector, of course. The component Fk is known as a skew flux, and
this may be written as if it were an advection by some divergence-free velocity Qv. That
is,

r � Fk D r �

�
r� � F

jr'j2
� r'

�
D

�
r �

r' � F

jr'j2

�
� r' � Qv � r'; (7.85)

using the vector identity r �.A �r�/ D r� �r �A. Furthermore, Qv �r' D r �. Qv'/ so
that the skew flux is adiabatic: that is, it serves to redistribute �, but, just like advection
by a true incompressible velocity, it does not of itself change the distribution, or the
census, of '. (It may create a situation in which true dissipation is more effective, by
the production of small scales and enhanced tracer gradients.)

If we use (7.80) in (7.81c) then we obtain

@'

@t
C v�

� r' D J Œ'� � r � F �Œ'�: (7.86)

where
r � F �Œ'� D r � .F Œ'�C 'r � / D r � .F Œ'� � r' � /; (7.87)

using the vector identity r�.'r � / D r�. �r'/. Thus, we may define the residual
flux with respect to ' by

F �Œ'� � F Œ'� � r' � ; (7.88)

remembering that the flux is only relevant up to a non-divergent additive factor. From
(7.88) we see that, no matter how we choose  , the components of the residual and raw
flux along the mean tracer gradient, or across isosurfaces of tracer, are the same:

F �Œ'� � r' D F Œ'� � r': (7.89)

However, the two fluxes along the tracer contours — that is, the skew fluxes — differ
and we may choose  in such a way that this is zero for the residual flux. Why is
this a useful choice? It is because a skew flux is already present in the advective term,
v�

� r' on the left-hand side and so it is useful for the right-hand side to contain only
diagradient fluxes.

To remove the residual skew flux, we simply make the choice

 D
F Œ'� � r'

jr'j2
: (7.90)

The flux associated with this is just the negative of the raw skew flux, because from
(7.88) this is

� r' � D
r' � F Œ'�

jr'j2
� r' D �Fk: (7.91)

Making this choice, the tracer evolution equation may be written

@'

@t
C v�

� r' D �r � F �Œ'� (7.92a)
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where

v�
D v � r � D v � r �

F Œ'� � r'

jr'j2
(7.92b)

and

F �Œ'� D
F Œ'� � r'

jr'j2
r': (7.92c)

Evidently there is a different residual flux and a TEM formulation for any advected
tracer, be it a passive tracer or an active one like potential temperature or potential vor-
ticity. We must choose just one, and in doing so the skew flux of the other tracers will
not be removed. The one most commonly chosen, for both oceanographic and atmo-
spheric applications, is potential temperature. For diagnostic purposes the choice of
scalar may not in fact be critical: the various eddy fluxes are in reality caused by advec-
tion by small-scale turbulent motion, and such motion acts similarly on all conserved
tracers. Thus, removing the skew flux in potential temperature is likely to nearly re-
move it for all nearly-conserved tracers. Potential vorticity might be another suitable
choice in some circumstances.

Suppose that the eddying flow is adiabatic, which is a particularly good approxi-
mation in the ocean interior and, if not to quite the same extent, in the stratosphere.
This means that there is no eddy buoyancy flux across isopycnals (or heat flux across
isotherms) and the diagradient residual flux with respect to bouyancy is zero. The ther-
modynamic equation is then

@b

@t
C v�

� rb D J Œb�: (7.93)

Thus, in much the same way as arose in the quasi-geostrophic equations, the trans-
formed thermodynamic equation appears devoid of explicit eddy terms. However, the
(usually numerical) solution of the transformed equations is not necessarily straightfor-
ward, because the residual velocity does not vanish at the boundary. Thus, for example,
in w�

¤ 0 at a surface where there are nonzero heat fluxes.

A zonal average

Let the averages in the above expression (as denoted by the overbar) be a zonal average;
the residual streamfunction is then a scalar,  , where  D i and

v�
D �

@ 

@z
; w�

D
@ 

@y
: (7.94)

The residual streamfunction of (7.90) becomes

 D
v0b0 bz � w0b0 by

jrmbj2
(7.95)

and the residual flux is

F �Œb� D
v0b0 by C w0b0 bz

jrmbj2
rb (7.96)

where rmb D j @b=@y C k @b=@z . Given a residual streamfunction, the zonally aver-
aged zonal momentum equation can then be cast in TEM form, and a form of the EP
flux naturally appears on the right-hand side.7



7.3 The Transformed Eulerian Mean 329

Relation to quasi-geostrophy

If the isotherms are nearly flat then the above forms reduce to the quasi-geostrophic
TEM equations. Specifically, (i) jrbj is approximated by bz D b0z , and (ii) vertical
eddy thermal fluxes are neglected. The streamfunction (7.95) then reduces to

 D
v0b0

jbzj
(7.97)

which is the same as the eddy part of (7.53).

* More general forms

Transformations more general than that of (7.90) are possible that still lead to a trans-
formed thermodynamic budget with the same general form, and in particular still par-
tition the flux into a skew component and a diagradient component, and that may be
particularly useful as boundaries are approached.8 In particular, we may choose

 D
F Œ'� � r'

jr'j2
C

F Œ'� � r'

jr'j2
˛: (7.98)

where ˛ is an arbitrary vector. The transformed evolution equation for ' is then

@'

@t
C v�

� r' D �r � F �Œ'�: (7.99)

where

F �Œ'� D
F Œ'� � r'

jr'j2
.r' C ˛ � r'/ (7.100)

and v�
D v � r � . The residual flux is still proportional to the diagradient flux, and

will be zero if the eddies are adiabatic. However, unlike (7.92c) the flux is not directed
parallel to to the gradient.

A particularly common choice is to choose ˛ to be proportional to the isothermal
slope. Then, with ' D b, we have

˛ D �
k � rb

bz

(7.101)

or, in the zonally averaged case ˛ D i˛ D �iby=bz . After some algebra, we then find

 D
F Œb� � k

bz

D
1

b z

�
i v0b0 � j u0b0 ;

�
(7.102)

and

F �Œb� D
F Œb� � rb

bz

k: (7.103)

In full, the averaged thermodynamic equation may be written as

@b

@t
C .u C Qu/ � rb C .w C Qw/

@b

@z
D
@G

@z
: (7.104)
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where

G D
v0b0 � rb

@zb
D

1

@zb

 
u0b0 � rzb C w0b0

@b

@z

!
: (7.105)

It may also be readily verified by direct manipulation that this is exactly equivalent to
the usual, Eulerian averaged, thermodynamic equation. The eddy induced velocities Qu

and Qw may also be conveniently written in terms of a streamfunction as

Qu D �
@ Q 

@z
; Qw D r � Q (7.106a)

where

Q D
F Œb�

@zb
D

u0b0

@zb
: (7.106b)

[Note Q is different from the  of (7.102).] The quasi-geostrophic form follows par-
ticularly easily from this by setting G D 0 and b D b0 in (7.106).

This can be a particularly useful form in the diagnosis of numerical experiments
and observations in the interior of the ocean or atmosphere where isopycnal slopes are
small, and here it differs little from (7.92) but is easier to calculate and interpret. It
is also useful for eddy flux parameterization schemes, considered in chapter 10. The
various forms of TEM do differ when isopycnals are steeply sloping and, relatedly, near
boundaries. Note, for example, that the vertical residual velocity does not vanish at a
horizontal boundary if there is a non-zero horizontal buoyancy flux.9

7.4 THE NONACCELERATION RESULT

For the rest of this chapter we return to quasi-geostrophic dynamics, and consider fur-
ther the interpretation and application of potential vorticity fluxes and its relatives. We
first consider a particularly important result in wave–mean flow dynamics, the nonac-
celeration result.10

7.4.1 A derivation directly from the potential vorticity equation

Consider how the potential vorticity fluxes affect the mean fields. If the waves are
steady and conservative then, from (7.11) or (7.25a), the EP flux is non-divergent and
the meridional potential vorticity flux, v0q0 , is zero. Now, the zonally-averaged potential
vorticity equation is

@q

@t
C
@v0q0

@y
D D : (7.107)

Thus, if the above conditions are satisfied we have @q=@t D 0. Now, in quasi-geostrophic
theory the buoyancy and geostrophically balanced velocity can be determined from the
potential vorticity via an elliptic equation, and in particular

q � ˇy D
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: (7.108)
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and so differentiating (7.107) with respect to y and using (7.22) we obtain"
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@y2
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@z

!#
@u

@t
D .r �F/yy � Dy : (7.109)

Thus, if the terms on the right-hand side are zero then a solution is

@u

@t
D 0; (7.110)

and this is the unique solution if there is no acceleration at the boundaries. This is a
nonacceleration result. That is to say, under the non-acceleration conditions the ten-
dency of the mean fields, and in particular the zonally-averaged zonal flow, are in-
dependent of the waves and, in the absence of other terms, are zero. Explicitly, the
nonacceleration conditions are that:

(i) The waves are steady (so that, using (7.25a), A does not vary).
(ii) The waves and mean flow are conservative (i.e., D D 0 and D D 0), so that it

is not the presence of dissipative terms that allow there to be a non-zero potential
vorticty flux. Given this and the first condition, (7.25a) implies that r �F D 0.

(iii) The waves are of small amplitude (all of our analysis has neglected terms that are
cubic in perturbation amplitude).

(iv) The waves do not affect the boundary conditions (so there are no boundary contri-
butions to the acceleration).

The result applies to the buoyancy and velocity fields that are directly invertible from
potential vorticity, and not to the ageostrophic velocities. Given the way we have de-
rived it, it does not seem a surprising result; however, it can be powerful and counter-
intuitive, for it means that steady waves (i.e., whose amplitude does not vary) do not
affect the zonal flow. However, they do affect the meridional overturning circulation,
and the relative vorticity flux also may be nonzero. In fact, the nonacceleration theo-
rem is telling us that the changes in the vorticity flux are exactly compensated for by
changes in the meridional circulation, and there is no net effect on the zonally-averaged
zonal flow. It is irreversibility, often manifested by the breaking of waves, that leads to
permanent changes in the mean flow.

The derivation of this result by way of the momentum equation, which one might
expect to be more natural, is rather awkward because one must consider momentum and
buoyancy fluxes separately. Furthermore, the zonally averaged meridional circulation
comes into play: for example, meridional velocity, v, is, although small because it
is purely ageostrophic, not zero and we cannot neglect it because it is multiplied by
Coriolis parameter, which is large. Thus, the eddy vorticity fluxes can affect both the
meridional circulation and the acceleration of the zonal mean flow, and it might seem
impossible to disentangle the two effects without completely solving the equations of
motion. Fortunately, the situation is simplified and clarified via the use of the TEM, as
we now see.

7.4.2 Use of TEM to given the nonacceleration result
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A two-dimensional case

Consider two-dimensional incompressible flow on the ˇ-plane, for which there is no
buoyancy flux. The linearized vorticity equation is

@�0

@t
C u

@�0

@x
C v0 @�

@y
D D (7.111)

from which we derive, analogously to (7.25a), the Eliassen-Palm relation

@A
@t

C
@F
@y

D D (7.112)

where F D �u0v0 , D represents nonconservative forces, and

A D
�02

2@y�
D

1

2
�02
@�

@y
(7.113)

The quantity �0 � ��0=@y� is proportional to the meridional particle displacement in a
disturbance. Now consider the x-momentum equation

@u

@t
D �

@u2

@x
�
@uv

@y
�
@�

@x
C f v (7.114)

Zonally averaging, noting that v D 0, gives

@u

@t
D �

@uv

@y
D v0�0 D

@F
@y
: (7.115)

Finally, combining (7.112) and (7.115) gives

@

@t
.u CA/ D D (7.116)

In the absence of nonconservative terms (i.e., ifD D 0) the quantity uCA is constant.11

Further, if the waves are steady and conservative then A is constant and, therefore, so
is u.

The stratified case

In the stratified case we can use the TEM form of the momentum equation to derive a
similar result. The unforced zonally averaged zonal momentum equation can be written

@u

@t
� f0v

�
D r �F; (7.117)

and using the Eliassen-Palm relation this may be written,

@

@t
.u CA/ � f0v

�
D D (7.118)
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and so again A is related to the momentum of the flow. If, furthermore, the waves
are steady (@A=@t D 0) and conservative (D D 0), then then @u=@t � f0v

�
D 0.

However, under these same conditions the residual circulation will also be zero. This
is because the residual meridional circulation .v�; w�/ arises via the necessity to keep
the temperature and velocity fields in thermal wind balance, and is thus determined
by an elliptic equation, namely (7.60). If the waves are steady and adiabatic then the
right-hand side of this equation is zero and

f 2
0

@2 �

@z2
C N 2 @

2 �

@y2
D 0: (7.119)

If  � D 0 at the boundaries, then the unique solution of this is  � D 0 everwhere.
At the meridional boundaries we may certainly suppose that  � vanishes if these are
quiescent latitudes, and at the horizontal boundaries the buoyancy flux will vanish if the
waves there are steady, because from (7.10)

v0b0
@b

@y
D �

1

2

@

@t
b02 D 0: (7.120)

Under these circumstances, then, the residual meridional circulation vanishes in the
interior, and from (7.117), the mean flow is steady.

Compare (7.117) with the momentum equation in conventional Eulerian form, namely

@u

@t
� f0v D v0�0 (7.121)

There is no reason that the vorticity flux should vanish when waves are present, even
if they are steady. However, such a flux is (under nonacceleration conditions) precisely
compensated by the meridional circulation f0v, something that is almost impossible to
infer or intuit directly from (7.121). Even when nonacceleration conditions do not apply
there will be a significant cancellation between the two terms, and any acceleration of
the mean flow will largely be a result of additional terms in the equation. Unlike the
proof of the nonacceleration result given in section 7.4.1 the above argument does not
use the invertibility property of potential vorticty so directly, suggesting an extension to
the primitive equations, but we do not pursue that here.12 Various results regarding the
TEM and nonacceleration are summarized in the shaded box on the next page.

7.4.3 The EP flux and form drag

It may seem a little magical that the zonal flow is driven by the Eliassen-Palm flux via
(7.117). The polewards vorticity flux is clearly related to the momentum flux conver-
gence, but why should a polewards buoyancy flux affect the momentum? The TEM
form of the momentum equation is

@u

@t
D

@

@z

�
f0

N 2
v0b0

�
C Fm: (7.122)
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TEM, Residual Velocities, Nonacceleration, and All That

For a Boussinesq quasi-geostrophic system, the TEM form of the momentum and ther-
modynamic equations are:

@u

@t
� f0v

�
D r �F;

@b

@t
C w� @

@z
b0 D J (T.1)

where @b0=@z D N 2, J represents diabatic effects, F is the Eliassen-Palm (EP) flux
(and rx �F D v0q0) and the residual velocities are
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�
1

N 2
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�
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D w C
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�
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N 2
v0b0

�
: (T.2)

Spherical coordinate and ideal gas versions of these take a similar form. We may define
a meridional overturning streamfunction such that .v�; w�/ D .�@ �=@z ; @ �=@y/,
and using thermal wind to eliminate time-derivatives in (T.1) we obtain

f 2
0

@2 �

@z2
C N 2 @

2 �
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D f0

@

@z
v0q0 C

@J

@y
: (T.3)

The above manipulations may seem formal, in that they simply transform the mo-
mentum and thermodynamic equation from one form to another. However, the resulting
equations have two potential advantages over the untransfomed ones:

(i) The residual meridional velocity is approximately equal to the average thickness-
weighted velocity between two neighbouring isentropic surfaces, and so is a mea-
sure of the total (Eulerian mean plus eddy) meridional transport.

(ii) The EP flux has certain attractive features, directly related to the physical prop-
erties of waves. The divergence of the EP flux is the meridional flux of potential
vorticity:

F D �.u0v0/ j C

�
f0

N 2
v0b0

�
k; r �F D v0q0: (T.4)

Furthermore, the EP flux satisfies, to second order in wave amplitude,

@A
@t

C r �F D D; where A D
q02

2@q=@y
; D D

D0q0

@q=@y
: (T.5)

The quantityA is a wave activity density, andD is its dissipation. For nearly plane
waves, A and F are connected by the group velocity property,

F D .Fy ;Fz/ D cgA: (T.6)

where cg is the group velocity of the waves. If the waves are steady (@A=@t D 0)
and dissipationless (D D 0) then r � F D 0 and, using (T.1) and (T.3) there is
no wave-induced acceleration of the mean flow. More commonly there is enstro-
phy dissipation, or wave-breaking, and r � F < 0; such wave drag leads to flow
deceleration and/or a polewards residual meridional velocity.
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where Fm D v0�0 Cf0v
� represents forces from the momentum flux and Coriolis force.

The first term on the right-hand side certainly does not look like a force; however, it
turns out to be directly proportional to the form drag between isentropic layers. Recall
from section 3.5 that the form drag, �d , at an interface between two layers of shallow
water is

�d D ��0
@p0

@x
(7.123)

where � is the interfacial displacement. But from (7.74) � D �b0=N 2 and with this and
geostrophic balance we have

�d D
f0

N 2
v0b0 (7.124)

Thus, the vertical component of the EP flux (i.e., the meridional buoyancy flux) is in
fact a real stress acting on a fluid layer and equal to the momentum flux caused by the
wavy interface. The net momentum convergence into an infinitesimal layer of mean
thickness h is then [c.f., (3.64)],

Fd D h
@�d

@z
D h

@

@z

 
v0b0

N 2

!
: (7.125)

and a layer of mean thickness h is accelerated according to

@u

@t
D f0

@

@z

 
v0b0

@zb

!
C Fm: (7.126)

The appearance of the bouyancy flux is really a consequence of the way we have cho-
sen to average the equations: obtaining (7.126) involved averaging the forces over an
isentropic layer, and given this it can only be the residual circulation that contributes to
the Coriolis force. One might say that the vertical component of the EP flux is a force
in drag, masquerading as a bouyancy flux.

7.5 INFLUENCE OF EDDIES ON THE MEAN FLOW IN THE EADY PROBLEM

We now consider the eddy fluxes in the Eady problem, and in particular how these might
feed back onto the mean flow. Because of the simplicity of the setting the problem
can be fully solved in both the Eulerian or residual frameworks, and it is therefore an
instructive example of the TEM methodology.

7.5.1 Formulation

Let us first distinguish between the basic flow, the zonal mean fields, and the perturba-
tion. The basic flow is the flow around which the equations of motion are linearized;
this flow is unstable, and the perturbations, assumed small, grow exponentially with
time. Because they are (formally) always small they do not affect the basic flow, but
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they do produce changes in the zonal mean velocity and buoyancy fields. In Eulerian
form this is represented by,

@u

@t
D f0v �

@u0v0

@y
;

@b

@t
D �N 2w �

@b0v0

@y
; (7.127)

and the TEM version of these equation is

@u

@t
D f0v

�
C v0q0 ;

@b

@t
D �N 2w�; (7.128)

where in the Eady problem @y.u0v0/ and v0q0 are both zero. We can calculate the per-
turbation quantities from the solution to Eady problem (e.g., calculate v0b0) and thus
infer the structure of the mean flow tendencies @u=@t and @b=@t and the meridional
circulation, .v; w/ or .v�; w�/. All of these fields are perturbation quantities and all are
exponentially growing, and so in reality they will eventually have a finite effect on the
pre-existing zonal flow, but in the Eady problem, or any similar linear problem, such
rectification is assumed small and neglected.

Using the thermal wind relation, f0@zu D �@yb to eliminate time derivatives in
(7.127) gives an equation for the meriodional streamfunction  E , namely,

L2

L2
d

@2 E

@z2
C
@2 E

@y2
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1

N 2

@2b0v0

@y2
(7.129)

where .v; w/ D .�@ E=@z ; @ E=@y/ and we have nondimensionalized z with D

and y with L. The boundary conditions are that  E D 0 at y D 0;L and z D

0;D. Similarly, and analogously to to (7.60), we obtain an equation for the residual
streamfunction,  �, namely

L2

L2
d

@2 �

@z2
C
@2 �

@y2
D 0 (7.130)

where now the boundary conditions are that N 2w�
D @v0b0=@y at the upper and lower

boundaries, and v D 0 at the lateral boundaries. In terms of the residual streamfunction
this is

 �
D

1

N 2
v0b0 ; at z D 0; 1;  �

D 0; at y D 0; 1: (7.131)

The residual and overturning circulations are related by (7.53), and (7.130) and (7.131)
are, at one level, simply different representations of the same problem, connected by a
simple mathematical transformation. However, the residual streamfunction better rep-
resents the total transport of the fluid. Eq. (7.130) is particularly simple, because of the
absence of potential vorticity fluxes in the interior, and it is apparent that the residual
circulation is driven by boundary sources. We care only about the spatial structure of
the right-hand sides of (7.130) and the boundary conditions of (7.131). The former is
given by

�
@2b0v0

@y2
/ �

@2

@y2
sin2 ly D �2l2 cos 2ly: (7.132)
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Figure 7.2 The Eliassen-Palm
vector in the Eady problem.

The eddy heat fluxes in the Eady problem are independent of height, as noted in chapter
6. This follows without detailed calculation, by first noting that the eddy potential
vorticity flux is zero because the basic state has zero potential vorticity and therefore
none may be generated. Further, because the basic state does not vary in y the there can
be no momentum flux convergence in the y-direction, and so the momentum flux itself
is zero if it is zero on the boundary. This, the eddy heat flux is independent of height
and using (7.21) the EP vectors are directed purely vertically (Fig. 7.2).

The boundary conditions for the residual circulation are

 �.y; 0/ D  �.y; 1/ / sin2 ly: (7.133)

7.5.2 Solution

The solutions to (7.129) and (7.130) may be obtained either analytically or numerically.
In a domain 0 < y < 1 and 0 < z < 1 the residual streamfunction for l D   is given
by:

 �
D

1X
nD1

An sinŒ.2n � 1/ly�
coshŒLd .2n � 1/.z � 0:5/=L�

coshŒLd .2n � 1/=2L�
;

An D
2

 .2n � 1/
�

1

 .2n � 1/ � 2l
�

1

 .2n � 1/C 2l
:

(7.134)

The solution is obtained by first projecting the boundary conditions [proportional to
sin2 ly, or .1 � cos 2ly/=2] onto the eigenfunctions of the horizontal part of the Lapla-
cian (i.e., sine functions), and this gives the coefficients of An. The vertical structure
is then obtained by solving .L=Ld/

2@2
z 

� D �@2
y 

�, which gives the cosh functions.
The series converges very quickly, and the first term in the series captures the dominant
structure of the solution, essentially because, for l D  , sin ly is not unlike sin2 ly on
the interval Œ0; 1�.

The Eulerian circulation is obtained from the residual circulation using (7.53) and



338 Chapter 7. Wave–Mean Flow Interaction

ψ
E
 (Eulerian)

↑↓

H
ei

gh
t (

z/
D

)

0 0.25 0.5 0.75 1
0

0.5

1

ψ* (Residual)

↑ ↓

→

←

→

←

→

←
Latitude (y/L)

H
ei

gh
t (

z/
D

)

0 0.25 0.5 0.75 1
0

0.5

1

Fig. 7.3 The Eulerian streamfunction (top) and the residual streamfunction
for the Eady problem, calculated using (7.129) and (7.130), with L2=L2

d D 9.

so by the addition of a field independent of z and proportional to sin2 ly. The result-
ing structure is dominated by this and the first term of (7.134) (proportional to sin ly)
and, noting that the circulation is symmetric about z D 1=2, we obtain a circulation
dominated by a single cell, with equatorwards motion aloft and polewards motion near
the surface (Fig. 7.3). This suggests that heat flux convergence in high latitudes is lead-
ing to mean rising motion, with the precise shape of the streamfunction determined by
the need to satisfy the boundary conditions. Although this is true, the heat flux arises
because of the motion of fluid parcels, so it may be a little misleading to infer, as one
might from the Eulerian streamfunction, that the heat flux causes the individual parcels
to rise or sink in this fashion. The residual streamfunction is a better indicator of the
total mass transport and, perhaps as one might intuitively expect, these show parcels
rising in the low latitudes and sinking in high latitudes, providing a tendency to flatten
the isopycnals and reduce the meridional temperature gradient.

The residual circulation also shows fluid entering of leaving the domain at the
boundary — what does this represent? Suppose that instead of solving the continu-
ous problem we had posed the problem in a finite number of layers (and we explicitly
consider the two-layer problem below). As the number of layers increases the solutions
to the linear baroclinic instability problem approach that of the Eady problem (e.g., Fig.
6.13); however, as we saw in section 7.3 the residual circulation is closed in the layered
model, and the sum over all the layers of the meridional transport vanishes. Now, in
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Fig. 7.4 The tendency of the zonal mean flow (@u=@t ) and the buoyancy
(@b=@t ) for the Eady problem. Lighter (darker) shading means a positive
(negative) tendency, but the units themselves are arbitrary.

the layered model the vertical boundary conditions are built in to the representation by
way of a redefinition of potential vorticity of the top and bottom layer, so that, in the
layered version of Eady problem there appears to be a potential vorticity gradient in
these two layers, instead of a buoyancy gradient at the boundary. The residual circula-
tion is then closed by a return flow that occurs only in the top and bottom layers, and
as the number of layers increases this flow is confined to a thinner and thinner layer,
and to a delta-function in the continuous limit. To indicate this we have placed arrows
just above and below the domain in Fig. 7.3. (This equivalence between boundary con-
ditions and delta-function sources is the same as that giving rise to the delta-function
boundary layer of section 5.4.3.)

The effect on the mean flow is inferred directly from the residual circulation: the
mean flow acceleration is proportional to v� and the buoyancy tendency is proportional
to �w�, and these are plotted in Fig. 7.4 and Fig. 7.5. Because there is no momentum
flux convergence in the problem the zonal flow tendency is entirely baroclinic — its
vertical integral is zero — and over most of the domain is such as to reduce the mean
shear. Consistently (using thermal wind) the buoyancy tendency is such as to reduce the
meridional temperature gradient; that is, the instabilities act to transport heat polewards
and reduce the instability of the mean flow.
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Fig. 7.5 (a) The tendency of the zonal mean flow (@u=@t ) just below the up-
per lid (dashed) and just above the surface (solid) in the Eady problem. The
vertically integrated tendency is zero. (b) The vertically averaged buoyancy
tendency.

7.5.3 The two-level problem

The residual circulation and mean-flow tendencies can also be calculated for the two-
level (Phillips) problem, and now the ˇ-effect can be included. The potential vorticity
fluxes in each layer are non-zero and the mean flow equations are, for i D 1; 2,
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@t
D f0v

�
i C v0

1
q0

1
;

@b

@t
D �N 2w� (7.135)

The vertical velocity and buoyancy are evaluated at mid-depth, and the thermal wind
equation is u1 � u2 D �.D=2/@yb and, by mass conservation, v�

1 D �v�
2 . The ver-

tical velocity and buoyancy are evaluated at the layer interface. If we define a residual
streamfunction  � such that
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then eliminating time derivatives in (7.135) gives an equation for the residual stream-
function,

@2 �

@y2
�

k2
d

2
 �

D
2f0L2

N 2D
.v0

1
q0

1
� v0

2
q0

2
/; (7.137)

where k2
d
=2 D Œ2f0=.NH /�2 where D is the total depth of the fluid, and we have

nondimensionalized vertical scales by D and horizontal scales by L. As in the Eady
problem it is only the spatial structure of the terms on the right-hand side that are rele-
vant, and these may be calculated from the solutions to the two-level instability problem
in a channel. The main difference from the Eady problem is that the potential vorticity
fluxes are non-zero, even in the case with ˇ D 0: effectively, the boundary fluxes of the
Eady problem are absorbed into the potential vorticity fluxes of the two layers. Solv-
ing for the residual circulation and interpreting the mean-flow tendencies, is left as an
instructive exercise for the reader.13
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7.6 * NECESSARY CONDITIONS FOR INSTABILITY

Let’s take a taxi to the finish line.

Chris Garrett, Ocean Science Meeting, Hawaii 2002.

In the remainder of this chapter we use the ideas of wave-activity conservation to derive
necessary conditions for instability. In sections 6.3 and 6.5.1 we derived such conditions
assuming that the instability to be of normal-mode form. Here we show that such an
assumption is often not necessary, and give a derivations that are both more general and,
in some ways, simpler. The derivations rely on the fact that the potential vorticity flux
may be written as a divergence of a vector — and therefore vanishes when integrated
over a domain, apart from boundary contributions.

7.6.1 Stability conditions from wave activity conservation

Consider again the perturbation enstrophy equation

1

2

@

@t
q02 D �

@q

@y
rx �F: (7.138)

where F is the Eliassen-Palm flux given by (7.21)
Dividing by @q=@y and integrating over a domainDwhich is such that the Eliassen-

Palm flux vanishes at the boundaries (assuming for now that this is possible) givesZ
D

@tq
02

@yq
dx dy D 0 (7.139)

The quantity q02=@yq is the pseudomomentum for this problem. Eq. (7.139) implies
that, in the norm

�
q02=@yq

�
, the perturbation cannot grow unless @q=@y changes sign

somewhere in the domain, or at the boundaries. This result does not depend on there
being a normal mode instability. The simplest result of all occurs in a barotropic prob-
lem with no vertical variation. Then @q=@y D @�a=@y D ˇ�@2u=@y2, and demanding
that this must change sign for an instability is the Rayleigh condition for instability, or
the Rayleigh-Kuo condition if ˇ is present. In the more general case, if @q=@y changes
sign along a vertical line then the instability is called a baroclinic instability, and if it
changes sign along a horizontal the instability is barotropic — these may be taken as
the definitions of those terms. A mixed instability has a change of sign along both a
horizontal and vertical.

7.6.2 Inclusion of boundary terms

Suppose now the flow is contained between two flat boundaries, at z D 0 and z D H ,
and the relevant equations of motion are now the potential vorticity evolution in the
interior, supplemented by the thermodynamic equation at the boundary. These give, in
the usual way, [c.f. (7.10) and (7.13)]
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and
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Now, the polewards flux of potential vorticity is
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and integrating this expression with respect to both y and z givesZ
D
v0q0 dy dz D

�
f0

N 2
v0b0

�H

0

; (7.143)

assuming that the meridional boundaries are at quiescent latitudes. Integrating (7.140)
over y and z, and using (7.143) gives
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Using (7.141) to eliminate v0b0 finally gives
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If this expression is positive or negative definite the perturbation cannot grow and
therefore the basic state is stable. Stability thus depends on the meridional gradient of
potential vorticity in the interior, and the meridional gradient of buoyancy at the bound-
ary. If @q=@y changes sign in the interior, or @b=@y changes sign at the boundary, we
have the potential for instability. If these are both one signed, then various possibilities
exist, for example (with f0 > 0):

I. A stable case:
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Using the thermal wind relationship, f0@u=@z � �@b=@y this is equivalent to:
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Stability also ensues if all inequalities are switched.

II. Instability via interior-surface interactions:
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Using thermal wind this may be written:
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(7.149)
The condition @q=@y > 0 and .@u=@z/zD0 > 0 is the most common criterion
for instability that is met in the atmosphere. In the troposphere we can sometimes
ignore contributions of the buoyancy fluxes at the tropopause .z D H /, and sta-
bility is then determined by the interior potential vorticity gradient and the surface
buoyancy gradient. Similarly, in the ocean contributions from the ocean floor are
normally very small.

III. Instability via edge wave interaction:

@b

@y

ˇ̌̌̌
ˇ
zD0

< 0 and
@b

@y

ˇ̌̌̌
ˇ
zDH

< 0 H) potential instability. (7.150)

And similarly, with both inequalities switched. Using thermal wind this may be
written:

@u

@z

ˇ̌̌̌
zD0

> 0 or
@u

@z

ˇ̌̌̌
zDH

> 0 H) stability. (7.151)

This occurs in the Eady problem, and in effect in the real atmosphere, where the
troposphere acts to some degree like a lid in the linear problem.

Typically, in the atmosphere, the zonally averaged potential vorticity gradient in
the interior is positive almost everywhere, and baroclinic instability arises because of
temperature gradient at the lower boundary. Consider, for example, the Eady problem
in which the basic state is u D � z, N 2 is a constant and ˇ D 0. Then the basic state
has q D 0 in the interior and the instability arises because @b=@y has the same sign at
the upper and lower boundaries, as in case III above. If there is no lid at z D H , then
the instability in the Eady problem disappears. However, instability may arise if there is
a positive shear at the lower boundary and a positive potential vorticity gradient in the
interior and this occurs in the Charney problem.

One consequence of the upper boundary condition is that it provides a condition on
depth of the disturbance. In the Eady problem the evolution of the system is determined
by temperature evolution at the surface,

Db

Dt
D 0 at z D 0; H; (7.152)

(where b D f0@ =@z) and zero potential vorticity in the interior, which implies that

r
2 C k2

dH 2 @
2 

@z2
D 0 0 < z < H; (7.153)

where kd D f0=.HN /. Assuming a solution of the form b � sin kx then the Poisson
equation (7.153) becomes

H 2k2
d

@2 

@z2
D �k2 (7.154)
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with solutions  D A exp.�˛z/CB exp.˛z/ where ˛2 D k2N 2=f 2
0

. The scale height
of the disturbance is thus

h �
f0L

2 N
(7.155)

where L � 2 =k is the horizontal scale of the disturbance. If the upper boundary is
higher than this, it cannot interact strongly with the surface, because the disturbances at
either boundary decay before reaching the other. Put another way, if the structure of the
disturbance is such that it is shallower than H , the presence of the upper boundary is not
felt. In the Eady problem, we know that the upper boundary must be important, because
it is only by its presence that the flow can be unstable. Thus, all unstable modes in the
Eady problem must be ‘deep’ in this sense, which can be verified by direct calculation.
This condition gives rise to a physical interpretation of the high-wavenumber cut-off: if
L is too small, the modes are too shallow to span the full depth of the fluid, and from
(7.155) the condition for this is

Lc D 2 
NH

f0

(7.156)

or

Kc D
f0

NH
D Ld: (7.157)

Wavenumbers larger than the deformation radius are stable in the Eady problem. If ˇ is
non-zero, this condition does not apply, because the necessary condition for instability
can be satisfied by a combination of a surface temperature gradient and an interior
gradient of potential vorticity provided by ˇ, as in condition (II) in section 7.6.2. Thus,
we may expect that, if ˇ ¤ 0, higher wavenumbers (k > kd ) may be unstable but if so
they will be shallow, and this may be confirmed by explicit calculation (see figures 6.12,
6.19 and ??.) In the two-level model shallow modes are, by construction, not allowed
so that high wavenumbers will be stable, with or without beta.

7.7 * NECESSARY CONDITIONS FOR INSTABILITY: PSEUDOENERGY

In this section we derive another necessary condition for instability, based on the con-
servation properties of energy and enstrophy.14

7.7.1 Two-dimensional flow

First consider inviscid, incompressible two-dimensional flow governed by the equation
of motion

@q

@t
C J. ; q/ D 0 (7.158)

where q D � C f D r2 C f is the absolute vorticity and  is the streamfunction. In
a steady state, the streamfunction and the potential vorticity are functions of each other
so that

q D Q.	/; and  D 	.Q/ (7.159)
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where Q is a differentiable but otherwise arbitrary function of its argument, and 	 its
functional inverse. Eq. (7.158) is then

@q

@t
D �

dQ

d 
J.	; 	/ D 0; (7.160)

and all steady solutions are of the form (7.159). We shall prove that if d	=dQ > 0

then the flow is stable, in a sense to be made explicit below. Consider the evolution of
perturbations about such a steady state, so that

q D Q C q0;  D 	 C  0; (7.161)

and we suppose that the perturbation vanishes at the domain boundary or that the bound-
ary conditions are periodic. The linearized perturbation satisfies

@q0

@t
C J. 0;Q/C J.	; q0/ D 0: (7.162)

Now, because potential vorticity is conserved on parcels any function of potential vor-
ticity is also materially conserved, and in particular

D	.q/
Dt

D 0: (7.163)

Linearizing this about q D Q gives

d	
dQ

@q0

@t
C J. 0; 	/C J.	;

d	
dQ

q0/ D 0: (7.164)

Form an energy equation from (7.162) by mulitplying by � 0 and integrating over the
domain. Integrating the first term by parts we find

d
dt

Z
1

2
.r 0/2 dA D

Z
 0J.	; q0/ dA: (7.165)

Similarly, from (7.164) we obtain

d
dt

Z
1

2

d	
dQ

q02 dA D �

Z �
q0J. 0; 	/C q0J.	;

d	
dQ

q0/

�
dA: (7.166)

The second term in square brackets vanishes. This follows using the property of Jaco-
bians, obtained by integrating by parts, that

haJ.b; c/i D hbJ.c; a/i D hcJ.a; b/i D � hcJ.b; a/i ; (7.167)

where the angle brackets denote horizonal integration. Using this we have�
q0J.	;

d	
dQ

q0/

�
D �

�
d	
dQ

q0J.	; q0/

�
D �

1

2

�
d	
dQ

J.	; q02/

�
D �

1

4

�
J.

d	2

dQ
; q02/

�
D 0:

(7.168)
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Adding (7.165) and (7.166) then gives us the conservation law,

yH D
1

2

Z �
.r 0/2 C

d	
dQ

q02

�
dA

d yH

dt
D 0

: (7.169)

The quantity yH is known as the pseudoenergy of the disturbance and because it is a
conserved quantity, quadratic in the wave amplitude, it is (like pseudomomentum) a
wave-activity. Its conservation holds whether the disturbance is growing, decaying, or
neutral.

If d	=dQ is positive everywhere the pseudoenergy is a positive-definite quantity,
and the growth of the disurbance is then strictly limited, and the basic state is stable in
the sense of Liapunov. This means that the magnitude of the perturbation, as measured
by some norm, is bounded by its initial magnitude. In this case we define the norm

jj jj
2

�

Z �
.r /2 C

d	
dQ

.r2 /2
�

dA; (7.170)

so that
jj 0.t/jj2 D jj 0.0/jj2: (7.171)

If d	=dQ > 0 then, although the energy of the disturbance can grow, its final amplitude
is bounded by the initial value of the pseudoenergy, because if perturbation energy is to
grow perturbation enstrophy must shrink but it cannot shrink past zero. Normal mode
instability, in which modes grow exponentially, is completely precluded.

If the pseudoenergy is negative definite then stability is also assured, but this is a
less common situation for it demands that d	=dQ is sufficiently negative so that the
(negative of the) enstrophy contribution is always larger than the energy contribution,
and this can usually only be satisfied in a sufficiently small domain. To see this, suppose
that q0 D r2 0, and that in the domain under consideration the Lapacian operator has
eigenvalues k2 where

r
2 0

D �k2 0 (7.172)

and the smallest eigenvalue is k2
0

. Then by Poincaré’s inequality,Z
.r2 0/2 dA � k2

0

Z
.r 0/2 dA; (7.173)

a sufficient condition to make yH negative definite is that

d	
dQ

< �
1

k2
0

: (7.174)

As the domain gets bigger, k0 diminishes and this condition becomes harder to satisfy.15
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Parallel shear flow and Fjørtoft’s condition

Consider the stability of a zonal flow (i.e., a flow in the x-direction), that varies only
with y. The flow stability condition is then

d	
dQ

D
d	=dy

dQ=dy
D �

U � Us

ˇ � Uyy

> 0; (7.175)

where the last equality follows because the problem is Galilean invariant, and we are
therefore at liberty to add an arbitrary constant zonal flow, Us to the problem. (It is
typical in applications of the pseudoenergy argument that we choose a zonal flow ap-
propriately to obtain a useful stability condition.) To connect this with Fjørtoft’s condi-
tion (chapter 6) multiply top and bottom by .ˇ � Uyy/, whence we see that a sufficient
condition for stability is that .U �Us/.ˇ�Uyy/ is everywhere negative. The derivation
here, unlike our earlier one, makes it clear that the condition does not only apply to
normal mode instabilities.

7.7.2 * Stratified quasi-geostrophic flow

The extension of the pseudoenergy arguments to quasi-geostrophic flow is mostly straight-
forward, but with a complication from the vertical boundary conditions at the surface
and at an upper boundary, and the reader may wish to skip straight to the results,
(7.180)–(7.182).16 For definiteness, we consider Boussinesq, ˇ-plane quasi-geostrophic
flow confined between flat rigid surfaces at z D 0 and z D H . The interior flow is gov-
erned by the familiar potential vorticity equation Dq=Dt D 0 and the buoyancy equation
Db=Dt D 0 at the two boundaries, where

q D r
2 C ˇy C

@

@z

�
S.z/

@ 

@z

�
; b D f0

@ 

@z
; (7.176)

and S.z/ D f 2
0
=N 2 is positive. The basic state ( D 	; q D Q; b D B1;B2) satisfies

 D 	.Q/; 0 < z < H;

 D 	1.B1/; z D 0 and  D 	2.B2/; z D H:
(7.177)

Analogous to the barotropic case, we obtain the equations of motion for the interior
perturbation

@q0

@t
C J. 0;Q/C J.	; q0/ D 0; (7.178a)

d	
dQ

@q0

@t
C J. 0; 	/C J.	;

d	
dQ

q0/ D 0; (7.178b)

and at the two boundaries

@b0

@t
C J. 0;Bi/C J.	i ; b

0/ D 0; (7.179a)

d	i

dBi

@b0

@t
C J. 0; 	i/C J.	i ;

d	i

dBi

b0/ D 0; (7.179b)
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for i D 1; 2. (By d	1=dB
1

we mean the derivative of 	1 with respect to its argument,
evaluated at B1.) From these equations, we form the pseudoenergy by multiplying
(7.178a) by � 0, (7.178b) by q0, and (7.179a) by  0, (7.179b) by b0. After some ma-
nipulation we obtain the pseudoenergy conservation law:

yH D E C ZC B1 C B2

d yH

dt
D 0

; (7.180)

where

E D
1

2

(
.r 0/2 C S

�
@ 0

@z

�2
)
; Z D

1

2

�
d	
dQ

q02

�
;

B1 D
1

2

�
S.0/

f0

d	1

dB
1

b0.0/2
�
; B2 D �

1

2

�
S.H /

f0

d	2

dB
2

b0.H /2
�
:

(7.181)

where the curly brackets denote a three-dimensional integration over the fluid interior,
and the angle brackets denote a horizontal integration over the boundary surfaces at 0

and H . The pseudoenergy yH is positive-definite, and therefore stability is assured in
that norm, if all of the following conditions are satisfied:

d	
dQ

> 0;
1

f0

d	1

dB
1

> 0;
1

f0

d	2

dB
2

< 0: (7.182)

If the flow is compressible then potential vorticity is q D r2 CˇyC��1@z.�S@z /,
where � D �.z/, but the final stability conditions are unaltered. If the upper boundary
is then removed to infinity where �.z/ D 0 then only the lower boundary condition
contributes to (7.182). In the layered form of the quasi-geostrophic equations the ver-
tical boundary conditions are built-in to the definitions of potential vorticity in the top
and bottom layers. In this case, a sufficient condition for stability is that d	=dQ > 0 in
each layer. Indeed, an alternate derivation of (7.180)–(7.182) would be to incorporate
the boundary conditions on buoyancy into the definition of potential vorticity by the
delta-function construction of section 5.4.3.

Zonal shear flow

Consider now zonally uniform zonal flows, such as might give rise to baroclinic insta-
bility in a channel. The fields are then functions of y and z only, and the sufficient
conditions for stability are:

d	
dQ

D
@	=@y

@Q=@y
D �

U

dQ=dy
> 0;

d	1

dB
1

D
d	1=dy

dB1=dy
D

U.0/

dU.0/=dz
> 0;

d	2

dB
2

D
d	2=dy

dB2=dy
D

U.H /

dU.H /=dz
< 0:

(7.183)
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using the thermal wind relation, and setting f0 D 1 (its value is irrelevant). These
results generalize Fjørtoft’s condition to the stratified case,17 and as in that case we are
at liberty to add a uniform zonal flow to all the velocities.

7.8 * NECESSARY CONDITIONS FOR BAROCLINIC INSTABILITY

The conditions derived in the previous section can be used to provide useful necessary
conditions for baroclinic instability.

7.8.1 Minimum shear in two-layer flow

A pseudoenergy argument

We consider two-layers of equal depth, on a flat-bottomed ˇ-plane with basic state

	1 D �U1y; 	2 D �U2y (7.184a)

Q1 D ˇy �
k2

d

2
.U2 � U1/y; Q2 D ˇy �

k2
d

2
.U1 � U2/y (7.184b)

This state is characterized by Qi D i	iwhere

1 D �
.ˇ C k2

d
yU /

.U C yU /
; 2 D �

.ˇ � k2
d

yU /

.U � yU /
(7.185)

where U D .U1 C U2/=2 and yU D .U1 � U2/=2. The barotropic flow does not affect
the stability properties, so without loss of generality we may choose U < � yU , and this
makes 1 > 0. Then 2 is also positive if ˇ > k2

d
yU =2. Thus, a sufficient condition for

stability is that

yU <
ˇ

k2
d

; (7.186)

as obtained in chapter 6. The derivation here shows that the condition is not restricted
to normal mode instabilities.18

Pseudomomentum

The flow will also be stable if in both layers @Q=@y > 0, for then the conserved
pseudomomentum will be positive definite. From (7.184) dQ1=dy > 0 and dQ2=dy

will both be positive (for U1 > U2), and the flow will therefore be stable, if

yU D
1

2
.U1 � U2/ <

ˇ

k2
d

(7.187)

as in (7.186).
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7.8.2 The high wavenumber cut-off in two-layer baroclinic instability

We can use a pseudoenergy argument to show that there is a high-wavenumber cut-off
to two layer baroclinic instability, with the basic state (7.184). The conserved pseu-
doenergy analogous to (7.180) and (7.181) is readily found to be

yH D

*
.r 0

1/
2

C .r 0
2/

2
C

1

2
k2

d . 
0
1 �  0

2/
2

C
q02

1

1

C
q02

2

2

+
D 0: (7.188)

Let us choose (without loss of generality) the barotropic flow to be U D ˇ=k2
d

. We
then have 1 D 2 D �1=k2

d
, and the pseudoenergy then just the actual energy minus

k�2
d

times the total enstrophy. If we define  D . 0
1

C  0
2
/=2 and � D . 0

1
�  0

2
/=2

then, using (9.30a) and (9.33), (7.188) may be expressed as

yH D

�
.r /2 C .r�/2 C k2

d�
2

� k�2
d

�
.r2 /2 C

h
.r2

� k2
d /�

i2
��

(7.189)

Now, let us express the fields as Fourier sums,

.�;  / D

X
k;l

.z�k;l ; z k;l/e
i.kxCly/: (7.190)

(This expression assumes a doubly-periodic domain; essentially the same end-result is
obtained in a channel.) The pseudoenergy may then be written as

bH D

X
k;l

h
K2 z 2

k;l.k
2
d � K2/C K02

z�2
k;l.k

2
d � K02/

i
(7.191)

where K2 D k2 C l2 and K02 D K2 Ck2
d

. If the deformation radius is sufficiently large
(or the domain sufficiently small) that K2 > k2

d
, then the pseudoenergy is negative-

definite, so the flow is stable, no matter what the shear may be. Such a situation might
arise on a planet whose circumference were less than the deformation radius, or in a
small ocean basin. In the linear problem, in which perturbation modes do not interact,
horizontal wavenumbers with k2 > k2

d
are stable and there is thus a high-wavenumber

cut-off to instability, as was found in chapter 6 by direct calculation.

Notes

1 After Eliassen and Palm (1961).

2 A more general derivation of the group velocity property follows directly from
(7.25a). See Hayes (1977).

3 These restrictions on the basic state are not necessary to prove orthogonality, but
they make the algebra simpler. Also, we don’t pay attention here to the nature of
the eigenvalues of (7.41), which in general consist of both a discrete and continu-
ous spectrum. See Farrell (1984) and McIntyre and Shepherd (1987).
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4 Andrews and McIntyre (1976, 1978) and Boyd (1976).

5 Original derivation by McIntosh and McDougall (1996). I’m grateful to A. Plumb
for a discussion about the derivation given here, which differs slightly from theirs.
See also deSzoeke and Bennett (1993) for related earlier work, and Juckes (2001)
and Nurser and Lee (2004) for generalizations.

6 This problem can be worked around in some cases; see e.g., Plumb (1990) and
Greatbatch (1998).

7 Andrews and McIntyre (1978).

8 Plumb and Ferrari (2005). Also see Held and Schneider (1999).

9 The issues involved are not settled and progress is being made apace, so it is hard
to say more without soon being out of date.

10 Nonacceleration arguments have a long history, including contributions from Char-
ney and Drazin (1961), Eliassen and Palm (1961), Holton (1974) and Boyd (1976),
and the final result may be called the ‘Charney-Drazin-Boyd nonacceleration theo-
rem’. Andrews and McIntyre (1978) put these results in the context of the EP flux
and the TEM formalism, and Dunkerton (1980) reviews and provides examples.

11 Conservation laws of this ilk, their connection to the underlying symmetries of
the basic state and (relatedly) their finite amplitude extension, are discussed by
McIntyre and Shepherd (1987) and Shepherd (1990). Conservation of momentum
is related to the translational invariance of the medium; conservation of A is re-
lated to the translational invariance of the mean flow, and hence the appellation
‘pseudomomentum’.

12 See Andrews and McIntyre (1978).

13 See Shepherd (1983).

14 This is an example of a so-called Arnold condition. Such conditions can be derived
more generally by variational methods, but our derivation will be elementary and
direct. The original papers are Arnold (1965, 1966), and a number of results were
developed by Holm et al. (1985). See Shepherd (1990) for a review.

15 More discussion, especially with regard to boundary conditions, is given in McIn-
tyre and Shepherd (1987). This stability criterion is sometimes referred to as
‘Arnold’s second condition’.

16 Blumen (1968), but the method we use is more direct.

17 Pedlosky (1964) derived these conditions by a normal mode approach.

18 Pierini and Vulpiani (1981) and Vallis (1985) show that the condition is not even
restricted to small amplitude perturbations.

Further Reading

Andrews, D. G., Holton, J. R. and Leovy, C.B., 1987. Middle Atmosphere Dynamics.
Provides a discussion of a number of topics in wave dynamics and wave–mean flow
interaction, including the TEM, mainly in the context of stratospheric dynamics.

Problems

7.1 Prove that
haJ.b; c/i D hbJ.c; a/i D hcJ.a; b/i D � hcJ.b; a/i (P7.1)
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where the angle brackets denote a horizontal integration, and the boundary condi-
tions are either no-normal-flow or periodic.

7.2 Consider an axi-symmetric barotropic shear flow given by

� D

(
2˝ r � R

0 r > R
(P7.2)

where ˝ and R are constants. Thus, the inner region is in solid body rotation
and the outer region is irrotational, and we suppose that the velocity is continuous.
(Is this implied by (P7.2) or is it an extra condition?) Suppose that the boundary
between the two regions is perturbed. Find the phase speed of this disturbance in
terms of its azimuthal wavenumber. Show that for large wavenumbers this reduces
to the dispersion relation for a point jet [i.e., , or c D U0 C .�1 � �2/=2k — see
(6.37)], and define what ‘large’ means in this context.

7.3 Demonstrate the group velocity property for the Eliassen-Palm flux for barotropic
Rossby waves on the ˇ-plane when the basic state is horizontally sheared.

7.4 Show that on the sphere and in a compressible, ideal gas atmosphere the EP flux is
given by

F D ŒF# ;Fz � D Œ��s cos#u0v0 ; �sf cos#v0� 0=.@�=@z/�: (P7.3)

where # is latitude, � is potential temperature and �s is a reference profile. You
may use either height coordinates with the anelastic approximation, or log-pressure
coordinates. In this expression, should f vary or should it be equal to a constant,
f0?

7.5 Show that on the sphere and in a compressible, ideal gas atmosphere the residual
streamfunction corresponding to (7.53) is given by

 �
D  C a�s cos#

v0� 0

@z�
: (P7.4)

where � is potential temperature and # is latitude.

7.6 � Show that perturbations to a horizontally sheared flow are orthogonal with re-
spect to the wave activity norm. You may restrict attention to two-dimensional
(barotropic) flow on the ˇ-plane.
Partial solution: The eigenvalue value equation is

.ur
2
k C @yq/ D cr

2
k (P7.5)

where r2
k

D @yy � k2. If q D r2
k
 then the eigenvalue equation may be written

M q � .u C @yq r
�2
k /q D cq (P7.6)

or

N q �

 
u

@yq
C r

�2
k

!
q D c

q

@yq
(P7.7)

The operator N on the left-hand side of (P7.7) is self-adjoint (show this) so that
the eigenfunctions associated with two different eigenvalues are orthogonal with
respect to @yq; that is, for n ¤ m,Z Z

qnqm

@yq
dy D 0: (P7.8)
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If this derivation holds, why is not simply the case that, from (P7.6), thatZ
qnqm dy D 0: (P7.9)

for n ¤ m? (Is M self-adjoint?)

7.7 Obtain an expression for the EP flux due to equatorial Kelvin waves. What is the
sign of the wave drag in a region of Kelvin wave generation?

7.8 � Can the high-wavenumber cut-off to instability in the Eady problem be obtained
by wave-activity arguments (e.g., by proving the pseudo-energy is negative definite,
as in the two-layer problem). If so, do so. (I do not know if there is a solution.)

7.9 � Stability conditions in the continuously stratified QG model.
Consider the modified Eady problem (Boussinesq, uniform stratification, flow con-
tained between two flat horizontal surfaces at 0 and H ), but instead of a uniform
shear suppose that the basic state is given by

U D �U0 cos. pz=H / (P7.10)

where U0 > 0, and allow ˇ to be non-zero.

(a) Show there is a critical shear, that and that this diminishes as p increases.
(b) Show there is a high-wavenumber cut-off to instability.

Compare the results to those of the two-layer model.
Sketch of solution:

(a) The basic state has no temperature gradient at the boundary, and so stability is
assured if @Q=@y is positive everywhere. The basic state potential vorticity is
Q D r2	 C .f 2

0
=N 2/@2	=@z2 C ˇy, so that

dQ

dy
D ˇ � k2

d 
2p2U0 cos. pz=H / (P7.11)

where k2
d

D f 2
0

H 2=N 2 and U D �@	=@y . Thus, stability is assured if U0 <

.ˇ=k2
d
 2p2/.

(b) Choose a barotropic flow equal to �ˇ=.k2
d
 2p2/ so that the mean flow is

U D U0 cos. pz=H / � ˇ=.k2
d

p2/. Then  .z/ � Q=	 D �k2
d
 2p2. Expand

the perturbation streamfunction as  D
P

k;˛  k;˛eik�x cos˛z and obtain an
expression for the pseudoenergy analogous to (7.191), and find the conditions
under which it is sign-definite.

7.10 Obtain, or at least verify, the solution (7.134). Plot it for various values of deforma-
tion radii (using appropriate computer software).

7.11 � Obtain and plot the residual circulation in the linear two-level (Phillips) baroclinic
instability problem, both for ˇ D 0 and ˇ ¤ 0. Also obtain and plot the corre-
sponding tendencies of the zonally-averaged zonal wind and buoyancy fields, and
interpret your results. A good answer will include a comparison of the solutions
with and without beta, and a comparison of the solutions with those of the Eady
problem.

7.12 � Balance of terms in the mean flow equations.
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(a) In the Eady problem the mean flow evolves according to (7.127). To what degree
is there an instantaneous balance between the terms on the right-hand side?
That is, is the mean-flow evolution a residual between two-larger terms? (The
answer is trivial for the zonal flow evolution, less so for buoyancy.)

(b) Repeat this problem for the two-layer problem, in both Eulerian and TEM forms.
For the latter, calculate the balance between the potential vorticity flux, the
residual meridional flow and the zonal flow tendency.



I shall not today attempt further to define the kinds of mate-
rial. . . embraced within that shorthand definition. . . . But I know it
when I see it.

Potter Stewart, Supreme Court Associate Justice, Jacobellis vs. Ohio, 1964.

CHAPTER 8

Basic Theory of Incompressible
Turbulence

T
URBULENCE IS HIGH REYNOLDS NUMBER FLUID FLOW, dominated by nonlinearity, with
both spatial and temporal disorder. No definition is perfect, and it is hard to be
disentangle a definition from a property, but this statement captures the essential

aspects. A turbulent flow has eddies with a spectrum of sizes between some upper
and lower bounds, the former usually determined by the forcing scale or the domain
scale, and the latter usually by viscosity. The individual eddies come and go, and are
inherently unpredictable.

The circulation of the atmosphere and ocean is, inter alia, the motion of a forced-
dissipative fluid subject to various constraints such as rotation and stratification. The
larger scales are orders of magnitude larger than the dissipation scale (the scale at which
molecular viscosity becomes important) and at many if not all scales the motion is
highly nonlinear and quite unpredictable. Thus, we can justifiably say that the atmo-
sphere and ocean are turbulent fluids. Note that we are not primarily talking about the
small scale flows traditionally regarded as turbulent; our main focus will be the large-
scale flows associated with baroclinic instability and greatly influenced by rotation and
stratification, a kind of turbulence known as geostrophic turbulence (and sometimes
called macro-turbulence). However, before discussing turbulence in the atmosphere
and ocean, in this chapter we consider from a fairly elementary standpoint the basic
theory of two- and three-dimensional turbulence, and in particular the theory of iner-
tial ranges. We do not provide a comprehensive introduction to turbulence; rather, we
provide an introduction to those aspects of most interest or relevance to the dynamical
oceanographer or meteorologist. In the next chapter we consider the effects of rotation
and stratification and the problem of geostrophic turbulence.

355
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8.1 THE FUNDAMENTAL PROBLEM OF TURBULENCE

Turbulence is a difficult subject because it is nonlinear, and because (and relatedly)
there are interactions between scales of motion. Let us first see what difficulties these
bring.

8.1.1 The Closure Problem

Although in a turbulent flow it may be virtually impossible to predict the detailed mo-
tion of each eddy, the statistical properties — time averages for example — might not
be changing and we might like to predict such averages. Thus, we might accept we
can’t predict the weather but we can try to predict the climate. Even though we know
which equations determine the system, this task proves to be very difficult because the
equations are nonlinear, and we come up against the closure problem. To see what this
is, let us decompose the velocity field into mean and fluctuating components,

v D v C v0: (8.1)

Here v is the mean velocity field, and v0 is the deviation from that mean. The mean
might be a time average, in which case v is a function only of space and not time, or
it might be a time mean over a finite period (e.g., a season if we are dealing with the
weather), or it might be some form of ensemble mean. The average of the deviation
is, by definition, zero; that is v0 D 0. The idea is to substitute (8.1) into the momen-
tum equation and try to obtain a closed equation for the mean quantity v. Rather than
dealing with the full Navier-Stokes equations, let us carry out this program for a model
nonlinear system which obeys

du

dt
C uu C ru D 0 (8.2)

where r is a constant. The average of this equation is:

du

dt
C uu C ru D 0 (8.3)

The value of the term uu is not deducible simply by knowing u, since it involves cor-
relations between eddy quantities u0u0. That is, uu D u u C u0u0 ¤ u u. We can go
to next order to try (vainly!) to obtain an equation for uu. First multiply (8.2) by u to
obtain an equation for u2, and then average it to yield:

1

2

du2

dt
C uuu C ru2 D 0 (8.4)

This equation contains the undetermined cubic term uuu. An equation determining
this would contain a quartic term, and so on in an unclosed hierarchy. Many methods
of ‘closing the hierarchy’ make assumptions about the relationship of .n C 1/’th order
terms to n’th order terms, for example by supposing that:

uuuu D ˛uu uu C ˇuuu (8.5)
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where ˛ and ˇ are some parameters, and closures set in physical space or in spectral
space (i.e., acting on the Fourier transformed variables) both exist. If we know that the
variables are distributed normally then such closures can be made exact, but this is not
generally the case in fluid turbulence.

This same closure problem arises in the Navier-Stokes equations. If density is con-
stant (say � D 1) the x-momentum equation for an averaged flow is

@u

@t
C .v � r/u D �

@p

@x
� r � v0u0: (8.6)

Written out in full in Cartesian coordinates, the last term is

r � v0u0 D
@

@x
u0u0 C

@

@y
u0v0 C

@

@z
u0w0 (8.7)

These terms, and the similar ones in the y- and z- momentum equations, represent the
effects of eddies on the mean flow and are known as Reynolds stress terms. One way
of expressing the ‘problem of turbulence’ is to find a representation of such Reynolds
stress terms in terms of mean flow quantities. Nobody has been able to close the system,
in any useful way, without introducing physical assumptions not directly deducible from
the equations of motion themselves. Indeed, not only has the problem not been solved,
it is not clear that a useful closed-form solution generally exists.

8.1.2 Triad Interactions in turbulence

The nonlinear term in the equations of motion not only leads to difficulties in closing
the equations, but it leads to interactions among different length scales, and in this
section we write the equations of motion in a form that makes this explicit. Purely for
algebraic simplicity we will restrict attention two-dimensional flows, but very similar
considerations also apply in three-dimensions, and the details of the algebra following
are not of themselves important to subsequent sections.1

The equation of motion for an incompressible fluid in two-dimensions [see for ex-
ample (4.77) or (5.120)] may be written as

@�

@t
C J. ; �/ D F C �r

2 ; � D r
2 : (8.8)

where we include a forcing and viscous term but no Coriolis term. Let us suppose that
the fluid is contained in a square, doubly-periodic domain of side L, and let us expand
the streamfunction and vorticity in Fourier series so that, with a tilde denoting a Fourier
coefficient,

 .x;y; t/ D

X
k

z .k; t/eik�x; �.x;y; t/ D

X
k

z�.k; t/eik�x; (8.9)

where k D ikx C jky , z� D �k2 z where k2 D kx2
C ky2 and, to ensure that  is

real, z .kx; ky ; t/ D z �.�kx;�ky ; t/, a property known as conjugate symmetry. The
summations are over all positive and negative x- and y-wavenumbers, and z .k; t/ is
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shorthand for z .kx; ky ; t/. Substituting (8.9) in (8.8) gives, with (for the moment) F

and � both zero,

@

@t

X
k

z�.k; t/eik�x
D �

X
p

px z .p; t/eip�x
�

X
q

qy z�.q; t/eiq�x

C

X
p

py z .p; t/eip�x
�

X
q

qxz�.q; t/eiq�x:

(8.10)

where p and q are, like k, horizontal wave vectors. We may obtain an evolution equa-
tion for the wavevector k by multiplying (8.10) by exp.�ik � x/ and integrating over
the domain, and using the fact that the Fourier modes are orthogonal; that isZ

eip�xeiq�x dA D
1

L2
ı.p C q/: (8.11)

where ı.p C q/ equals unity if p D �q and is zero otherwise. Using this, (8.10)
becomes, restoring the forcing and dissipation terms,

@

@t
z .k; t/ D

X
p;q

A.k;p; q/ z .p; t/ z .q; t/C zF .k/ � �k4 z .k; t/; (8.12)

where A.k;p; q/ D .q2=k2/.pxqy �pyqx/ı.p Cq �k/ is an ‘interaction coefficient’,
and the summation is over all p and q; however, note that only those wavevector triads
with p C q D k make a nonzero contribution, because of presence of the delta function.

Consider, then, a fluid a fluid in which just two Fourier modes are initially excited,
with wavevectors p and q say (along with their conjugate-symmetric partners at �p

and �q). These modes interact [obeying (8.12)] to generate third and fourth wavenum-
bers, k D p Cq and m D p �q (again along with their conjugate-symmetric partners).
These four wavenumbers can interact among themselves to generate several additional
wavenumbers, k C p, k C m etc, and these in turn lead to still more interactions so po-
tentially filling out the entire spectrum of wavenumbers. The individual interactions are
called triad interactions, and it is by way of such interactions that energy is transferred
between scales in turbulent flows, in both two and three dimensions. The dissipation
term does not lead to interactions between modes with different wavevectors; rather, it
acts like a drag on each Fourier mode, with a coefficient that increases with wavenumber
and therefore that preferentially affects small scales.

The selection rule for triad interactions — that k D p C q — does not restrict the
scales of these interacting wavevectors, and the types of triad interactions fall between
two extremes:

(i) Local interactions, in which k � p � q;
(ii) Nonlocal interactions, in which k � p � q.

These two kinds of triads are schematically illustrated in Fig. 8.1. Without very detailed
analysis of the solutions of the equations of motion — an analysis that is impossible
for fully-developed turbulence — it is impossible to say whether one particular kind
of triad interaction dominates. The theory of Kolmogorov considered below, and its
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Fig. 8.1 Two interacting triads, each with k D p C q. On the left, a local
triad with k � p � q. On the right, a nonlocal triad with k � p � q.

two-dimensional analog, assume that it is the local triads that are most important in
transferring energy; this is a reasonable assumption because from the perspective of
a small edddy, large eddies appear as a nearly-uniform flow, and so simply translate
the small eddies around without distorting them and thus without transferring energy
between scales.

8.2 THE KOLMOGOROV THEORY

The foundation of many theories of turbulence is the spectral theory of Kolmogorov.2

This theory does not close the equations in quite as explicit a manner as (8.5), but it
does provide a prediction for the energy spectrum of a turbulent flow (loosely speaking,
how much energy is present at a particular spatial scale) and it does this by suggesting a
relationship between the energy spectrum (a second order quantity in velocity) and the
spectral energy flux (a third order quantity).

8.2.1 The physical picture

Consider high Reynolds number (Re) incompressible flow that is being maintained by
some external force. Then the evolution of the system is governed by

@v

@t
C .v � r/v D �rp C F C �r

2v (8.13)

and
r � v D 0 (8.14)

Here, F is some force we apply to maintain fluid motion — for example, we stir the
fluid with a spoon. (A pedant might argue that such stirring is not a force like gravity but
a continuous changing of the boundary conditions. Having noted this, we treat it as a
force.) A simple scale analysis of these equations seems to indicate that the relative sizes
of the inertial terms on the left-hand-side to the viscous term is the Reynolds number
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VL=�. To be explicit let us consider the ocean, and take V D 0:1 m s�1, L D 1000 km
and � D 10�6 m2 s�1. Then Re D VL=� � 1011, and it seems that we can neglect the
viscous term on the right hand side of (8.13). But this can lead to a paradox. The fluid is
being forced, and this forcing is likely to put energy into the fluid. We obtain the energy
budget for (8.13) by multiplying by v and integrating over a domain. If there is no flow
into or out of our domain, the inertial terms in the momentum equation conserve energy
and, recalling the results of section 1.9, the energy equation is

d yE

dt
D

d
dt

Z
1

2
v2 dV D

Z �
F � v C �v � r

2v
�

dV D

Z �
F � v � �!2

�
dV

(8.15)
where yE is the total energy. If we neglect the viscous term we are led to an inconsis-
tency, since the forcing term is a source of energy: F � v > 0, because a force will
normally, on average, produce a velocity that is correlated with the force itself. Without
viscosity, energy keeps on increasing.

What is amiss? It is true that for motion with a 1000 km length scale and a velocity
of a few centimetres per second we can neglect viscosity when considering the balance
of forces in the momentum equation. But this does not mean that there is no motion at
much smaller length scales — indeed we seem to be led to the inescapable conclusion
that there must be some motion at smaller scales in order to remove energy. Scale
analysis of the momentum equation suggests that viscous terms will be comparable
with the inertial terms at a scale L� where the Reynolds number based on that scale is
of order unity, giving

L� �
�

V
: (8.16)

This is a very small scale for geophysical flows, of order millimetres or less. Where
and how are such small scales generated? Boundaries are one important region. If there
is high Reynolds number flow above a solid boundary, for example the wind above the
ground, then viscosity must become important in bringing the velocity to zero in order
that it can satisfy the no-slip condition at the surface, as illustrated in Fig. 2.9.

Motion on very small scales may also be generated in the fluid interior. How might
this happen? Suppose the forcing acts only at large scales, and its direct action is to
set up some correspondingly large scale flow, composed of eddies and shear flows and
such-like. Then typically there will be an instability in the flow, and a smaller eddy
will grow: initially, the large scale flow may be treated as an unchanging shear flow,
and the disturbance while small will obey linear equations of motion similar to those
applicable in idealized Kelvin-Helmholtz instability. This instability clearly must draw
from the large scale quasi-stationary flow, and it will eventually saturate at some finite
amplitude. Although it has grown in intensity, it is still typically smaller than the large
scale flow which fostered it (remember how the growth rate of the shear instability gets
larger as wavelength of the perturbation decreased). As it reaches finite amplitude, the
perturbation itself may become unstable, and smaller eddies will feed off its energy and
grow, and so on.3 The picture that emerges is of a large scale flow that is unstable to
eddies somewhat smaller in scale. These eddies grow, and develop still smaller eddies.
Energy is transferred to smaller and smaller scales in a cascade-like process, sketched
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decreasing
scale

L 2 L 2

L 1

L3 L3 L3 L3

Fig. 8.2 Schema of a ‘cascade’ of energy to smaller scales: eddies at a
large scale break up into smaller scale eddies, thereby transferring energy
to smaller scales. If the transfer occurs between eddies of similar sizes (i.e.,
if it is spectrally local) the transfer is said to be a cascade. The eddies in
reality are embedded within each other.

in Fig. 8.2. Finally, eddies are generated which are sufficiently small that they feel the
effects of viscosity, and energy is drained away. Thus, there is a flux of energy from the
large scales to the small scales, where it becomes dissipated.

8.2.2 Inertial range theory

Given the above picture it becomes possible to predict what the energy spectrum is.
Let us suppose that the flow is statistically isotropic (i.e., the same in all directions) and
homogeneous (i.e., the same everywhere; note that all isotropic flows are homogeneous,
but not vice versa). Homogeneity precludes the presence of solid boundaries but can
be achieved in a periodic domain. This puts an upper limit, sometimes called the outer
scale, on the size of eddies.

If we decompose the velocity field into Fourier components, then in a finite domain
we may write

u.x;y; z; t/ D

X
kx ;ky ;kz

zu.kx; ky ; kz; t/ei.kxxCkyyCkz z/ (8.17)

where zu is the Fourier transformed field of u, with similar identities for v and w. The
sum is over all wavenumbers and in finite domain the wavenumbers are quantized, so
that, for example, kx D 2 n=L, where n is an integer and L the domain size. Finally,
to ensure that u is real we require that zu.�kx;�ky ;�kz/ D zu�.kx; ky ; kz/, where the
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asterisk denotes the complex conjugate. The energy in the fluid is given by (assuming
density is unity)

yE D

Z
E dV D

1

2

Z
.u2

C v2
C w2/ dV

D
1

2

X
.jzuj

2
C jzvj

2
C j zwj

2/ dk (8.18)

using Parseval’s theorem, where yE is the total energy and E is the energy per unit
volume. We will now suppose that the turbulence is homogeneous and isotropic, and
furthermore we will suppose that the domain is sufficiently large that the sums in the
above equations may be replaced by integrals. We then write (8.18) as

yE �

Z
E.k/ dk (8.19)

where E.k/ is the energy spectral density, or the energy spectrum, (so that E.k/ık is
the energy in the small wavenumber interval ık) and because of the assumed isotropy,
the energy is a function only of the scalar wavenumber k, where k2 D kx2

Cky2
Ckz2.

We now suppose that the fluid is stirred at large scales and, via the nonlinear terms in
the momentum equation, that this energy is transferred to small scales where it is dissi-
pated by viscosity. The key assumption is to suppose that, if forcing scale is sufficiently
larger than the dissipation scale, there exists a range of scales intermediate between the
large scale and the dissipation scale where neither forcing nor dissipation are explicitly
important to the dynamics. This assumption, known as the locality hypothesis, depends
on the nonlinear transfer of energy being sufficiently local (in spectral space). This
intermediate range is known as the inertial range, because the inertial terms and not
forcing or dissipation must dominate in the momentum balance. If the rate of energy
input per unit volume by stirring is equal to ", then if we are in a steady state there must
be a flux of energy from large scales to small also equal to ", and an energy dissipation
rate, also ".

Now, we have no general theory for the energy spectrum of a turbulent fluid but we
we might write it in the general form general form

E.k/ D g."; k; k0; k�/ (8.20)

where the right-hand side denotes a function of the energy flux ", the wavenumber k,
the forcing wavenumber k0 and the wavenumber at which dissipation acts, k� (and
k� � L�1

� ). The function f will of course depend on the particular nature of the
forcing. Now, the locality hypothesis essentially says that at some scale within the
inertial range the flux of energy to smaller scales depends only on processes occurring
at or near that scale. That is to say, the energy flux is only a function of E and k, or
equivalently that the energy spectrum can be a function only of the energy flux " and the
wavenumber itself. From a physical point of view, as energy cascades to smaller scales
the details of the forcing are forgotten but the effects of viscosity are not yet apparent,
and the energy spectrum takes the form,

E.k/ D g."; k/: (8.21)
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Dimensions and the Kolmogorov Spectrum

Quantity Dimension
Wavenumber, k 1/L
Energy per unit mass, E U 2 D L2=T 2

Energy spectrum, E.k/ EL D L3=T 2

Energy Flux, " E=T D L2=T 3

If E D f ."; k/ then the only dimensionally consistent relation for the energy
spectrum is

E D K"2=3k�5=3

where K is a dimensionless constant.

The function g is, within this theory, universal, the same for every turbulent flow.
Let us now use dimensional analysis to gives us the form of the function f ."; k/

(see the shaded box). In (8.21), the left hand side has dimensionality L3=T 2; the
dimension T �2 on the left-hand side can only be balanced by "2=3 because k has no
time dependence; that is,

E.k/ � "2=3g.k/

L3

T 2
�

L4=3

T 2
g.k/: (8.22)

where g.k/ is some function; this function g.k/ must have dimensions L5=3 and the
functional relationship we must have, if the physical assumptions are right, is

E.k/ D K"2=3k�5=3 : (8.23)

This is the famous ‘Kolmogorov -5/3 spectrum’, enshrined as one of the cornerstones of
turbulence theory, and sketched in Fig. 8.3, and some experimental results are shown in
Fig. 8.4. The parameter K is a dimensionless constant, undetermined by the theory. It
is known as Kolmogorov’s constant and experimentally it is found to be approximately
1.5.4

An equivalent, perhaps slightly more intuitive, way to derive this is to first define
an eddy turnover time �k , which is the time taken for a parcel with velocity vk to
move a distance 1=k, vk being the velocity associated with the (inverse) scale k. On
dimensional considerations vk D .E.k/k/1=2 so that

�k D .k3E.k//�1=2: (8.24)

Kolmogorov’s assumptions are then equivalent to setting

" �
v2

k

�k

D
kE.k/
�k

: (8.25)
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Figure 8.3 Schema
of energy spectrum in
three-dimensional turbu-
lence, in the theory of Kol-
mogorov. Energy is sup-
plied at some rate "; it
is transferred (‘cascaded’)
to small scales, where it
is ultimately dissipated by
viscosity. There is no
systematic energy trans-
fer to scales larger than
the forcing scale, so here
the energy falls off.

If we demand that " be constant then (8.24) and (8.25) yield (8.23).

The viscous scale and energy dissipation

At some small length-scale we should expect viscosity to become important and the
scaling theory we have just set up will fail. What is that scale? In the inertial range
friction is unimportant because the timescales on which it acts are too long for it be
important and dynamical effects dominate. In the momentum equation the viscous term
is �r2u so that a viscous or dissipation timescale at a scale k�1, ��

k
, is

��k �
1

k2�
; (8.26)

so that the viscous timescale decreases with scale. The eddy turnover time, �k — that
is, the inertial timescale — in the Kolmogorov spectrum is

�k D "�1=3k�2=3: (8.27)

The wavenumber at which dissipation becomes important is then given by equating
these two timescales, yielding the dissipation wavenumber, k� and the associated length-
scale, L� ,

k� �

�
"

�3

�1=4

; L� �

�
�3

"

�1=4

: (8.28a,b)

L� is called the Kolmogorov scale. It is the only quantity which can be created from the
quantities � and " that has the dimensions of length. (It is the same as the scale given by
provided that in that expression V is the velocity magnitude at the Kolmogorov scale.)
Thus, for L >> L� , �k << �

�
k

and inertial effects dominate. For L << L� , ��
k
<< �k

and frictional effects dominate. In fact for length-scales smaller than the dissipation
scale, (8.27) is inaccurate; the energy spectrum falls off more rapidly than k�5=3 and
the inertial timescale falls off less rapidly than (8.27) implies, and dissipation dominates
even more.
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Fig. 8.4 The energy spectrum of 3D turbulence measured in some experi-
ments at the Princeton Superpipe facility.5 The outer plot shows the spectra
from a large-number of experiments at different Reynolds numbers, with
the magnitude of their spectra appropriately rescaled. Smaller scales show
a good -5/3 spectrum, whereas at larger scales the eddies feel the effects
of the pipe wall and the spectra are a little shallower. The inner plot shows
the spectrum in the centre of the pipe in a single experiment at Re � 106.

Given the dissipation scale, let us estimate the energy dissipation rate. This is given
by (section 1.9)

PyE D

Z
�v � r

2v dV: (8.29)

The length at which dissipation acts is the Kolmogorov scale and, noting that v2
k

�

"2=3k�2=3 and using (8.28a), the energy dissipation rate scales as (for a box of unit
size)

PyE � �k2
� v

2
k�

� �k2
�

"2=3

k
2=3
�

� ": (8.30)

That is, the energy dissipation rate is equal to the energy cascade rate. On the one
hand this seems sensible, but on the other hand it is independent of the viscosity. In
particular, in the limit of viscosity tending to zero, L� tends to zero, but the energy
dissipation does not! Surely the energy dissipation rate must go to zero if viscosity goes
to zero? To see that this is not the case, consider that energy is input at some large scales,
and the magnitude of the stirring largely determines the energy input and cascade rate.
The scale at which viscous effects then become important is determined by the viscous
scale, L� , given by (8.28b). As viscosity tends to zero L�1

� becomes smaller in just such
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a way as to preserve the constancy of the energy dissipation. This is one of the most
important results in three-dimensional turbulence. Now, we established in section 1.9
that the Euler equations (i.e., the fluid equations with the viscous term omitted from the
outset) do conserve energy. This means that the Euler equations are a singular limit of
the Navier-Stokes equations: the behaviour of the Navier-Stokes equations as viscosity
tends to zero is different from the behaviour resulting from‘ simply omitting the viscous
term from the equations ab initio.

How big is L� in the atmosphere? A crude estimate, perhaps wrong by an or-
der of magnitude, comes from noting that " has units of U 3=L, and that at length-
scales of order 100 m in the atmospheric boundary layer (where there might be a three-
dimensional energy cascade to small scales) velocity fluctuations are of order 1 cm s�1,
giving " � 10�8 m2 s�3. Using (8.28b) we then find the dissipation scale to be of order
a millimetre or so. In ocean the dissipation scale is also of order millimetres.

Degrees of freedom

How many degrees of freedom does a turbulent fluid like the atmosphere potentially
have? We might estimate this number, N say, by the expression

N �

�
L

L�

�3

; (8.31)

where L is the length scale of the energy-containing eddies at the large scale. If we take
L D 1000 km and L� D 1 mm this gives about 1027! On a rather more general basis,
we can obtain an expression for N using (8.28b), to give

N � L3

�
"

�3

�3=4

; (8.32)

or, using " � U 3=L,

N �

�
UL

�

�9=4

D Re 9=4; (8.33)

where Re is the Reynolds number based on the large-scale flow. For typical large-scale
atmospheric flows with U � 10 m s�1, L � 106 m and � D 105 m2 s�1, Re � 1012

and again N � 1027. Obviously, this number is very approximate, but nevertheless the
number of potential degrees of freedom in the atmosphere is truly enormous, greater
than Avogadro’s number. Thus trying to explicitly model the turbulent atmosphere
explicitly is akin to trying to model the gas in a room by following the motion of each
individual molecule, and it seems unnecessary. How should we model it? That, in a
nutshell, is the (unsolved) problem of turbulence.

8.2.3 * An alternative scaling argument for inertial ranges

Kolmogorov’s spectrum, as well as some other useful scaling relationships, can be ob-
tained in a slightly different way as follows. If we for the moment ignore viscosity, the
Euler equations are invariant under the following scaling transformation:

x ! x� v ! v�r t ! t�1�r ; (8.34)
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where r is an arbitrary scaling exponent. So far there is minimal physics. Now make the
following physical assumptions about the behaviour of a turbulent fluid, with viscosity:

(i) That the flux of energy from large to small scales (i.e., ") is finite and constant.
(ii) That the scale invariance (8.34) holds, on a time-average, in the intermediate scales

between the forcing scales and dissipation scales.
The second assumption plays the role of the locality hypothesis. Dimensional analysis
then tells us that the energy flux at some wavenumber k scales as

"k �
v3

k

lk
� �3r�1: (8.35)

where vk and lk are the velocity and length scales at wavenumber k. Invoking assump-
tion (i), that " is independent of scale, gives r D 1=3. The velocity then scales as

vk � "1=3k�1=3; (8.36)

and the velocity gradient (and so vorticity) scales as kvk � "1=3k2=3. (This becomes
infinite at very small scales, but this behaviour is avoided in any real physical situation
by the presence of viscosity.) We can now recover (8.23) because, on dimensional
grounds,

E.k/ � v2
kk�1

� "2=3k�2=3k�1
� "2=3k�5=3: (8.37)

In general, the slope of the energy spectrum, kn, is related to the scaling exponent by
n D �.2r C 1/. The ‘structure functions’ Sm, which are the average of the m0th power
of the velocity difference over distances l � 1=k, scale as Sm � .vk/

m � "m=3k�m=3.
In particular the second-order structure function, which is the Fourier transform of the
energy spectra, scales as S2 � "2=3k�2=3. Other results of the Kolmogorov theory
follow similarly.

8.2.4 A final note on our assumptions

The assumptions of homogeneity and isotropy that are made in the Kolmogorov the-
ory are ansatzes, in that we make them because we want to have a tractable model of
turbulence (and certainly we can conceive of an experiment in which turbulence is for
most practical purposes homogeneous and isotropic). The essential physical assump-
tions are: (i) that there exists an inertial range in which the energy flux is constant, and
(ii) that the energy is cascaded from large to small scales in a series of small steps, for
then the energy spectra will be determined by spectrally local quantities. The second
assumption is the locality assumption and without it we could have

E.k/ D C "2=3k�5=3g.k=k0/h.k=k�/; (8.38)

where g and h are unknown functions; this is just as dimensionally consistent as (8.23).
Kolmogorov essentially postulated that there exists a range of intermediate wavenum-
bers over which the energy spectrum has no functional dependence of the energy spectra
on the forcing or dissipation scale, and g.k=k0/ D h.k=k�/ D 1.
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The first, and less obvious, assumption might be called the non-intermittency as-
sumption, and it demands that rare events (in time or space) with large amplitudes do
not dominate the energy flux or the dissipation rate. If they were to do so, then the flux
would fluctuate strongly, the turbulent statistics would not be completely characterized
by " and Kolmogorov’s theory would not be exactly right. (Note that in the theory " is
the mean energy cascade rate.) In fact, in high Reynolds turbulence the �5=3 spectra
is often observed to a fairly high degree of accuracy (e.g., as in Fig. 8.4), although the
higher-order statistics (e.g., higher-order structure functions) predicted by the theory
are often found to be in error, and it is generally believed that Kolmogorov’s theory is
not exact.6

8.3 TWO-DIMENSIONAL TURBULENCE

Two-dimensional turbulence behaves in a profoundly different way from three-dimen-
sional turbulence, largely because of the presence of another quadratic invariant, the
enstrophy (see also section 5.6.3). In two dimensions, the vorticity equation for incom-
pressible flow is:

@�

@t
C u � r� D F C �r

2� (8.39)

where u D ui C vj and � D k � r � u and F is a stirring term. In terms of a stream-
function, u D �@ =@y , v D @ =@x , and � D r2 , and (8.39) may be written:

@r2 

@t
C J. ;r2 / D F C �r

4 : (8.40)

We obtain an energy equation by multiplying by � and integrating over the domain,
and an enstrophy equation by multiplying by � and integrating. When F D � D 0 we
find:

yE D
1

2

Z
A

.u2
C v2/ dA D

1

2

Z
A

.r /2 dA;
d yE

dt
D 0; (8.41a)

yZ D
1

2

Z
A

�2 dA D
1

2

Z
A

.r2 /2 dA;
d yZ

dt
D 0: (8.41b)

where the integral is over a finite area with either no-normal flow or periodic bound-
ary conditions. The quantity yE is the energy, and yZ is known as the enstrophy. This
enstrophy invariant arises because the vortex stretching term, so important in three-
dimensional turbulence, vanishes identically in two dimensions. In fact, because vor-
ticity is conserved on parcels it is clear that the integral of any function of vorticity is
zero when integrated over A; that is, from (8.39)

Dg.�/

Dt
D 0 and

d
dt

Z
A

g.�/ dA D 0: (8.42)

where g.�/ is an arbitrary function. Of this infinity of conservation properties, en-
strophy conservation (with g.�/ D �2) in particular has been found to have enormous
consequences to the flow of energy between scales, as we soon discover.7
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Initial Later

Fig. 8.5 In incompressible two-dimensional flow, a band of fluid will gen-
erally be elongated, but its area will be preserved. Since vorticity is tied to
fluid parcels, the values of the vorticity in the hatched area (and in the hole
in the middle) are maintained; thus, vorticity gradients will increase and the
enstrophy is thereby, on average, moved to smaller scales.

8.3.1 Energy and Enstrophy Transfer in Two-Dimensional Turbulence

In three dimensional turbulence we posited that energy is cascaded to small scales via
vortex stretching. In two dimensions that mechanism is absent, and it turns out that it
is more reasonably to expect energy to be transferred to larger scales. This counter-
intuitive behaviour arises from the twin integral constraints of energy and enstrophy
conservation, and the following three arguments illustrate why this should be so.

I Vorticity elongation

Consider a band or a patch of vorticity, as in Fig. 8.5, in a nearly inviscid fluid. The
vorticity of each element of fluid is conserved as the fluid moves. Now, we should
expect that quasi-random motion of the fluid will act to elongate the band but, as its
area must be preserved, the band narrows and so vorticity gradients will increase. This
is equivalent to the enstrophy moving to smaller scales. Now, the energy in the fluid is

yE D �
1

2

Z
 � dA; (8.43)

where the streamfunction is obtained by solving the Poisson equation r2 D �. If the
vorticity is locally elongated primarily only in one direction (as it must be to preserve
area), the integration involved in solving the Poisson equation will lead to the scale
of the streamfunction becoming larger in the direction of stretching, but virtually no
smaller in the perpendicular direction. Because stretching occurs, on average, in all
directions, the overall scale of the streamfunction will increase in all directions, and
the cascade of enstrophy to small scales will be accompanied by a transfer of energy to
large scales.

II An energy-enstrophy conservation argument
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A moments thought will reveal that the distribution of energy and enstrophy in wavenum-
ber space are respectively analogous to the distribution of mass and moment of inertia
of a lever, with wavenumber playing the role of distance from the fulcrum. Any re-
arrangement of mass such that its distribution also becomes wider must be such that
the centre of mass moves toward the fulcrum. Thus, analogously, any rearrangement
of a flow that preserves both energy and enstrophy, and that causes the distribution to
spread out in wavenumber space, will tend to move energy to small wavenumbers and
enstrophy to large. To prove this we begin with expressions for the total energy and
enstrophy:

yE D

Z
E.k/ dk; yZ D

Z
Z.k/ dk D

Z
k2E.k/ dk; (8.44)

where E.k/ and Z.k/ are the energy and enstrophy spectra. A wavenumber character-
izing the spectral location of the energy is the centroid,

ke D

R
kE.k/ dkR
E.k/ dk

(8.45)

and, for simplicity, we normalize units so that the denominator is unity. The spreading
out of the energy distribution is formalized by setting

I �

Z
.k � ke/

2E.k/ dk;
dI

dt
> 0: (8.46)

Here, I measures the width of the energy distribution, and this is assumed to increase.
Expanding out the integral gives

I D

Z
k2E.k/ dk � 2ke

Z
kE.k/ dk C k2

e

Z
E.k/ dk

D

Z
k2E.k/ dk � k2

e

Z
E.k/ dk; (8.47)

where the last equation follows because ke D
R

kE.k/ dk is, from (8.45), the energy-
weighted centroid. Because both energy and enstrophy are conserved, (8.47) gives

dk2
e

dt
D �

1

yE

dI

dt
< 0: (8.48)

Thus, the centroid of the distribution moves to smaller wavenumber and to larger scale
(see Fig. 8.6).

An appropriately defined measure of the centre of the enstrophy distribution, on the
other hand, moves to higher wavenumber. The demonstration follows easily if we work
with the inverse wavenumber, which is a direct measure of length. Let q D 1=k and
assume that the enstrophy distribution spreads out by nonlinear interactions, so that,
analogously to (8.46),

J D

Z
.q � qe/

2Z.q/ dq;
dJ

dt
> 0; (8.49)
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Figure 8.6 In two-
dimensional flow, the
centroid of the energy
spectrum will move to large
scales (smaller wavenum-
ber) provided that the
width of the distribution
increases, which can be
expected in a nonlinear,
eddying flow

where

qe D

R
qZ.q/ dqR
Z.q/ dq

: (8.50)

Expanding the integrand in (8.49) and using (8.50) gives

J D

Z
q2Z.q/ dq � q2

e

Z
Z.q/ dq; (8.51)

But
R

q2Z.q/ dq is conserved, because this is the energy. Thus,

dJ

dt
D �

d
dt

q2
e

Z
Z.q/ dq (8.52)

whence
dq2

e

dt
D �

1

yZ

dJ

dt
< 0 (8.53)

Thus, the length scale characterizing the enstrophy distribution gets smaller, and the
corresponding wavenumber gets larger.

III A similarity argument

Consider an initial value problem, in which a fluid with some initial distribution of
energy is allowed to freely evolve, unencumbered by boundaries. We note two aspects
of the problem:

(i) There is no externally imposed length-scale (because of the way the problem is
posed).

(ii) The energy is conserved (this being an assumption).
It is the second condition that limits the argument to two dimensions, for in three di-
mensions energy is quickly cascaded to small scales and dissipated, but let us here posit
that this does not occur. These two assumptions are then sufficient to infer the general
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direction of transfer of energy, using a rather general similarity argument. To begin,
write the total energy (per unit mass) of the fluid as

yE D U 2
D

Z
E.k; t/ dk; (8.54)

where E.k; t/ is the energy spectrum and U is measure of the total energy, with units
of velocity. Now, solely on dimensional considerations we can write

E.k; t/ D U 2L yE.yk; yt/; (8.55)

where yE, and its arguments, are nondimensional quantities, and L is some length-scale.
However, on physical considerations, the only parameters available to determine the
energy spectrum are U , t and k, the wavenumber. A little thought reveals that the most
general form for the energy spectrum with no L dependence is

E.k; t/ D U 3t yE D U 3tg.Ukt/; (8.56)

where g is an arbitrary function of its arguments. The argument of g is the only non-
dimensional grouping of U , t and k, and U 3t provides the proper dimensions for E.
Conservation of energy now implies that the integral

I D

Z 1

0

tg.Ukt/ dk (8.57)

not be a function of time. Defining # D Ukt , this requirement is met ifZ 1

0

g.#/ d# D constant. (8.58)

Now, the spectrum is a function of k only through the combination # D Ukt . Thus, as
time proceeds features in the spectrum move to smaller k. Suppose, for example, that
the energy is initially peaked at some wavenumber kp; the product tkp is preserved, so
kp must diminish with time and the energy must move to larger scales. Similarly, the
energy weighted mean wavenumber, ke , moves to smaller wavenumber, or larger scale.
To see this explicitly, we have

ke D

R
kE dkR
E dk

D

R
kE dk

U 2
D

Z
kUt g.Ukt/ dk D

Z
#g.#/

Ut
d# D

C

Ut
(8.59)

where all the integrals are over the interval .0;1/ and C D
R
#g.#/ d# is a constant.

Thus, the wavenumber centroid of the energy distribution decreases with time, and the
characteristic scale of the flow, 1=ke , increases with time. Interestingly, the enstrophy
does not explicitly enter this argument, and in general it is not conserved; rather, it is
the requirement that energy be conserved that limits the argument to two dimensions, If
we accept ab initio that energy is conserved, it must be transferred to larger scales.8
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8.3.2 Inertial ranges in 2D turbulence

If, unlike the case in three dimensions, energy is transferred to larger scales in inviscid,
nonlinear, two-dimensional flow then we might expect two-dimensional turbulence, and
any associated inertial ranges, to be quite different from their three-dimensional coun-
terparts. Before looking in detail at the inertial ranges themselves, we establish a couple
of general properties of forced-dissipative flow in two dimensions.

Some properties forced-dissipative flow

We will first show that, unlike the case in three dimensions, energy dissipation goes to
zero as Reynolds number rises. In the absence of forcing terms, the total dissipation of
energy is, from (8.39)),

d yE

dt
D ��

Z
�2 dA (8.60)

Energy dissipation can only remain finite as � ! 0 if vorticity becomes infinite. How-
ever, this cannot happen because vorticity is conserved on parcels except for the action
of viscosity, meaning that D�=Dt D �r2�. However, the viscous term can only re-
duce the value of vorticity on a parcel, and so vorticity can never become infinite if it
is not so initially, and therefore using (8.60) energy dissipation goes to zero with �. (In
three dimensions vorticity becomes infinite as viscosity goes to zero because of the ef-
fect of vortex stretching.) This conservation of energy is related to the fact that energy
is trapped at large scales, even in forced-dissipative flow. On the other hand, enstro-
phy is transferred to small scales and therefore we expect it to be dissipated at large
wavenumbers, even as the Reynolds number becomes very large.

We can show that energy is trapped at large scales in forced-dissipative two-dimen-
sional flow (in a sense that will be made explicit) by the following argument.9 Sup-
pose that the forcing of the fluid is confined to a particular scale, characterized by the
wavenumber kf, and that dissipation is effected by a linear drag and a small viscosity.
The equation of motion is

@�

@t
C J. ; �/ D F � r� C �r

2�: (8.61)

where F is the stirring and r and � are positive constants. This leads to the following
energy and enstrophy equations:

d yE

dt
D �2r yE �

Z
 F dx C

Z
��2 dA � �2r yE �

Z
 F dA; (8.62a)

d yZ

dt
D �2r yZ C

Z
�F dA C DZ � �2r yZ � k2

f

Z
 F dA C DZ ; (8.62b)

where DZ D
R
�.r�/2 dA is the enstrophy dissipation. To obtain the right-most ex-

pressions, in (8.62a) we assume there is no dissipation of energy by the viscous term,
and in (8.62b) we assume that the forcing is confined to wavenumbers near kf. In a
statistically steady state, and writing yE D

R
E.k/ dk and yZ D

R
k2E.k/dk, these
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expressions combine to giveZ
k2E.k/ dk C

DZ

2r
D

Z
k2

f E.k/ dk; (8.63)

integrating over all wavenumbers. Now, from the inequality
R
.k � ke/

2E.k/ dk � 0,
where ke is the energy centroid defined in (8.45), we obtainZ �

k2
� k2

e

�
E.k/ dk � 0: (8.64)

Combining (8.63) and (8.64) givesZ �
k2

f � k2
e

�
E.k/ dk �

DZ

2R
> 0: (8.65)

Thus, the energy containing scale, as characterized by k�1
e , is larger than the forcing

scale k�1
f . This demonstration (rather like argument II in section 8.3.1) relies both on

the conservation of energy and enstrophy by the nonlinear terms and on the particular
relationship between the energy and enstrophy spectra.

This result, and (especially) the arguments of section 8.3.1, suggest that in a forced-
dissipative two-dimensional fluid, energy is transferred to larger scales and enstrophy
is transferred to small scales. To obtain a statstically steady state friction (such as the
Rayleigh drag of (8.61)) is necessary to remove energy at large scales, and enstrophy
must be removed at small scales, but if the forcing scale is sufficiently well separated
in spectral space from such frictional effects then two inertial ranges may form — an
energy inertial range carrying energy to larger scales, and an enstrophy inertial range
carrying enstrophy to small scales (Fig. 8.7). These ranges are analogous to the three-
dimensional inertial range of of section 8.2, and similar conditions must apply if the
ranges are to be truly inertial — in particular we must assume spectral locality of the
energy or enstrophy transfer. But given that, we can calculate their properties, as fol-
lows.

The enstrophy inertial range

In the enstrophy inertial range the enstrophy cascade rate �, equal to the rate at whicn
enstrophy is supplied by stirring, is assumed constant. By analogy with (8.25) we may
assume that this rate is given by

� �
k3E.k/
�k

: (8.66)

With �k (still) given by (8.24) we obtain

E.k/ D K��
2=3k�3 ; (8.67)

where K� is, we presume, a universal constant, analogous to the Kolmogorov constant
of (8.23).
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Figure 8.7 The energy
spectrum of two-dimensional
turbulence. (Compare with
Fig. 8.3.) Energy supplied at
some rate " is transferred to
large scales, whereas enstro-
phy supplied at some rate �

is transferred to small scales,
where it may be dissipated by
viscosity. If the forcing is lo-
calized at a scale k�1

f then
� � k2

f ".

It is also possible to obtain (8.67) from scaling arguments similar to those in section
8.2.3. The scaling transformation (8.34) still holds, but now instead of (8.35) we assume
that the enstrophy flux is constant with wavenumber. Dimensionally, and analogously
to (8.35), we have

� �
v3

k

l3
k

� �3r�3; (8.68)

and the constancy of � gives r D 1 for the scaling exponent. The exponent n determin-
ing the slope of the inertial range is given, as before, by n D �.2r C 1/ yielding the �3

spectra of (8.67). The velocity at a particular wavenumber then scales as

vk � �1=3k�1; (8.69)

and the time scales as
tk � lk=vk � ��1=3: (8.70)

We may also obtain (8.70) by substituting (8.67) into (8.24). Thus, the eddy turnover
time in the enstrophy range of two-dimensional turbulence is length-scale invariant.
The appropriate viscous scale is given by equating the inertial and viscous terms in
(8.39). Using (8.69) we obtain, analogously to (8.28a),

k� �

 
�1=3

�

!1=2

: (8.71)

The enstrophy dissipation, analogously to (8.30) goes to a finite limit given by

PyZ D �

Z
A

�r2� dA � �k4
� v

2
k�

� �; (8.72)

using (8.69) and (8.71). Thus, the enstrophy dissipation in two-dimensional turbulence
is (at least according to this theory) independent of the viscosity.
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Energy inertial range

The energy inertial range of two-dimensional turbulence is quite similar to that of three-
dimensional turbulence, except in one major respect: the energy flows from smaller to
larger scales! Because the atmosphere and ocean both behave in some ways as two-
dimensional fluids, this has profound consequences on their behaviour, and is something
we return to in the next chapter. The upscale energy flow is known as the inverse
cascade, and the associated energy spectrum is, as in the three-dimensional case,

E.k/ D K""
2=3k�5=3 ; (8.73)

where K" is a nondimensional constant [not necessarily equal to K in (8.23)], and "
is the rate of energy transfer to larger scales. Of course we now need a mechanism
to remove energy at large scales, else it will pile up at the scale of the domain and a
statistical steady state will not be achieved. Introducing a linear drag, �r�, into the
vorticity equation, as in (8.61), is one means to achieve this, and such a term may be
physically justified by appeal to Ekman layer theory (section 2.12). Although such a
term appears to be scale invariant, its effects will be felt only at large scales because at
smaller scales the timescale of the turbulence is much shorter than that of the friction.
We may estimate the scale at which the drag becomes important by equating the drag
timescale to the inertial timescale. The latter is given by (8.27), and equating this to the
frictional timescale r�1 gives

r�1
D "�1=3k�2=3

r �! kr D

�
r3

"

�1=2

; (8.74)

where kr is the frictional wavenumber. Frictional effects are important at scales larger
than k�1

r .

8.3.3 † More about the phenomenology

The phenomenology of two-dimensional turbulence is not quite as straightforward as
the above arguments imply. Note, for example, that timescale (8.70) is independent
of length scale, whereas in three dimensional turbulence the timescale decreases with
length scale, which seems more physical and more conducive to spectrally local inter-
actions. A useful measure of this locality is given by estimating the contributions to the
straining rate, S.k/, from motions at all scales.10 The strain rate scales like the shear,
so that an estimate of the total strain rate is given by

S.k/ D

"Z k

k0

E.p/p2 dp

#1=2

; (8.75)

where k0 is the wavenumber of the largest scale present. The contributions to the inte-
grand from a given wavenumber octave are given byZ 2p

p

E.p0/p03 d log p0
� E.p/p3: (8.76)



8.3 Two-Dimensional Turbulence 377

In three dimensions, use of the �5=3 spectrum indicates that the contributions from
each octave below a given wavenumber k increase with wavenumber, being a maxi-
mum close to k, and this is a posteriori consistent with the locality hypothesis. How-
ever, in two-dimensional turbulence with a �3 spectrum each octave makes the same
contribution. That is to say, the contributions to the strain rate at a given wavenumber,
as defined by (8.75), are not spectrally local. This does not prove that the enstrophy
transfer is spectrally non-local, but nor does it build confidence in the theory.

Dimensionally the strain rate is the inverse of a time, and if this is a spectrally
nonlocal quantity then, instead of (8.24), we might use the inverse of the strain rate as
an eddy turnover time giving

�k D

"Z k

k0

p2E.p/ dp

#�1=2

: (8.77)

This has the advantage over (8.24) in that it is a non-increasing function of wavenumber,
whereas if the spectrum is steeper than k�3 (8.24) implies a timescale increasing with
wavenumber. Using this in (8.66) gives a prediction for the enstrophy inertial range,
namely

E.k/ D K��
2=3 Œlog.k=k0/�

�1=3 ; k�3; (8.78)

which is similar to (8.67) except for a logarithmic correction. This expression is, of
course, spectrally non-local, in contradiction to our original assumption: this new pre-
diction has arisen by noting the spectral locality inherent in (8.75), and proposing a
reasonable, although ad hoc, solution.

The discussion above suggests that phenomenology of the forward enstrophy cas-
cade is on the verge of being internally inconsistent, and that the �3 spectral slope might
be the shallowest limit that is likely to be actually achieved in nature or in any partic-
ular computer simulation rather than a robust, universal slope. To see this argument,
suppose the detailed fluid dynamics attempt in some way to produce a shallower slope;
then, using (8.76), the strain is local and the shallow slope is forbidden by the Kol-
mogorovian scaling results. However, if the dynamics organizes itself into structures
with a slope steeper than k�3 the strain is quite nonlocal. The fundamental assumption
of Kolmogorov scaling is not satisfied, and there is no internal inconsistency — the
theory simply doesn’t apply.

There are two other potential problems with the theory of two-dimensional turbu-
lence described above. One is that enstrophy is only one of an infinity of invariants
of inviscid two-dimensional flow, and the theory takes no account of the presence of
others. The second is that, as in three-dimensional turbulence, if there is strong inter-
mittency the flow cannot be fully characterized by single enstrophy and energy cascade
rates. In spite of all this, the notions of a forward transfer of enstrophy and an inverse
transfer of energy are quite robust, and have considerable numerical support.11

8.3.4 Numerical illustrations

Numerical simulations nicely illustrate both the classical phenomenology and its short-
comings. In the simulations shown in Fig. 8.8 and Fig. 8.9 the vorticity field is initial-
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ized ‘randomly’, meaning that there is no structure in the initial field, but with only a few
non-zero Fourier components, and the flow is allowed to freely evolve, save for the ef-
fects of a weak viscosity. Vortices soon form, and between them enstrophy is cascaded
to small scales where it is dissipated, producing a flat and nearly featureless landscape.
The energy cascade to larger scales is reflected in the streamfunction field, the length-
scale of which slowly grows larger with time. The vortices themselves form through
a roll-up mechanism, similar to that illustrated in Fig. 6.6, and their presence provides
problems to the phenomenology. Because circular vortices are nearly exact, stable solu-
tions of the inviscid equations they can ‘store’ enstrophy, disrupting the relationship be-
tween enstrophy flux and enstrophy itself that is assumed in the Kolmogorov-Kraichnan
phenomenology and providing a form of intermittency.

Nevertheless, some forced-dissipative numerical simulations suggest that the pres-
ence of vortices may be confined to scales close to that of the forcing, and if the res-
olution is sufficiently high then the �5=3 inverse cascade and �3 forward enstrophy
cascade may appear. Certainly, if the forcing is spectrally localized, then a well-defined
�5=3 spectrum robustly forms, as illustrated in Fig. 8.10. Typically, however, the
foward k�3 spectrum is more delicate, being influenced by the presence of coherent
vortices.13

8.4 † PREDICTABILITY OF TURBULENCE

Small differences in the initial conditions may produce very great ones in

the final phenomenon. . . Prediction becomes impossible. . . A tenth of a degree

more or less at any given point, and the cyclone will burst here and not there,

and extend its ravages over districts it might otherwise have spared.

Henri Poincaré, Science and Method, 1908.

It is a truth universally acknowledged that weather is unpredictable. That this is so
stems from the fact that the atmosphere is chaotic, and chaotic systems are unpredictable
virtually by definition. However, the atmosphere, and turbulence in general, is certainly
not, in general, a low-dimensional system (meaning a system with only a few degrees of
freedom), and the connection between atmospheric unpredictability and the ‘sensitive
dependance on initial conditions’ of low-dimensional systems is not as straightforward
as it might seem. In this section we expand and clarify these issues, beginning with an
informal discussion of a few aspects of low-dimensional dynamical systems.

8.4.1 Low dimensional chaos and unpredictability

Chaos, or temporal disorder leading to effective indeterminism, is a ubiquitous property
of nonlinear dynamical systems. Much of this was known to Poincaré, but in its modern
reincarnation it stems in part from the ‘Lorenz equations’.14 These are a set of three cou-
pled nonlinear ordinary differential equations, originally derived by way of a rather ad
hoc truncation of the fluid equations governing a two-dimensional convective system:
The streamfunction of a convective role is written as  .yx; yz; t/ D x.t/ sin k yx sin yz,
and the temperature perturbation as �.yx; yz; t/ D y.t/ cos k yx sin yz C z.t/ sin 2 yz,
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Fig. 8.8 Nearly-free evolution of vorticity (left column) and streamfunction (right column)
in a doubly-periodic square domain (of length 2 ) at times (from the top, and in units of
inverse vorticity) t D 0, t D 50 and t D 260, obeying the two-dimensional vorticity
equation with no forcing but with a weak viscous term. The initial conditions have just
a few non-zero Fourier modes with randomly generated phases, producing a maximum
value of vorticity of about 3. Kelvin-Helmholtz instability leads to vortex formation and
roll-up (as in Fig. 6.6), and like-signed vortices merge, ultimately leading to a state of
just two oppositely-signed vortices. Between the vortices enstrophy cascades to smaller
scales. The scale of the stream function grows larger, reflecting the transfer of energy to
larger scales.
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Fig. 8.9 Snapshots of the vorticity field in decaying two-dimensional tur-
bulence, similar to Fig. 8.8, with time increasing left to right. The flow ulti-
mately consists of a small number of vortices whose trajectories are similar
to that of interacting point vortices, with occasional close encounters lead-
ing to vortex merger.

where yx and yz are the horizontal and vertical coordinates in physical space, k is a
wavenumber, and x;y; z are amplitudes. Thus, x represents the rotational speed of the
convection roll, y the temperature difference horizontally across the roll, and z the de-
viation temperature from a background vertical stratification. The resulting equations
are, in notation standard for them,

dx

dt
D �.y � x/;

dy

dt
D rx � y � xz;

dz

dt
D xy � bz; (8.79a,b,c)

where the parameters are � , the Prandtl number; r , proportional to the Rayleigh num-
ber; and b, a wavenumber dependent dissipation coefficient. The behaviour of the sys-
tem varies with the parameters, and a well studied set uses � D 10, r D 28 and
b D 8=3. A typical solution of the system, a ‘flow’, is given in Fig. 8.11, and evidently

Figure 8.10 The energy
spectrum in a numerical sim-
ulation of forced-dissipative
two-dimensional turbulence. The
fluid is stirred at wavenumber
kf and dissipated at large scales
with a linear drag, and there is an
k�5=3 spectrum at intermediate
scales. The arrows schematically
indicate the direction of the
energy flow.12
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Fig. 8.11 A solution of the Lorenz equations, with � D 10, r D 28 and
b D 8=3. The left panel plots x as a function of time. The right panel plots
x against z.

the behaviour is quite complex. It is aperiodic, and the frequency spectrum (not shown)
is quite broad.

Now, suppose that at any given instant the flow is perturbed slightly. Or to put it
another way, suppose that we are trying to predict the future behaviour of the system by
integrating the equations of motion but that we only have inaccurate knowledge about
the sytem at some particular time. We find that the evolution of the original flow and that
of the perturbed flow diverge from each other, and after a little while the two systems
are completely different (Fig. 8.12). Because we can never expect to have completely
accurate information about the state of the system, the system is thus unpredictable.
Three points are apparent:

(i) The time taken for the trajectories to diverge depends on the magnitude of the ini-
tial perturbation. Small perturbations grow exponentially at first, and at any given
point in the trajectory, the smaller the perturbation the longer the predictability.

(ii) Once the perturbation has reached finite amplitude, the predictability time — the
time for the error to become as large as the solution itself — will typically be of
order the characteristic advective time of the system, the time for a convective roll
to overturn.

(iii) The predictability time depends on the location of the system in .x;y; z/ space: in
the examples of Fig. 8.12 the perturbed system follows the original quite closely
for a while, then quickly diverges.

8.4.2 * Predictability of a turbulent flow

The atmosphere is a nonlinear dynamical system, but one enormously more complex
than the Lorenz system. It is is not only chaotic, it is turbulent — it has both spatial
and temporal disorder — so we should certainly expect its evolution also to be very
sensitive to its initial conditions.15

However, turbulence is richer than low-order chaos because a turbulent flow con-
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Fig. 8.12 Examples of the evolution of the Lorenz model subject to a small
perturbation at time 10 (left panel) and time 13.5 (right panel). The original
and perturbed systems are the solid and dashed lines, respectively.

tains multiple scales of motion; the error is typically initially largely confined to small
scales, but the ‘predictability time’ of the atmosphere may be taken as the time taken
to contaminate all scales of motion. There are two possible routes that the error may
take in affecting the larger scales. In the first we suppose, following classical turbu-
lence phenomenology, that errors on a small scale will mostly contaminate the motion
on the next larger scale (in a logarithmic sense), at that this contamination occurs on
the local eddy turnover time. Eddies on this larger scale then grow and affect the next
larger scale, and the error field is so cascaded upscale via local local triad interactions
finally reaching the largest scales of the fluid. Note that this mechanism does not rely
on there being an inverse cascade of energy — it is only the error, or the contamination,
that is cascaded upscale. In the second route we suppose that errors occurring on the
small scale immediately contaminate the largest scales, with an initial error equal to the
amplitude of the small scale, and that the large-scale error then grows exponentially.

I. Error growth via a local cascade

Let us suppose that the error is initially confined to some small scale characterized by
the (inverse of) the wavenumber k1, as determined by the resolution of our observ-
ing network. For modes at that scale the error may be considered finite rather than
infinitesimal, and it will saturate and contaminate the next largest scale in a timescale
comparable to the eddy turnover time at that scale. Thus, in general, errors initially
confined to a scale k will contaminate the scale 2k after a time �k , with �k given by
(8.24). The total time taken for errors to propagate from the small scale k1 to the largest
scale k0 is then given by

T D

Z k1

k0

�k d.ln k/ D

Z k1

k0

Œk3E.k/��1=2 d.ln k/; (8.80)

treating the wavenumber spectrum as continuous. The logarithmic integral arises be-
cause the cascade proceeds logarithmically — error cascades from k to 2k in a time �k .
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For an energy spectrum of the form E D Ak�n this becomes

T D
2

A1=2.n � 3/

h
k.n�3/=2

ik1

k0

: (8.81)

for n ¤ 3, and T D A�1=2 ln.k1=k0/ for n D 3. If in two dimensional turbulence we
have n D 3 and A D �2=3, and if in three-dimensional turbulence we have n D 5=3

and A D "2=3, then the respective predictability times are given by:

T2d � ��1=3 ln.k1=k0/;

T3d � "�1=3k
�2=3
0

: (8.82a,b)

As k1 ! 1, that is as the initial error is confined to smaller and smaller scales, pre-
dictability time grows larger for two dimensional turbulence (and for n � 3 in general),
but remains finite for three dimensional turbulence.

II. Error growth via a direct interaction

Let us now assume that the small scale error directly affects the large scales, where
the error then grows exponentially until it saturates. That is, if � is a measure of the
amplitude of the large-scale error then

� � �0 exp.� t/; (8.83)

where � is the inverse of the eddy turnover time at the large scale, and �0 is the ampli-
tude of its initial error and this, we assume, is equal to the amplitude of the motion at
the poorly-observed small scales at wavenumber k1. In two dimensional turbulence the
eddy turnover time is given by �k � ��1=3 and A � �2=3, and so we take

� D �1=3
D A1=2; �0 D Ak�n

1 : (8.84)

where n D 3. The time, T 0
2d, needed for the error to saturate is then approximately

given by the solution of

Ak�n
0 D Ak�n

1 exp.A1=2T 0
2d/; (8.85)

giving
T 0

2d � ��1=3 ln.k1=k0/: (8.86)

In three-dimensional turbulence the eddy turnover time is given by �k � "�1=3k�2=3

and A � "2=3, and so we take

� D k
2=3
0

A1=2; �0 D Ak�n
1 (8.87)

where n D 5=3. The time, T 0
3d, needed for an error to saturate on large scale is then

approximately given by the solution of

Ak�n
0 D Ak�n

1 exp.k2=3
0

A1=2T 0
3d/; (8.88)
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giving
T 0

3d � k
�2=3
0

"�1=3 ln.k1=k0/: (8.89)

The estimates (8.86) and (8.89) are to be compared with (8.82). For two dimensional
turbulence, the estimates are equal (reflecting the scale independence of the eddy turnover
time), whereas for three-dimensional turbulence the estimate from (8.82) is much shorter
than that from (8.89) if k1 � k0, meaning that the local cascade mechanism of error
growth will dominate.

8.4.3 Implications and weather predictability

In two-dimensional flow the predictability time, (8.82a) increases without bound as the
scale of the initial error decreases. This is consistent with what has been rigorously
proven about the two-dimensional Navier-Stokes equations, namely that, provided the
initial conditions are sufficiently smooth, the solutions have a continuous dependence
on the initial conditions, and a change in solution at some later time is bounded by
the magnitude of the change in the initial conditions. This does not mean that two-
dimensional flow is in practice necessarily predictable: a small error or small amount
of noise in the system will still render a flow truly unpredictable sometime in the future,
but we can put off that time indefinitely if we know the initial conditions well enough.

In three dimensions, with a spectrum of k�5=3, the predictability-time estimate from
(8.82b) is not dependent on the scale of the initial error. Thus, even if the initial error is
confined to smaller and smaller scales, the predictability time is bounded. The time it
takes for such errors to spread to the largest scales is simply a few large eddy turnover
times, essentially because the eddy turnover times of the small scales are so small. For
such a fluid, there is no unique error doubling time, because the error growth rate is a
function of scale.

In the troposphere the large scale flow behaves more like a two-dimensional fluid
than a three-dimensional fluid and from scales from a few hundred to a few thousand
kilometers it has, roughly, a k�3 spectrum (look ahead to Fig. 9.7). If this spectrum
extended indefinitely to small scales the predictability time would be correspondingly
large, but at scales smaller than about 100 km or so, the atmosphere starts to behave
more three-dimensionally and the predictability time cannot be significantly extended
by making observations at still finer scales. That is, the effective limit to predictability
is governed by the horizontal scale at which the atmosphere turns three-dimensional.
(Hypothetically, we might be able to again increase the predictability time if we could
observe scales well into the viscous regime where the specrum again steepens, but this
would entail other problems.) Putting in the numbers gives a predictability limit of
about 12 days (but there is at least a factor of two uncertainty in such a calculation),
and small perturbations that are impossible to observe will change the course of the
large-scale weather systems on this timescale. The ‘butterfly effect’ has its origins in
this argument: a butterfly flapping its wings is, so it goes, able to change the course of
the weather a week or so later.16

Thus, as regards our attempts to predict weather, as the atmosphere becomes ob-
served more and more accurately, the initial error will become concentrated at smaller
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and smaller scale, eventually reaching the scale at which the atmosphere ceases to be-
have as a quasi-two-dimensional fluid and where its spectrum flattens. The initial error
growth rate will then increase, indicating the unavoidable onset of diminishing returns
in adding better observing systems. Note that, unlike the situation in a low-order chaotic
system, the growth rate of errors in a turbulent flow is not in general exponential (except
for a pure �3 spectrum) even for a small initial error. This is because the initial error
will never be properly infinitesimal, in that a given error will nearly always project onto
some scale at finite amplitude.17

8.5 * SPECTRUM OF A PASSIVE TRACER

Let us now consider, heuristically, the spectrum of a passive tracer that obeys

D�
Dt

D F Œ��C �r
2�; (8.90)

where F Œ�� is the stirring of the dye, and � is its diffusivity, which in general differs
from the kinematic molecular viscosity �. If � is temperature, the ratio of viscosity
to diffusivity is called the Prandtl number and denoted � , so that � � �=�. If � is
a passive tracer, the ratio is sometimes called the Schmidt number, but we shall call it
the Prandtl number in all cases. We assume that the tracer variance is created at some
well-defined scale k0, and that � is sufficiently small that dissipation only occurs at very
small scales. (Note that dissipation only reduces the tracer variance, not the amount of
tracer itself.) The turbulent flow will generically tend to stretch patches of dye into
elongated filaments, in much the same way as vorticity in two-dimensional turbulence
is filamented — note that Fig. 8.5 applies just as well to a passive tracer in either two
or three dimensions as it does to vorticity in two dimensions. Thus we expect a transfer
of tracer variance from large-scales to small. If the dye is stirred at a rate � then, by
analogy with our treatment of the cascade of energy, we posit that

K�� /
P.k/k
�k

; (8.91)

where P.k/ is the spectrum of the tracer, k is the wavenumber, �k is an eddy timescale
and K� is a constant, not necessarily the same constant in all cases. (In the rest of
the section, Kolmogorov-like constants will be denoted K, differentiated with miscel-
laneous superscripts or subscripts.) Let us first assume that �k is given by

�k D Œk3E.k/��1=2: (8.92)

Suppose that the turbulent spectrum is given by E.k/ D Ak�n, then using (8.92), (8.91)
becomes

K�� D
P.k/k

ŒAk3�n��1=2
; (8.93)

and

P.k/ D K�A�1=2�k.n�5/=2 : (8.94)
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Note that the steeper the energy spectrum the shallower the tracer spectrum. If the
energy spectrum is steeper than �3 then (8.92) may not be a good estimate of the eddy
turnover time, and we use instead

�k D

"Z k

k0

p2E.p/dp

#�1=2

; (8.95)

where k0 is the low-wavenumber limit of the spectrum. If the energy spectrum is
shallower than �3, then the integrand is dominated by the contributions from high
wavenumbers and (8.95) effectively reduces to (8.92). If the energy spectrum is steeper
than �3, then the integrand is dominated by contributions from low wavenumbers. For
k � k0 we can approximate the integral by Œk3

0
E.k0/�

�1=2, that is the eddy-turnover
time at large scales, �k0

, given by (8.92). The tracer spectrum then becomes

P.k/ D K0
���k0

k�1 ; (8.96)

where K0
� is a constant. In all these cases the tracer cascade is to smaller scales even if,

as may happen in two-dimensional turbulence, energy is cascading to larger scales.
The scale at which diffusion becomes important is given by equating the turbulent

time-scale �k to the diffusive time-scale .�k2/�1. This is independent of the flux of
tracer, �, essentially because the equation for the tracer is linear. Determination of
expressions for these scales in two and three dimensions are left as problems for the
reader.

8.5.1 Examples of tracer spectra

Energy inertial range flow in three dimensions

Consider a range of wavenumbers over which neither viscosity nor diffusivity directly
influence the turbulent motion and the tracer. Then in (8.94) A D K"2=3 where " is the
rate of energy transfer to small scales , K is the Kolmogorov constant, and n D 5=3.
The tracer spectrum becomes18

P.k/ D K3d
� "

�1=3�k�5=3: (8.97)

where K3d
� is a (putatively universal) constant. It is interesting that the �5=3 exponent

appears in both the energy spectrum and the passive tracer spectrum. Using (8.92), this
is the only spectral slope for which this occurs. Experiments show that this range does,
at least approximately, exist with a value of K3d

� of about 0:5–0:6 in three dimensions.

Inverse energy-cascade range in two-dimensional turbulence

Suppose that the energy injection occurs at a smaller scale than the tracer injection, so
that there exists a range of wavenumbers over which energy is cascading to larger scales
while tracer variance is simultaneously cascading to smaller scales. The tracer spectrum
is then

P.k/ D K2d
� "

�1=3�k�5=3; (8.98)
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the same as (8.97), although " is now the energy cascade rate to larger scales and the
constant K2d

� does not necessarily equal K3d
� .

Enstrophy inertial range in two-dimensional turbulence

In the forward enstrophy inertial range the eddy timescale is �k D ��1=3 (assuming of
course that the classical phenomenology holds). Directly from (8.91) the corresponding
tracer spectrum is then

P.k/ D K2d*
� ��1=3�k�1: (8.99)

The passive tracer spectrum now has the same slope as the spectrum of vorticity vari-
ance (i.e., the enstrophy spectrum), which is perhaps comforting since the tracer and
vorticity obey similar equations in two dimensions.

The viscous-advective range of large Prandtl number flow

If � D �=� � 1 (and in seawater � � 7) then there may exist a range of wavenumbers
in which viscosity is important but not tracer diffusion. The energy spectrum is then
very steep, and (8.96) will apply. The straining then comes from wavenumbers near the
viscous scale, so that for three dimensional flow the appropriate k0 to use in (8.96) is
the viscous wavenumber, and k0 D k� D ."=�3/1=4. The dynamical timescale at this
wavenumber is given by

�k�
D

�
�

"

�1=2

; (8.100)

and using this and (8.96) the tracer spectrum in this viscous-advective range becomes

P.k/ D K0
B

�
�

"

�1=2

�k�1: (8.101)

This spectral form applies for k� < k < k� , where k� is the wavenumber at which
diffusion becomes important, found by equating the eddy turnover time given by (8.100)
with the diffusive timescale .�k2/�1. This gives

k� D

� "

��2

�1=4
; (8.102)

and k� is known as the Batchelor wavenumber (and its inverse is the Batchelor scale).
Beyond k� , the diffusive flux is not constant and the tracer spectrum can be expected to
decay as wavenumber increases. A heuristic way to calculate the spectrum in this range
is to first note that in the diffusive range the flux of the tracer is no longer constant but
diminishes according to

d�0.k/

dk
D �2�k2P.k/: (8.103)

where �0 is the wavenumber-dependent rate of tracer transfer. Let us nevertheless as-
sume that �0 and P.k/ are related by (8.91), except that now we take the eddy turnover
time to be a constant, given by (8.100). Thus,

KB�
0
D
P.k/k
�k�

D
P.k/k
.�="/1=2

(8.104)
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Figure 8.13 The energy spec-
tra, E.k/ and passive tracer
spectra P.k/ in large Prandtl
number three-dimensional
turbulence (top) and two-
dimensional turbulence (bot-
tom). In three dimensions P.k/
is given by (8.97) for k < k�

and by (8.106) for k > k� . In
two dimensions, if ktr marks the
transition between a k�5=3 in-
verse energy cascade and a k�1

forward enstrophy cascade,
then P.k/ is given by (8.98)
for k < ktr and by (8.107) for
k > ktr. In both two and three
dimensions the tracer spectra
falls off rapidly for k > k� .

where KB is a constant. Using (8.103) and (8.104) we obtain

d�0

dk
D �2KB�k

��
"

�1=2
�: (8.105)

Solving this, using �0 D � for small k, gives

P.k/ D KB

�
�

"

�1=2

�k�1 expŒ�KB.k=k�/
2�: (8.106)

This reduces to (8.101) if k � k� , and is known as the Batchelor spectrum.19 Its high-
wavenumber part k > k� is known as the viscous-diffusive subrange. The spectrum,
and its two-dimensional analog, is illustrated in Fig. 8.13

In two dimensions the the viscous-advective range occurs for wavenumbers greater
than k� D .�=�3/1=6. The appropriate timescale within this subrange by ��1=3, and
therefore gives a spectrum with the precisely the same form as (8.99). At sufficiently
high wavenumbers tracer diffusion becomes important, with the diffusive scale now
given by equating the eddy turnover time ��1=3 with the viscous timescale .�k2/�1.
This gives the diffusive wavenumber, analogous to (8.102), of k� D .�=�3/1=6. Using
(8.105) and the procedure above we then obtain an expression for the spectrum in the
region k > k� , that is a two-dimensional analog of (8.106), namely

P.k/ D K0
B�

�1=3�k�1 expŒ�K0
B.k=k�/

2�: (8.107)
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For k � k� this reduces to (8.99), possibly with a different value of the Kolmogorov-
like constant.

† The inertial-diffusive range of small Prandtl number flow

For small Prandtl number (�=� � 1) the energy inertial range may co-exist with a
range over which tracer variance is being dissipated, giving us the so-called inertial-
diffusive range. The tracer will begin to be dissipated at a wavenumber obtained by
equating a dynamical eddy turnover time with a diffusive time, and this gives a diffusive
wavenumber

k 0
� D

(
."=�3/1=4 in three dimensions;
.�=�3/1=6 in two dimensions:

(8.108)

Beyond the diffusive wavenumber the flux of the tracer is no longer constant but dimin-
ishes according to (8.103).

Given a non-constant flux and an eddy-turnover time that varies with wavenumber
there is no self-evidently correct way to proceed. One way is to assume that � and
P.k/ are related by K00

�� D P.k/k=�k , as in (8.104) but with a potentially different
proportionality constant and with �k given by (8.92); that is, �k D "�1=3k�2=3 in three
dimensional turbulence. Using this in (8.103) leads to

P.k/ D K00
��"

�1=3k�5=3 expŒ�.K00
�3=2/.k=k 0

�/
4=3�: (8.109)

where � is the tracer flux at the beginning of the tracer dissipation range. (A simi-
lar expression emerges in two dimensional turbulence.) However, given such a steep
spectrum an argument based on spectral locality is sometimes thought to be suspect.
Another argument posits a particular relationship between the tracer spectrum and en-
ergy spectrum in the inertial-diffusive range, and this leads to

P.k/ D
K00

B

3
�0"

2=3��3k�17=3
D K00

B�0"
�1=3k�5=3g.k=k�/; (8.110)

where g.˛/ D ˛�4=3 and K00
B

is a constant.20

Notes

1 The algebra of the three-dimensional case is more complicated because of the
pressure term and because the momentum equation is a vector equation. In in-
compressible flow we can take the diveregence of the momentum equation to
obtain an elliptic equation for pressure of the form r2p D L.v/ where the right-
hand side is a quadratic function of velocity and its derivatives, and then Fourier
transform this and proceed in much the same way.

2 A. N. Kolmogorov (1903–1987) was a Russian mathematician and theoretical physi-
cist, who made seminal contributions to turbulence (in two famous papers in 1941
and another in 1962), to probability and statistics, and to classical mechanics (e.g,
the Kolmogorov-Arnold-Moser theorem). Yaglom (1994) provides more details on
both the man and his scientific contributions.
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3 The process has been encapsulated in the following ditty by Lewis Fry (L.F.) Richard-
son (1881–1953), his own summary of Richardson (1920):

Big whorls have little whorls, that feed on their velocity;
And little whorls have lesser whorls, and so on to viscosity.

The verse follows a well-known one by the mathematician Augustus de Morgan (in
A Budget of Paradoxes 1872), ‘Great fleas have little fleas upon their backs to bite
’em. . . ’, which in turn is a parody on a poem by Jonathan Swift. Richardson him-
self was a British scientist best known as the person who (following earlier work
by V. Bjerknes) envisioned weather forecasting in its current form — that is, nu-
merical weather prediction. However, as described in his 1922 book, instead of an
electronic computer performing the calculations, he imagined, perhaps fancifully,
a hall full of people performing calculations in unison all directed by a conductor
at the front. His first numerical forecast, calculated by hand, was wildly inaccu-
rate both because he failed to ‘initialize’ his atmosphere properly and because
his timestep was too long and did not satisfy the CFL condition, and unrealistic
gravity waves dominated the solution. However, it was a prescient and important
effort. He also worked on turbulence, and seems to have envisioned the turbulent
cascade prior to Kolomgorov (to wit the verse above); the ‘Richardson number’, a
measure of fluid stratification, is also named for him. He also made contributions
to the theory of war and was known as a pacifist — he was a conscientious ob-
jector and drove ambulances in the first World War, and resigned from the U. K.
Meteorological Office because it became part of the Air Ministry.

4 Kolmogorov (1941) obtained the result in a slightly different way, using distances
in real space rather than wavenumber and deriving the equivalent result for the
longitudinal structure function, D.r/ �

˝
Œul .x C r/ � ul .x/�

2
˛

� r2=3. It was
Obukhov (1941) who gave an argument in spectral space and first wrote down
that E.k/ � k�5=3, but Kolmogorov’s argument is regarded as more general
and hence the 5=3 spectrum is usually named for him. Sometimes it is called the
‘Kolmogorov-Obukhov’ 5/3 spectrum.

5 Experiments carried out and data kindly provided by R. Zhao.

6 The first observations confirming the -5/3 predictions were from a tidal channel
(Grant et al. 1962). These results were initially presented at a turbulence confer-
ence in Marseille in 1961, ironically at the same time as Kolmogorov presented a
modification of his original theory that incorporated a local mean dissipation rate,
to try to take intermittency into account, recognizing that his first theory was in-
complete (Kolmogorov 1962). It is said to have been L. D. Landau who pointed out
the consequences of intermittency to Kolmogorov, soon after the K41 theory first
appeared.

7 Two-dimensional turbulence was first considered by Lee (1951) and Fjørtoft (1953),
the latter recognizing the two-dimensional nature of large-scale atmospheric mo-
tion. The theory was developed by Kraichnan (1967) (who predicted the spectral
shapes of the two-dimensional cascades), Leith (1968) and Batchelor (1969). Lilly
(1969) performed some early numerical integrations. For extensive reviews of
two-dimensional turbulence see Kraichnan and Montgomery (1980) and Danilov
and Gurarie (2001).

8 This similarity argument is due to Batchelor (1969), and its validity was explored
by Bartello and Warn (1996) using direct numerical simulations of decaying two-
dimensional turbulence. They found that the similarity hypothesis is not quantita-
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tively accurate, and in particular that higher-order moments of the vorticity do not
obey the predictions of the theory. This failure may be ascribed to the fact that
in two-dimensional flow vorticity is conserved on parcels, and in the presence of
coherent vortices this is an effective constraint that is not included in the theory.
In flow with a finite deformation radius coherent vortices are found to be less im-
portant and an analogous similarity hypothesis appears to work better (Iwayama
et al. 2002).

9 Colin De Verdiere (1980), Arbic et al. (2005).

10 To read more about strain, see Lesieur (1997).

11 The idea that in two-dimensional turbulence energy is transferred to larger scales
was arguably one of the most important developments in fluid mechanics in the
second half of the 20th century. One might characterize the upscale cascade in
two-dimensional turbulence by:

Small whorls beget bigger whorls, that feed upon their energy;
And bigger whorls beget larger whorls, and so on, using synergy.

12 From Maltrud and Vallis (1991).

13 For numerical simulations illustrating these and other properties of two-dimen-
sional turbulence see, among others, McWilliams (1984), Maltrud and Vallis (1991),
Oetzel and Vallis (1997), Lindborg and Alvelius (2000), Smith et al. (2002). Also
look at Jupiter through a telescope!

14 The Lorenz equations were written down by Lorenz (1963), based in part on some
earlier work of (Saltzman 1962), and inspired a veritable industry of study. The
field of chaos, or more generally nonlinear dynamics, has grown enormously since
then, prompted also by work in mathematics occurring at about the same time, and
its development is sometimes regarded as one of the true revolutions of science in
the 20’th century. Aubin and Dahan Dalmedico (2002) write an interesting history
of it. The correspondence of the Lorenz equations to a real fluid system is tenuous,
but the importance of the properties they demonstrate transcends this; we regard
the equations simply as an example of a chaotic system with some fluid relevance.
The equations and variations about them have re-appeared in studies of, among
other things, lasers, dynamos, chemical reactions, mechanical waterwheels and El
Niño.

15 That a turbulent flow is unpredictable follows from two suppositions: that chaotic
systems are unpredictable, and that turbulent flow is (among other things) a chaotic
system. The former is almost definitionally true, and the latter result follows from
the work of Lorenz (1963), Ruelle and Takens (1971) and others who showed that
fluid turbulence was generically a consequence of a small number of bifurcations
as some controlling parameter (like Reynolds number) is changed. Prior to this tur-
bulence was sometimes thought, following Landau (1944), to be a large collection
of periodic motions with incommensurate frequencies that would have complex
and non-repeating but presumably predictable behaviour. Notwithstanding that,
it seems to have been known, well before the development of nonlinear dynami-
cal systems theory in the 1960’s and 1970’s, that the weather was unpredictable.
Poincaré was probably the first to properly recognize this at the turn of the 20th
century, and weather forecasters seem to have intuited that the atmosphere was
intrinsically, and not just practically, difficult to forecast: in the 1941 novel Storm
by G. R. Stewart (1895–1980, a professor of English at UC Berkeley) we find a
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forecaster musing that ‘A Chinaman sneezing in Shen-si may set men to shovel-
ing snow in New York City’. (Storm is also notable because it used female names
for intense storms, a practice that became common among forecasters in WWII
and that was used by the US Weather Service from 1953–1978, after which gender
equity pertained.) In a more academic setting, the predictability problem is men-
tioned in the book by Godske et al. (1957) (much of which written in the 1930s
and 40s), and Thompson (1957) and Novikov (1959) studied the unpredictability
of atmospheric flows from the perspective of turbulence, evidently unaware of, or
at least uninfluenced by, either Poincaré or Landau. Phil Thompson himself was in
the Joint Numerical Weather Prediction Unit of the U.S. government in the 1950s,
whose task was to numerically produce weather forecasts, and this practical expe-
rience undoubtedly confronted and guided his theoretical thinking. These various
strands came together and were clarified by the dynamical systems viewpoint cou-
pled with the view of the atmosphere as a geostrophically turbulent fluid, and this
has led to the viewpoint we describe here, and to estimates of the limit to pred-
icability time of the atmospheric weather of about two weeks. However, at any
particular time the predictability may be much shorter or longer than this depend-
ing on the synoptic state of the atmosphere — it may be in a particularly persistent
blocking regime, for example — but ‘predicting the predictability’ is difficult. It
may also be possible to predict the average weather for much longer if the more
slowly varying parts of the climate system such as the ocean have a systematic
effect on the atmosphere.

16 The more technical phrase ‘sensitive dependence on initial conditions’ is a para-
phrase of one of Poincaré, but the catchier one ‘butterfly effect’ seems to have
more recent origins. Its precise origins are obscure, but the phrase certainly be-
come more common among meteorologists following a lecture by Lorenz to the
AAAS in 1979 entitled ‘Predictability: does the flap of a butterfly’s wings in Brazil
set off a tornado in Texas?’. The shape of the Lorenz attractor in phase space
also resembles a butterfly, and the two (not unrelated) phenomena are sometimes
conflated.

17 My thanks to Tim Palmer for an email conversation on this topic. A related point is
that the predictability of a turbulent system is not well characterized by its spec-
trum of Lyapunov exponents: in a turbulent system in three dimensions the largest
Lyapunov exponent is likely be associated with very small scales of motion, and
the error growth associated with this effectively saturates at small scales.

18 First derived by Obukhov (1949) and Corrsin (1951).

19 Batchelor (1959), who also suggests that the constant KB in (8.106) should have
the value 2. There is some observational support for the k�1 viscous-advective
range in the temperature spectra of the ocean, one of the first measurements
being that of Grant et al. (1968). Aside from their intrinsic interest, the viscous
and diffusive scales are used in microstructure theory and measurements that lead
to estimates of the ocean’s energy dissipation rate. See, for example, Gregg (1998)
and Stips (2005).

20 Batchelor et al. (1959). There is some numerical support for the �17=3 spectrum
using a Large-Eddy Simulation (LES) model (Chasnov 1991). See also O’Gorman
and Pullin (2005).

Other Reading
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There are a number of books on turbulence, including:

Tennekes H. and J. Lumley 1972. A First Course in Turbulence.
This remains a classic introduction to the subject.

McComb, W. D. 1990. The Physics of Fluid Turbulence.

Lesieur, M. 1997. Turbulence in Fluids.
The above two books deal with both the statistical and phenomenological aspects
of turbulence, with somewhat different emphases and styles.

Frisch, U. 1995. Turbulence: The Legacy of A. N. Kolmogorov.
A modern account of turbulence written in a slightly personal but readable style and
concentrating, as its title might suggest, on the statistical aspects of the subject.

A set of articles covering a very wide range of topics related to turbulence in marine
systems, on both large and small scales, is collected in:

Baumert, H. Z, Simpson, J. H., and Sünderman, J., Eds., 2003. Marine Turbulence:
Theories, Observations and Models.
Given its price, check it out from your library.

The more applied side of numerical weather prediction and predictability is discussed
by:

Kalnay, E. 2003. Atmospheric Modeling, Data Assimilation and Predictability.

Problems

8.1 Different averaging processes (time, space, or ensemble means, projection opera-
tors, etc.) may lead to different rules for the products of averages. Let a D a C a0,
where a is some kind of average, and similarly for the variable b. Thus

ab D ab C ab0 C a0b C a0b0 (P8.1)

Is this expression always equal to ab C a0b0? Give an example of an averaging
operator for which this is true, and, if possible, another for which it is not true.

Similarly, is it always true that ab D ab?

8.2 Consider the upscale energy transfer of two-dimensional turbulence, obeying the
equation of motion, D�=Dt D �r� C F , where F is a stirring that is non-zero only
at large wavenumbers and that produces an upscale energy transfer at the rate "0,
and r is a constant drag coefficient.

(a) Show that drag is important only for wavenumbers smaller than kr D .r3="0/
1=2.

(b) � Suppose that, at all wavenumbers, the energy spectrum E.k/ and the cas-
cade rate " are related by " D E.k/k=�k where �k D .E.k/k3/�1=2. How-
ever, at wavenumbers smaller than kr , the energy cascade rate diminishes with
wavenumber because of frictional effects. Obtain an expression for the energy
spectrum in this frictional range.

8.3 � Two-dimensional flow with a finite deformation radius obeys

@q

@t
C J. ; q/ D 0; q D .r2

� k2
d / : (8.2a,b)

Consider the asymptotic case with kd ! 1.
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(a) Show that the equation may be written in the form @yq=@yt C J. y ; yq/ D 0 where
yt D t=k2

d , yq D  and y D r2yq.
(b) What are the inviscid invariants of such a model?
(c) Consider the forced-dissipative case, with forcing confined to a small range of

wavenumbers. Argue that we may expect forward and inverse cascades of ap-
propriate inviscid invariants, and obtain expressions for the associated specta.

(d) In the unforced but viscous case, assume (as in Batchelor 1969), that energy
is conserved and that the energy spectrum evolves in a self-similar way. Show
that the energy spectrum then obeys

E.k/ D k
�3=4
d E9=8t1=4F.kkd�3=4E1=8t1=4/; (P8.3)

where F is a function of universal form and E is the total energy.

[See Watanabe et al. (1998) and Smith et al. (2002).]

8.4 Assuming that a small error cascades upscale:

(a) Using the observed spectrum of the atmosphere as a guide, estimate the pre-
dictability time of the atmosphere.

(b) Suppose that the large-scales of the atmosphere behave two dimensionally and
the small scales three dimensionally. Estimate the predictability time as a func-
tion of the cross-over scale, and plot this.

(c) Estimate the error doubling time as a function of scale (of the error) in a the
atmosphere, and plot it.

8.5 � Consider predictability in an isotropic fluid that has a �4 energy spectrum, and
a largest scale at wavenumber k0.

(a) Suppose that a small error projects entirely onto a small scale characterized by
a wavenumber k1 (k1 � k0), such that scales 1=k1 and smaller are effectively
unobserved scales larger than this are perfectly observed. Supposing error cas-
cades via specrally local interactions to larges scales, estimate the predictability
time.

(b) Now suppose that the initial error projects almost entirely onto the largest scale,
so that it is a small perturbation on the scale k0, but that its amplitude (the rms
difference between the perturbed and unperturbed streamfunction) is the same
as in the first case. Estimate the predictability time by supposing that the error
growth is exponential, and compare it to the solution of the first part.

8.6 In the limit of zero viscosity (8.72) implies that enstrophy dissipation remains con-
stant, and therefore that palinstrophy (mean square curl of the vorticity) is infinite
somewhere. However, it has been shown rigorously that the two-dimensional Euler
equations have no singularities in finite time if the initial conditions are sufficiently
smooth, and also that their enstrophy dissipation is zero. Resolve this paradox.
Qualitative solution: We are concerned with the zero viscosity limit in (8.72). But in
this limit it takes the fluid an infinite time to come to equilibrium with an infinitely
long inertial range, and only then is the enstrophy dissipation non-zero. However,
the rigorous results only prohibit singularities forming in finite time, and so there
is no contradiction.



Oh brave new world, That has such people in’t!

William Shakespeare, The Tempest, c. 1611.

CHAPTER 9

Geostrophic Turbulence and Baroclinic
Eddies

G
EOSTROPHIC TURBULENCE may be defined as turbulence in stably-stratified flow
that is in near-geostrophic balance. Perhaps ironically, it is sometimes easier
to say something interesting about this form of turbulence than about incom-

pressible isotropic two- or three-dimensional turbulence. In the latter class of prob-
lems there is nothing else to understand other than the problem of turbulence itself; on
the other hand, rotation and stratification give one something else to grasp, and it be-
comes possible to address geophysically interesting phenomena without having to solve
the whole turbulence problem. Furthermore, in inhomogeneous geostrophic turbulence
asking questions about the the mean fields is meaningful and useful, whereas this is triv-
ial in homogeneous turbulence. The constraining effects of rotation and stratification
that are so important are captured in a simple and direct way by the quasi-geostophic
equations and these will be our main tool. Let us consider the effects of rotation first,
then stratification.

9.1 EFFECTS OF DIFFERENTIAL ROTATION IN TWO-DIMENSIONAL TURBULENCE

One of the effects of rapid rotation on a fluid is its two-dimensionalization, as mani-
fested by the Taylor-Proudman effect for example. In the limit of motion of a scale much
shorter than the deformation radius, and with no topography, the quasi-geostrophic po-
tential vorticity equation reduces to the two-dimensional equation,

Dq

Dt
D 0 (9.1)

395
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where q D � C f . This is the perhaps the simplest equation with which to study the
effects of rotation on turbulence. The effects of rotation are of course already playing
a role in enabling us to reduce a complex three-dimensional flow to two-dimensional
flow. Further, suppose that the Coriolis parameter is constant. Then (9.1) becomes
simply the two-dimensional vorticity equation

D�
Dt

D 0: (9.2)

Thus constant rotation has no effect on purely two-dimensional motion. Flow that is al-
ready two-dimensional — flow on a soap film, for example — is unaffected by rotation.

Suppose, though, that the Coriolis parameter is variable, as in f D f0 C ˇy. Then
we have

D
Dt
.� C ˇy/ D 0 or

D�
Dt

C ˇv D 0: (9.3a,b)

If the dominant term in these equations is the one involving ˇ, then we obtain ˇv D 0.
That is, there is no flow in the meridional direction and any flow is purely zonal.
[An aside: From the point of view of the quasi-geostrophic asymptotics used in de-
riving (9.3), one assumes that variations in Coriolis parameter are small, i.e., that
ˇy D O.Ro/f . However, this does not preclude the ˇ term being the dominant one in
any subsequent equation, so long as it is not supposed to be 1=O.Ro/ bigger than the
other terms. Alternatively, one might have posited two-dimensionality, and (9.1), ab
initio so that there is no asymptotic restriction on the size of f .] This constraint may
be interpreted as a consequence of angular momentum and energy conservation. A ring
of fluid encircling the earth at a velocity u has an angular momentum per unit mass
a cos �.u C˝a cos �/ where � is the latitude and a is the radius of the earth. Moving
this ring of air polewards (i.e., giving it a meridional velocity) while conserving its an-
gular momentum requires its velocity and hence energy to increase. Unless there is a
source for that energy the flow is constrained to remain zonal.

9.1.1 Organization of turbulence into zonal flow

Scaling

Let us now consider how flow can become organized into zonal bands, from the per-
spective of two-dimensional turbulence. Re-write (9.1) in full as

@�

@t
C u � r� C ˇv D 0: (9.4)

If � � U=L and if t � T then the respective terms in this equation scale as

U

LT

U 2

L2
ˇU (9.5)

How time scales (i.e., advectively or with a Rossby wave frequency scaling) is de-
termined by which of the other two terms dominates, and this in turn is scale dependent.
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For large scales the ˇ-term will be dominant, and at smaller scales the advective term
is dominant. The cross-over scale, or the ‘ˇ-scale’ or ‘Rhines scale’ Lˇ , is given by1

Lˇ �

s
U

ˇ
: (9.6)

This is not a unique definition of the cross-over scale, since we have chosen the
same length scale that connects vorticity to velocity and to be the ˇ-scale, and it is by
no means a priori clear that this should be so. If the scale is different, the three terms in
(9.4) scale as

Z
T

W
UZ
L

W ˇU (9.7)

where Z is the scaling for vorticity (i.e., � D OZ). Equating the second and third terms
gives the scale

LˇZ
D
Z
ˇ
: (9.8)

In any case, (9.6) and (9.8) both indicate that at some large scale Rossby waves are
likely to dominate whereas at small scales advection, and turbulence, dominates.

Another heuristic way to derive (9.6) is by a direct consideration of timescales. The
Rossby wave frequency is ˇ=k and an inverse advective timescale is Uk, where k is
the wavenumber. Equating these two gives an equation for the ˇ-wavenumber

kˇ �

r
ˇ

U
: (9.9)

This equation is the inverse of (9.6), but note that factors of order unity cannot be
revealed by simple scaling arguments such as these. The cross-over between waves and
turbulence is reasonably sharp, as indicated in Fig. 9.1.

Phenomenology

Can we be more precise about the scaling, using the phenomenology of turbulence? Let
us suppose that the fluid is stirred at some well-defined scale kf, producing an energy
input ". Then (assuming no energy is lost to smaller scales) energy cascades to large
scales at that same rate. At some scale, the ˇ term in the vorticity equation will start
to make its presence felt. By analogy with the procedure for finding the dissipation
scale in turbulence, we can find the scale at which linear Rossby waves dominate by
equating the inverse of the turbulent eddy turnover time to the Rossby wave frequency.
The eddy-turnover time is

�k D "�1=3k�2=3; (9.10)

and equating this to the inverse Rossby wave frequency k=ˇ gives the ˇ-scale

kˇ �

�
ˇ3

"

�1=5

: (9.11)
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Fig. 9.1 Three estimates of the wave-turbulence cross-over, in wavenum-
ber space. The solid curve is the frequency of Rossby waves, proportional
to ˇ=k. The other three curves are various estimates of the inverse turbu-
lence timescale, or ‘turbulence frequency.’ These are the turbulent eddy
transfer rate, proportional to "k2=3 in a k�5=3 spectrum; the simple es-
timate Uk where U is an rms velocity; and the mean vorticity, which is
constant. Where the Rossby wave frequency is larger (smaller) than the
turbulent frequency, i.e., at large (small) scales, Rossby waves (turbulence)
dominate the dynamics.

From a practical perspective this is less useful than (9.9), since it is generally much
easier to measure velocities than energy transfer rates, or even vorticity. Nonetheless,
it is a little more fundamental from the point of view of turbulence since one can often
imagine that " is determined by processes largely independent of ˇ, whereas the mag-
nitude of the eddies (i.e. U ) at the energy containing scales is likely to be a function of
ˇ.

Generation of anisotropy

None of the measures discussed so far take into account the anisotropy inherent in
Rossby waves, nor do they suggest how the flow might organize itself into zonal struc-
tures. To understand that, let us note that energy transfer will be relatively inefficient at
those scales where linear Rossby waves dominate. But the wave-turbulence boundary
is not isotropic; the Rossby wave frequency is quite anisotropic, being given by

!ˇ D �
ˇkx

kx2
C ky2

: (9.12)
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Fig. 9.2 Evolution of vorticity (greyscale, left column) and streamfunction (contour plots,
right column) in a doubly-periodic square domain (of length 2 ) at times t D 0, t D 50 and
t D 260 (in units of inverse vorticity), obeying (9.4) with the addition of a weak viscous
term on the right-hand-side. The initial conditions are the same as for Fig. 8.8, with
maximum value of vorticity about 3. As ˇ D 3, the ˇ-Rossby number, j�j=ˇL is about
unity. Compared to Fig. 8.8, vortex formation is inhibited and there is tendency toward
zonal flow.
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Figure 9.3 The anisotropic wave-
turbulence boundary kˇ, in wave-
vector space calculated by equat-
ing the turbulent eddy transfer
rate, proportional to k2=3 in a
k�5=3 spectrum, to the Rossby
wave frequency ˇkx=k2, as in
(9.14). Within the dumbbell
Rossby waves dominate and en-
ergy transfer is inhibited. The in-
verse cascade plus Rossby waves
thus leads to a generation of zonal
flow.
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If, as a first approximation, we suppose that the turbulent part of the flow remains
isotropic, the wave turbulence boundary is then given from the solution of

"1=3k2=3
D
ˇkx

k2
(9.13)

where k is the isotropic wavenumber. Solving this gives expressions for the x- and
y-wavenumber components of the wave-turbulence boundary, namely

kx
ˇ D

�
ˇ3

"

�1=5

cos8=5 �; k
y

ˇ
D

�
ˇ3

"

�1=5

sin � cos3=5 �; (9.14)

where the polar coordinate is parameterized by the angle � D tan�1.ky=kx/. This
rather uninformative-looking formula is illustrated in Fig. 9.3.

The region inside the dumbbell shapes in Fig. 9.3 is dominated by Rossby waves,
where the natural frequency of the oscillation is higher than the turbulent frequency. If
the flow is stirred at a wavenumber higher than this the energy will cascade to larger
scales, but because of the frequency mismatch the turbulent flow will be unable to effi-
ciently excite modes within the dumbbell. Nevertheless, there is still a natural tendency
of the energy to seek the gravest mode, and it may do this by cascading toward the
kx D 0 axis — that is, toward zonal flow. In this way zonally elongated structures are
produced.

Slight variations on this temes are produced by using different expressions for the
‘turbulence frequency’. For example, if we use the simple expression Uk then the wave
turbulence boundary is given from

Uk D
ˇkx

k2
; (9.15)

which has solutions that may be written as

kx
ˇ D

�
ˇ

U

�1=2

cos3=2 �; k
y

ˇ
D

�
ˇ

U

�1=2

sin � cos1=2 �: (9.16a,b)
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Fig. 9.4 Evolution of the energy spectrum in a freely-evolving two-
dimensional simulation on the ˇ-plane. The panels show contours of en-
ergy in wavenumber .k; l/ space. The initial spectrum (a) is isotropic. The
energy ‘implodes’, but its passage to large scales is impeded by the ˇ-
effect, and panels (b) and (c) show the spectrum at later times, illustrating
the dumbbell predicted by (9.14) and Fig. 9.3.2

A plot of this is very similar to Fig. 9.3.

Does this putative mechanism actually work? Fig. 9.4 shows the freely evolving
(unforced, inviscid) energy spectrum in a simulation on a ˇ–plane, with an initially
isotropic spectrum. The energy implodes, cascading to larger scales but avoiding the
region inside the dumbbell and piling up at kx D 0. A similar picture emerges in
a forced-dissipative simulations, and with zonally-periodic boundary conditions these
show a robust tendency to produce zonally-elongated structures and jets (Fig. 9.5). In
closed domains, such as occur in the earth’s ocean, the production of such jets is inter-
rupted by the meridional boundaries.
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Fig. 9.5 Left: Gray-scale image of zonally average zonal velocity (u) as a
function of time and latitude (Y), produced in a simulation forced around

wavenumber 80 and with kˇ D

p
ˇ=U � 10 (in a domain of size 2 ). Right:

Values of @2u=@y2 as a function of latitude, late in the integration. Jets form
very quickly from the random initial conditions, and are subsequently quite
steady.3

9.2 STRATIFIED GEOSTROPHIC TURBULENCE

9.2.1 Quasi-geostrophic flow as an analogue to two-dimensional flow

Now let us consider stratified effects in a simple setting, namely the quasi-geostrophic
equations with constant Coriolis parameter and constant stratification.4 The (dimen-
sional) unforced and inviscid governing equation may then be written

Dq

Dt
D 0; q D r

2 C Pr2 @
2 

@z2
; (9.17a)

where Pr D f0=N is the Prandtl ratio (and Pr=H is the inverse of the deformation
radius) and D=Dt D @=@t C u � r is the two-dimensional material derivative. The
vertical boundary conditions are

D
Dt

�
@ 

@z

�
D 0; at z D 0;H: (9.17b)

These equations are analogous to the equations of motion for purely two-dimensional
flow. In particular, with periodic lateral boundary conditions, or conditions of no-
normal flow, there are two quadratic invariants of the motion, the energy and the en-
strophy, which are obtained by multiplying (9.17a) by  and q and integrating over the
domain, as in chapter 5. The conserved energy is

d yE

dt
D 0; yE D

Z
V

"
.r /2 C Pr2

�
@ 

@z

�2
#

dV; (9.18)
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where the integral is over a three-dimensional domain. The enstrophy is conserved at
each vertical level, and of course the volume integral is also conserved, namely

d yZ

dt
D 0; yZ D

Z
V

q2 dV D

Z
V

�
r

2 C Pr2

�
@2 

@z2

��2

dV: (9.19)

The analogy with two-dimensional flow is even more transparent if we further rescale
the vertical coordinate by 1=Pr, and so let z0 D z=Pr. Then the energy and enstrophy
invariants are:

yE D

Z
.r3 /

2 dV; yZ D

Z
q2dV D

Z
.r2

3 /
2 dV (9.20)

where r3 D i @=@x C j @=@y C k @=@z0. The invariants then have almost same form as
the two-dimensional invariants, but with a three-dimensional Laplacian operator instead
of a two-dimensional one.

Given these invariants, we should expect that any dynamical behaviour that oc-
curs in the two-dimensional equations that depends solely on the energy/enstrophy con-
straints should have an analogy in quasi-geostrophic flow. In particular, the transfer of
energy to large-scales and enstrophy to small scales will also occur in quasi-geostrophic
flow with, in so far as these transfers are effected by a local cascade, corresponding
spectra of k�5=3 and a k�3. However, the wavenumber is the now three-dimensional
wavenumber, appropriately scaled by the Prandtl ratio in the vertical. Interestingly,
then, the energy cascade to larger horizontal scales is accompanied by a cascade to
larger vertical scales — a barotropization of the flow. This is an important and robust
process in geostrophic turbulence and we come back to it later. However, the analogy
should not be taken too far, because in quasi-geostrophic flow the potential vorticity is
advected only by the horizontal flow. Thus, the dynamics of quasi-geostrophic turbu-
lence will not in general be isotropic in three-dimensional wavenumber. To examine
the detailed dynamical behaviour of quasi-geostrophic turbulence, we turn to a simpler
model, that of two-layer flow

9.2.2 Two-layer geostrophic turbulence

Let us now consider flow in two layers of equal depth, governed by the quasi-geostrophic
equations with (for now) ˇ D 0, namely
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The wavenumber kd is inversely proportional to the baroclinic radius of deformation,
and the two equivalent expressions given are appropriate in a layered model and a level
model, respectively. The equations conserve the total energy,

d yE

dt
D 0; yE D

1

2

Z �
.r 1/

2
C .r 2/

2
C

1

2
k2

d . 1 �  2/
2

�
dA; (9.23)

and the enstrophy in each layer

d yZ1

dt
D 0; yZ1 D

Z
A

q2
1 dA; (9.24)

d yZ2

dt
D 0; yZ2 D

Z
A

q2
2 dA: (9.25)

The first two terms in the energy expression represent the kinetic energy, and the last
term is the available potential energy, proportional to the variance of temperature.

Baroclinic and barotropic decomposition

Define the barotropic and barotropic streamfunctions by

 �
1

2
. 1 C  2/; � �

1

2
. 1 �  2/: (9.26)

Then the potential vorticities for each layer may be written:

q1 D r
2 C .r2

� k2
d /� (9.27a)

q2 D r
2 � .r2

� k2
d /� (9.27b)

and the equations of motion may be rewritten as evolution equations for  and � as
follows:
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We note the following:

(i)  and � are like vertical modes. That is,  is the barotropic mode with a ‘vertical
wavenumber’, kz , of zero, and � is a baroclinic mode with a vertical wavenumber
of one.

(ii) Just as purely two dimensional turbulence can be considered to be a plethora of
interacting triads, whose two-dimensional vector wavenumbers sum to zero, it is
clear from (9.28b) geostrophic turbulence may be considered to be similarly com-
prised of a sum of interacting triads. The types of triad interaction are:

. ;  / !  ; .�; �/ !  ; . ; �/ ! �: (9.29)
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The first kind is a barotropic triad, for it involves only the barotropic mode. The
other two are examples of a baroclinic triad. If a barotropic mode has a vertical
wavenumber of zero, and a baroclinic mode has a vertical wavenumber of plus
or minus one, then the vertical wavenumbers of the triad interactions must sum
to zero. There is no triad that involves only the baroclinic mode, as we may see
from the form of (9.28). (If the layers are of unequal depths, then purely baroclinic
triads do exist.)

(iii) Wherever the Laplacian operator acts on � , it is accompanied by �k2
d . That is,

it is as if the effective horizontal wavenumber (squared) of � is shifted, so that
k2 ! k2 C k2

d .

Conservation properties

Multiplying (9.28a) by  and (9.28b) by � and horizontally integrating over the domain,
assuming once again that the domain is either periodic or has solid walls, gives
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Here, yT is the energy associated with the barotropic flow and yC is the energy of the
baroclinic flow. An integration by parts shows thatZ
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and therefore
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d
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. yT C yC / D 0: (9.32)

That is, total energy is conserved.
An enstrophy invariant is obtained by multiplying (9.28a) by r2 and (9.28b) by

.r2 � k2
d /� and integrating over the domain and adding the two expressions. The result

is
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This also follows from (9.24).
Just as for two-dimensional turbulence, we may define the spectra of the energy and

enstrophy. Then, with obvious notation, for the energy we have

yT D

Z
T .k/ dk and yC D

Z
C.k/ dk; (9.34)

and the enstrophy spectrum Z.k/ is related to the energy spectra by
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which is analogous to the relationship between energy and enstrophy in two-dimen-
sional flow. We thus begin to suspect that the phenomenology to two-layer turbulence
is closely related to, but perhaps richer than, that of two-dimensional turbulence.

9.2.3 Triad interactions

Two types of triad interactions are possible:

Barotropic triads: An interaction that is purely barotropic (i.e., as if � D 0) con-
serves yT , the barotropic energy, and the associated enstrophy

R
k2T .k/dk,

and a barotropic triad behaves as purely two-dimensional flow. Explicitly, the
conserved quantities are

Energy:
d
dt

�
T .k/C T .p/C T .q/

�
D 0; (9.36)

Enstrophy:
d
dt

�
k2T .k/C p2T .p/C q2T .q/

�
D 0: (9.37)

Baroclinic triads: Baroclinic triads involve two baroclinic wavenumbers (say p; q)
interacting with a barotropic wavenumber (say k). The energy and enstrophy
conservation laws for this triad are

Energy:
d
dt
.T .k/C C.p/C C.q// D 0;

(9.38a)

Enstrophy:
d
dt

�
k2T .k/C .p2

C k2
d /C.p/C .q2

C k2
d /C.q/

�
D 0:

(9.38b)

Consider the following four cases of baroclinic triad:

I. .p; q/ � kd. Then neglect k2
d in (9.38a) and (9.38b), and a baroclinic triad be-

haves like a barotropic triad, for (9.38b) is similar to (9.37). Alternatively, but
equivalently, reconsider the layer form of the equations,

@qi

@t
C J. i ; qi/ D 0 (9.39)

where

qi D r
2 i C k2

d . j �  i/ � r
2 i i D 1; 2; j D 3 � i (9.40)

In this case, each layer is decoupled from the other. Enstrophy is cascaded to small
scales and, were there to be an energy source at small scales, energy would be
transferred upscales until it reached a scale comparable with the deformation scale.
Note that the transfer of enstrophy to small scales in a purely two-dimensional
fashion depends on the two-layer nature of the flow. In reality, the small scales
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of a continuously stratified flow may not be representable by a two-layer model:
remember that in a continuously stratified quasi-geostrophic model the enstrophy
cascade occurs in three-dimensional wavenumber. Thus, as the horizontal scales
become smaller, so does the vertical scale and higher deformation radii will start
to play a role.

II. .p; q; k/ � kd. The energy and enstrophy conservation laws collapse to:

d
dt
.C.p/C C.q// D 0: (9.41)

That is to say, energy is conserved among the baroclinic modes alone, with the
barotropic mode k mediating the interaction. There is no constraint preventing
the transfer of baroclinic energy to smaller scales, and no production of barotropic
energy at k � kd.

III. .p; q; k/ � kd. In this case both baroclinic and barotropic modes are important.
Suppose that we define the pseudo-wavenumber k 0 by k 02 � k2 C k2

d for a baro-
clinic mode and k 02 D k2 for a barotropic mode, and similarly for p0 and q0. Then
energy and enstrophy conservation can be written

d
dt
.E.k/C E.p/C E.q// D 0; (9.42a)

d
dt

�
k 02E.k/C p02E.p/C q02E.q/

�
D 0 (9.42b)

where E.k/ is the total energy (barotropic plus baroclinic) of the particular mode.
These are formally identical with the conservation laws for purely two-dimensional
flow and so we expect energy to seek the gravest (smallest pseudo-wavenumber)
mode. Since the gravest mode has kd D 0 this implies a barotropization of the
flow.

IV. Baroclinic Instability. Baroclinic instability in the classic two-layer problem con-
cerns the instability of a flow with vertical but no horizontal shear. This is like a
triad interaction for which p � .k; q; kd/. The conservation laws are,

d
dt
.T .k/C C.p/C C.q// D 0;

d
dt

�
k2T .k/C k2

dC.p/C .q2
C k2

d /C.q/
�

D 0:

(9.43)

From these, and with k2 � q2, we derive

k2 PC.q/ D .k2
d � k2/ PT .k/: (9.44)

Baroclinic instability requires that both PC.q/ and PT .k/ be positive. This can only
occur if

k2 < k2
d : (9.45)
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Fig. 9.6 Schema of idealized two-layer baroclinic turbulence. The horizontal axis repre-
sents horizontal wavenumber, and the vertical variation is decomposed into two vertical
modes — the barotropic and first baroclinic. Large-scale forcing maintains the available
potential energy, and so provides energy to the baroclinic mode at very large scales. At
these large scales, the equation for the baroclinic streamfunction is approximately that
of a passive tracer, and so energy is transferred to smaller scales. It is also transferred
to barotropic energy, at horizontal scales comparable to and larger than the deformation
radius (this is baroclinic instability) and thence to larger barotropic scales. The entire pro-
cess of energy transfer may be thought of as a generalized inverse cascade in which the
energy passes to smaller pseudo-wavenumber k02 � k2 C k2

d . At scales smaller than the
first deformation radius the layers are decoupled and enstrophy in each layer cascades
to smaller scales. The two-layer model may become less accurate for such small scales,
because of the influence of higher baroclinic modes not present in a two-layer model.5.

Thus, there is a high-wavenumber cut-off for baroclinic instability. This cut-off
arises solely from considerations of energy and enstrophy conservation, and is not
dependent on linearizing the equations and looking for exponentially growing nor-
mal mode instabilities.

For small scales, i.e., k2 � k2
d , the potential vorticity in each layer is, with ˇ D 0,

q1 D r
2 1 C

1

2
k2

d . 2 �  1/ � r
2 1; (9.46a)

q2 D r
2 2 C

1

2
k2

d . 1 �  2/ � r
2 2: (9.46b)

Thus, each layer is decoupled from the other. Thus, enstrophy will cascade to smaller
scales and, should there be an energy source at scales smaller than the deformation
scale it will cascade to larger scales. However, baroclinic instability (of the mean flow)
occurs at scales larger than the deformation radius. Thus, energy extracted from the
mean flow is essentially trapped at scales larger than the deformation scale.

Summary of phenomenology
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Figure 9.7 Energy spec-
tra of the zonal and merid-
ional wind near the tropopause,
from thousands of commercial
aircraft measurements between
1975 and 1979. The meridional
spectrum is shifted one decade
to the right. (Adapated from
Gage and Nastrom 1986)

Putting together the considerations above leads to the following picture of geostrophic
turbulence in a two-layer system (and see Fig. 9.6). At large horizontal scales we imag-
ine some source of baroclinic energy, which in the atmosphere might be the differential
heating between pole and equator, or in the ocean might be the wind and surface heat
fluxes. Baroclinic instability effects a nonlocal transfer of energy to the deformation
scale, where both baroclinic and barotropic modes are excited. From here there is an
enstrophy cascade in each layer to smaller and smaller scales, until eventually the scale
is small enough so that non-geostrophic effects become important and enstrophy is scat-
tered by three-dimensional effects. At scales larger than the deformation radius, there is
an inverse barotropic cascade of energy to larger scales. The energy of the large-scale
barotropic modes is eventually dissipated by boundary layer effects such as Ekman
drag. These ideas do not precisely apply to either atmosphere or ocean. In the latter, the
turbulence is quite inhomogeneous except perhaps in the Antarctic Circumpolar Cur-
rent. In the atmosphere, the deformation radius is almost as large as the Rhines scale,
leaving little room for an inverse cascade. However, the atmosphere does display k�3

spectra at scales similar to and somewhat smaller than the deformation radius, as in
Fig. 9.7, and analysis of this indicates that it may indeed be associated with a forward
cascade of enstrophy.6

9.3 † A SCALING THEORY FOR GEOSTROPHIC TURBULENCE

We now construct a phenomenological, but quantitative, theory of two-layer forced-
dissipative geostrophic turbulence.7 We will consider a system in which the basic state
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is a purely zonal flow with constant vertical shear and no horizontal variation, and our
goal is to construct a theory for the amplitude and the scale of the eddies that result
from the baroclinic instability of this flow. The assumption that the mean flow and the
stratification are constants is quite severe. One might extend the model by adding an
evolution equation for the mean flow, but allowing the stratification to vary spatially
or temporally is not allowed within quasi-geostrophic theory. In reality, eddies may
modify the stratification as well as the mean flow, so the model, even if correct within
its own terms of reference, cannot be a complete theory of mid-latitude flow.

9.3.1 Preliminaries

The system we seek to quantify is that illustrated in Fig. 9.6. Baroclinic instability at
large scales leads to a transfer of energy to the barotropic mode at a scale comparable to
the deformation radius, followed by an inverse cascade of energy within the barotropic
mode, and the energy is finally dissipated in the Ekman layer. At scales smaller than
the deformation radius the layers are largely uncoupled, and in each layer there is an
enstrophy cascade to small scales. The equations of motion describing all of this are
(9.28), but we will explicitly recognize the effect of a shear flow by replacing � by
� � Uy, where U is constant, this being equivalent to supposing there is a constant
shear in the flow. The equations become
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These are similar to the equations used for studying two-layer baroclinic instability in
chapter 6, but we now retain the nonlinear terms and include dissipation, represented
by DŒ�.

Large Scales

Let us focus on scales larger than the deformation radius. We therefore take r2 �

k2 � k2
d , and eliminate terms in (9.47) involving r2 if they appear along with terms

involving k2
d . Noting also that J.�; k2

d �/ D 0 we find
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We remark on two aspects to these equations:
(i) The equation for  is just the barotropic vorticity equation, ‘forced’ via its inter-

action with the baroclinic mode, namely the terms on the right-hand side of (9.48)
(ii) The equation for the baroclinic streamfunction is the same as the equation for a

passive scalar, except for the forcing term U @ =@x .
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In the barotropic equation, we may argue that in the energy containing scales, k2 �

k2
d , the magnitude of the barotropic stream function is much larger than that of the

baroclinic streamfunction; that is, j j � j� j, as follows. We may reasonably suppose
that the forcing of the barotropic vorticity equation occurs at wavenumbers close to
kd, as in baroclinic instability. At larger scales the barotropic streamfunction obeys
the two-dimensional vorticity equation, and we may expect an energy cascade to large
scales with energy spectrum given by

E .k/ D K1"
2=3k�5=3; (9.50)

where K is the Kolmogorov-Kraichnan constant for the inverse cascade and " is the as
yet undetermined energy flux through the system. We may suppose that this cascade
holds for wavenumbers k0 < k � kd, where the wavenumber k0 is the halting scale
of the inverse cascade, determined by one or more of friction, the ˇ–effect, and the
domain size. Now, in this same wavenumber regime the baroclinic streamfunction is
being advected as a passive tracer — it is being stirred by  . Thus, any baroclinic
energy that is put in at large scales by the interaction with the mean flow (via the term
proportional to U x) will be cascaded to smaller scales. Thus, we expect the baroclinic
energy spectrum to be that of a passive tracer whose variance is cascading to smaller
scales in a forward cascade, with a spectrum given by [c.f., (8.98)]

E� .k/ D K2"�"
�1=3k�5=3; (9.51)

where K2 is a constant, "� is the transfer rate of baroclinic energy and " is the same
quantity appearing in (9.50). Now, because energy is not lost to small scales we must
have that "� D ", both being equal to the energy flux in the system. Thus, using
(9.50) and (9.51), the energy in the barotropic and baroclinic modes are comparable at
sufficiently large scales. Since the energy density in the former is .r /2 and in the
latter .r�/2 C k2

d �
2 � k2

d �
2 the magnitude of  must then be much larger than that of

� , and specifically

j j �
kdj� j

k0

� j� j: (9.52)

9.3.2 Scaling properties

Let us write the baroclinic equation (9.49) in the form

@�

@t
C J. ; � � Uy/ D 0; (9.53)

which is the equation for a passive tracer (� ) in a mean gradient (U ), stirred by the
flow ( ), and we omit dissipation. Because there is a large scale separation (in fact, an
infinite one) between the scale of the mean gradient of � (i.e., the scale of variations of
U ) and the scale of its fluctuations we can write

� � l 0 @�

@y
D �l 0U (9.54)



412 Chapter 9. Geostrophic Turbulence and Baroclinic Eddies

where l 0 is the scale of the fluctuation. Thus, at the scale k�1
0

the magnitude of � , and
the associated baroclinic velocity v� , are given by

� �
U

k0

; v� � U: (9.55)

At this scale, and using (9.52), the magnitude of the barotropic streamfunction and its
associated velocity are given by
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kdU

k2
0

; v �
kdU

k0

: (9.56)

How much energy flows through the system? The mean shear is the ultimate source
of energy here, and for simplicity this shear is kept constant in time, analogous to an
infinite heat bath supplying energy to a smaller system without its own temperature
changing. The conversion of energy from the mean shear to the eddy flow is given by
multiplying (9.49) by k2

d � and integrating over the domain. This gives an expression
for the rate of increase of the available potential energy of the system, namely
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(Note that the energy input to the system equals the polewards heat flux.) From this we
estimate the average energy flux as

" D Uk2
d x� �

U 3k3
d

k2
0

: (9.58)

The correlation between  x and � cannot be determined by this argument. This aside,
we have produced a physically based ‘closure’ for the flux of energy through the sys-
tem in terms only of the mean shear, the halting scale k0 (discussed below) and the
deformation scale kd.

Finally, we calculate the eddy diffusivity defined by

� � �
v �

@y�
(9.59)

Using (9.55) and (9.56) gives

� �
kdU

k2
0

(9.60)

which, if the mixing velocity is the barotropic stirring velocity, implies a mixing length
of k�1

0
. (Note also that the eddy diffusivity is just the magnitude of the barotropic

streamfunction at the energy containing scales.)
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9.3.3 The halting scale and the ˇ–effect

Let us suppose that, as discussed in section 9.1, the ˇ–effect provides a barrier for the
inverse cascade at the scale (9.11), namely kˇ � .ˇ3="/1=5. Using (9.58) this becomes

kˇ D
ˇ

Ukd
; (9.61)

and using (9.60) and (9.61) we obtain for the energy flux and the eddy diffusivity,
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The magnitudes of the eddies themselves are easily given using (9.56) and (9.55),
whence
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d
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: (9.63)

Clearly, in this model (in which the mean shear and deformation radius are fixed),
the eddies become less energetic with increasing ˇ, and the eddy amplitudes and pole-
ward heat flux increase very rapidly with the mean shear, more so than in a model in
which the energy containing scale is fixed. This is because as ˇ decreases, the inverse
cascade can extend to larger scales, thereby increasing the overall energy of the flow.
Similarly, as U increases not only does the eddy amplitude increase as a direct conse-
quence [as is (9.55) and (9.56)] but also kˇ falls [see (9.61)], and these effects combine
to give a rapid increase of the eddy magnitudes with U .

Frictional effects

Whether ˇ is present or not, friction is necessary to ultimately remove the energy flow-
ing through the system, as well as to remove enstrophy at small scales. Friction provides
another mechanism for halting the inverse cascade, and the simplest case is that of a lin-
ear drag representing Ekman friction, in which case we write

DŒ � D �rr
2 : (9.64)

and the stopping scale for a given " is given, as in (8.74), by kr D .r3="/1=2. However,
the use of this in (9.58) fails to give result for ". From a physical perspective, a linear
drag that is weak enough to allow an inverse cascade forming is, ipso facto, too weak
equilibrate the flow. A friction that becomes larger at larger scales, for example an
‘inverse Laplacian’, has no such problems. More physically, a nonlinear drag, propor-
tional to the square of the amplitude of the flow, also leads to a well-posed problem with
the cascade halting at a well-defined scale. Finally, we should point out that in neither
the atmosphere or ocean is there an extended inverse cascade, because the deformation
scale and the Rhines scale are not asymptotically well separated (although the ˇ effect
does not prevent an inverse cascade to large zonal scales).
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9.4 † PHENOMENOLOGY OF BAROCLINIC EDDIES IN THE ATMOSPHERE AND
OCEAN

In the remaining sections of this chapter we take a phenomenological approach, illus-
trated by numerical experiments and observations, to the problem of baroclinic eddies
in the atmosphere and ocean. We draw from our treatment of geostrophic turbulence
but by being a little less precise we are able to travel farther, for we spend less time
looking at the map (but with a concomitant danger that we lose our way).

9.4.1 The Magnitude and Scale of Baroclinic Eddies

How big, in both amplitude and scale, do baroclinic eddies become? Suppose that
the time-mean flow is given, and that it is baroclinically unstable. Eddies will grow,
initially according to the linear theory of chapter 6, but they cannot and do not continue
to amplify: they ultimately equilibrate, and this by way of nonlinear mechanisms. The
eddies will extract energy from the mean flow, but at the same time the available energy
of the mean flow is being replenished by external forcing (i.e., the maintenance of an
equator–pole temperature gradient by radiative forcing in the atmosphere, and wind and
buoyancy forcing at the surface in the ocean). Thus, we cannot a priori determine the
amplitude of baroclinic eddies by simply assuming that all of the available potential
energy in the mean flow is converted to eddying motion. To close the problem we find
we need to make three, not necessarily independent, assumptions:

(i) An assumption about the magnitude of the baroclinic eddies;
(ii) An assumption relating eddy kinetic energy to eddy available potential energy;
(iii) An assumption about the horizontal scale of the eddies.

Baroclinic eddies extract available potential energy (APE) from the mean flow, and
it is reasonable to suppose that an eddy of horizontal scale Le can extract, as an upper
bound, the APE of the mean flow contained within that scale. The APE is proportional
to the variation of the buoyancy field so that

.�b0/2 � j�bj
2

� L2
e jrbj

2 (9.65)

where �b is the variation in the buoyancy over the horizontal scale Le. (For simplicity
we stay with the Boussinesq equations, and b D �gı�=�0. However, we might easily
apply this to an ideal-gas atmosphere with b D gı�=�0.) Equivalently, we might simply
write

b0
� Lejrbj ; (9.66)

which arises from a mixing-length approach. Supposing that the temperature gradient
is mainly in the y-direction then, using thermal wind, we have

b0
� Lef

@u

@z
and v0

� � u; (9.67a,b)

where v0
� is an estimate of the shear (multiplied by the depth scale) of the eddying flow.

[These estimates are the same as (9.55), with u replacing U .]
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Our second assumption is to relate the barotropic eddy kinetic energy to the eddy
available potential energy, and the most straightforward one to make is that there is
a rough equipartition between the two. This assumption is reasonable because in the
baroclinic lifecycle (or baroclinic inverse cascade) energy is continuously transferred
from eddy available potential energy to eddy kinetic energy, and the assumption is then
equivalent to supposing that the relevant eddy magnitude is always proportional to this
rate of transfer. Thus we assume v2

 
� .b0=N /2 or

v0
 �

b0

N
: (9.68)

Finally, the scale of the eddies is determined by the extent to which the eddies might
grow through nonlinear interactions. As we discussed earlier, possibilities for this scale
include the deformation radius itself (if the inverse cascade is weak) or the Rhines scale
(if the inverse cascade is slowed by the beta effect), or even the domain scale if neither
of these apply.

Some consequences

These simple manipulations have some very interesting consequences. Using (9.67)
and (9.68) we find

v0
 �

fLe

NH
u �

Le

Ld
u (9.69)

where Ld D NH=f0 is the deformation radius and u is the amplitude of the mean
baroclinic velocity, that is the mean shear multiplied by the height scale. This important
relationship relates the magnitude of the eddy kinetic energy to that of the mean. In the
atmosphere the scale of the motion not much larger than the deformation radius (which
is about 1000 km) the eddy and mean ksinetic energies are, consistently, comparable
to each other. In the ocean the deformation radius (about 50 km over large areas) is
significantly smaller than the scale of mesoscale eddies (which typically might be more
like 200 km), and observations consistently reveal that the eddy kinetic energy is an
order of magnitude larger than the mean kinetic energy.8

One other important and somewhat counter-intuitive result concerns the timescale
of eddies. From (9.69) we have

TE �
Le

v0
 

�
Ld

u
; (9.70)

and this is simply the Eady timescale. That it, the eddy timescale (at the scale of the
largest eddies) is independent of the process that ultimately determines the spatial scale
of those eddies; if the eddy length scale increases somehow, perhaps because friction or
ˇ are decreased, the velocity scale increases in proportion.

Let us now consider various aspects of baroclinic eddies in the atmosphere and the
ocean.
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9.4.2 Baroclinic Eddies in the Atmosphere

Amplitude and Scale

We saw in section 6.10.2 that baroclinic instability in the atmosphere occurs predom-
inantly in the troposphere, i.e., in the lowest 10 km or so of the atmosphere, with the
higher stratification of the eponymous stratosphere inhibiting instability. In the mid-
latitude troposphere the vertical shear and the stratification are also relatively uniform
which is why fairly simple models, such as the two-layer model or the Eady model
(with the addition of the ˇ-effect) are reasonable first-order models.

The mean pole-equator temperature gradient is about 40 K and the deformation
radius NH=f is about 1000 km. The Rhines scale,

p
urms=ˇ is a little larger than this,

perhaps 2000 km, and is similar to the width of the main mid-latitude baroclinic zone
which lies between about 40° and 65°, in either hemisphere. Given these, and especially
given that the maximum wavelength for instability occurs at scales somewhat larger
than the deformation radius, there is little prospect of an extended upscale cascade, and
for this reason the earth’s atmosphere has comparable eddy kinetic and mean kinetic
energies.9

The baroclinic lifecycle

The baroclinic lifecycle of geostrophic turbulence, sketched schematically in Fig. 9.6,
can be nicely illustrated by way of numerical initial value problems, and we describe
two such. The first is very idealized: take a doubly-period quasi-geostrophic model on
the f -plane, initialize it with baroclinic energy at large horizontal scales, and then let
the flow freely evolve. Fig. 9.8 shows the results. The flow, initially concentrated in high
vertical wavenumbers to best illustrate the energy transfer, is baroclinically unstable,
and energy is transferred to barotropic flow at wavenumbers close to the first radius of
deformation, here at about wavenumber 15. Energy then slowly cascades back to large
scales in a predominantly barotropic inverse cascade, piling up at the largest scales
much as in decaying, two-dimensional turbulence. Nearly all of the initial baroclinic
energy is converted to barotropic, eddy kinetic energy and, even without any surface
friction, the flow evolves to a baroclinically stable state. Couched in these terms, it
is easy to see the baroclinic lifecyle as a form of baroclinic inverse cascade, with an
energy transfer to large total wavenumber, Ktot, that is made up of contributions from
both horizontal and vertical wavenumbers:

K2
tot D K2

h C k2
d m2 (9.71)

where m is the vertical and Kh the horizontal wavenumber. As we noted earlier, the twin
constraints of energy and enstrophy consevation prevent the excitation of horizontal
scales with very large horizontal wavenumbers, and so the lifecyle proceeds through
wavenumbers at the deformation scale.

The results of second, and more realistic, initial value problem are illustrated in
Fig. 9.9. Here, the atmospheric primitive equations on a sphere are integrated forward,
beginning from a baroclinically unstable zonal flow, plus a small-amplitude disturbance
at zonal wavenumber six. The disturbance grows rapidly through baroclinic instability,
accompanined by a conversion of energy initial from the zonal mean potential energy
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Horizontal Wavenumber

Fig. 9.8 A numerical simulation of a very idealized baroclinic lifecyle, showing contours
of energy in spectral space at successive times. Initially, there is baroclinic energy at
low horizontal wavenumber, as in a large-scale shear. Baroclinic instability transfers this
energy to barotropic flow at the scale of the deformation radius, and this is followed
by a barotropic inverse cascade to large scales. Most of the transfer to the barotropic
mode in fact occurs quite quickly, between times 11 and 14, but the ensuing barotropic
inverse cascade is slower. The entire process may be thought of as a generalized inverse
cascade. The stratification (N 2) is uniform, and the first deformation radius is at about
wavenumber 15. There is no friction in the simulation, except for a small hyperviscosity
to remove small scale noise. Times are in units of eddy turnover time.10

to eddy available potential energy (EAPE), and then from EAPE to eddy kinetic energy
(EKE), and finally from EKE to zonal kinetic energy (ZKE). The last stage of this cor-
responds to the barotropic inverse cascade of quasi-geostrophic theory, and because of
the presence of a ˇ-effect the flow becomes organized into a zonal jet. The parameters
in the earth’s atmosphere are such that there is only one such jet, and in the lower panel
of Fig. 9.9 we see its amplitude increase quickly from days 10 though 12, associated
with the conversion of EKE to ZKE.

Of course, the atmosphere is never in a zonally uniform state as used in our baro-
clinic instability studies or the liefecycle study. At any given time, finite amplitude
eddies exist and these provide a finite amplitude perturbation to the baroclinically un-
stable zonal flow, and thus we will rarely, if ever, see an exponentially growing normal
mode. Furthermore, given any instantaneous atmospheric state, zonally symmetric or
otherwise, the fastest growing (linear) instability is not necessarily exponential but may
be ‘non-modal’, with a secular or linear growth that, over some finite time period and
in some given norm, is much more rapid than exponential.12 A baroclinically turbulent
atmosphere is of course maintained because of the underlying presence of baroclinic in-
stability, and the classic baroclinic instability problems and nonlinear lifecyles illustrate,
in an idealized way, the continuous growth, maturation and decay of eddies embedded
in that flow.

9.4.3 Baroclinic Eddies in the Ocean

There are more things in Heaven and Earth, Horatio, Than are dreamt of in
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Figure 9.9 Top: Energy conver-
sion and dissipation processes in
a numerical simulation of an ide-
alized atmospheric baroclinic life-
cycle, simulated with a GCM Bot-
tom: Evolution of the maximum
zonal-mean velocity. AZ and AE are
zonal and eddy available potential
energies, and KZ and KE the cor-
responding kinetic energies. Ini-
tially baroclinic processes domi-
nate, with conversions from zonal
to eddy kinetic energy and then
eddy kinetic to eddy available po-
tential energy, followed by the
barotropic conversion of eddy ki-
netic to zonal kinetic energy. The
latter process is reflected in the
increase of the maximum zonal-
mean velocity at about day 10.11
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thy philosophy.

William Shakespeare, Hamlet, c. 1602.

Basic ideas

Baroclinic instability was first developed as a theory for midlatitude synoptic-scale in-
stabilities in the atmosphere and the original, now classic, problems are accordingly
set in a zonally re-entrant channel. The ocean, apart from the Antarctic Circumpolar
Current (ACC), is not zonally re-entrant. However, the ocean is driven by buoyancy
and wind-forcing at the surface, and these combine to produce a region of enhanced
stratification and associated shear in the ocean in the upper 500–1000 m or so, in the
‘thermocline’, as discussed more fully in chapter 16 (e.g., Fig. 15.2). The sloping isopy-
cnals indicate that there is a pool of available potential energy that might be converted
to kinetic energy, and so that the ocean is potentially baroclinically unstable. Satel-
lite observations indicated that baroclinic eddies are almost ubiquitous in the mid- and
high-latitude oceans, two particularly eddy-rich regions being the areas in and surround-
ing intense western boundary currents, such as the Gulf Stream, and in the ACC.13 In
addition to the geometry, the main differences between the oceanic and atmospheric
problems are:

(i) In the ocean, the shear and the stratification are not uniform between two rigid
lids, nor even uniform between one rigid lid and a structure like the tropopause.
Instead, both stratification and shear are largest in the upper ocean, decaying into
a quiescent and nearly unstratified abyss.

(ii) The first radius of deformation is much smaller than the scale of the large-scale
flow — that is, of the gyres or the large-scale overturning circulation.

A consequence of the first item is that the amplitude of the growing waves is also largely
concentrated in the upper ocean, as we saw in Fig. 6.22. Regarding item (ii), we can
estimate the oceanic deformation radius as

Ld D
NH

f
�

10�2 � 500

10�4
� 50 km: (9.72)

More precisely, in quasi-geostrophic theory we may define the deformation radii by
solution of the eigenvalue problem

@

@z

f 2
0

N 2

@�n

@z
C En�n D 0: (9.73)

The successive eigenvalues, En, are related to the successive deformation radii by
L2

dn
D 1=En, and the results of a similar calculation are given in Fig. 9.10. Note

that in uniform stratification the deformation radius as defined by (9.73) and displayed
in Fig. 9.10 is a factor of   smaller than the simple estimate NH=f , so that the most
baroclinically unstable waves have a wavelength several times Ld1. Nevertheless, we
may expect baroclinic instability to occur on a scale much smaller than that in the at-
mosphere, and much smaller than the scale of the domain.
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Fig. 9.10 The oceanic first deformation radius Ld, calculated by using the
observed stratification from the eigenproblem:
@2�=@z2 C .N 2.z/=c2/� D 0 with � D 0 at z D 0 and z D �H , where H

is the ocean depth and N is the observed buoyancy frequency. The defor-
mation radius is given by Ld D c=f where c is the first eigenvalue and f is
the latitudinally varying Coriolis parameter. Near equatorial regions are ex-
cluded, and regions of ocean shallower than 3500 m are shaded. Variations
in Coriolis parameter are responsible for much of large-scale variability,
although weak stratification also reduces the deformation radius at high
latitudes.14

Amplitude and Scale

The consequences of this small deformation radius on the lifecycle and finite-amplitude
equilibration of oceanic baroclinic eddies are potentially far-reaching, the most impor-
tant of which is that there is more scope for an inverse cascade than in the atmosphere,
and indeed observations indicate that the horizontal scale of the eddies is typically a few
to several times larger than the local deformation radius itself. The situation is not clear
cut, however: the eddy scale does seem to be somewhat larger than the deformation
scale, but some observations15 indicate that the eddy size nevertheless scales with the
local deformation radius, suggesting that the eddy scale may be set by the instability
scale and not an inverse cascade. In any case, suppose then that an ocean eddy is of
horizontal scale 200 km, and that it sits in the subtropical gyre where the mean tem-
perature gradient is 10�5 K m�1, that the mean shear and ensuing baroclinic activity is
mainly confined to the upper 1000 m of the ocean, and that the deformation radius is
50 km. The temperature gradient corresponds to a temperature difference of about 20 K
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Fig. 9.11 Idealized baroclinic lifecyle, similar to that in Fig. 9.8, but with
enhanced stratification of the basic state in the upper domain, representing
the oceanic thermocline.

across 2000 km, a horizontal buoyancy gradient of about 2�10�9 s�2 (using the simple
equation of state � D �.1 � ˇT�T / where ˇT D 2 � 10�4 K�1) and a shear of about
2 cm s�1over the upper 1 km of ocean. Then, using (9.69), we can estimate a typical
eddy velocity scale as

v0
 �

Le

Ld
u � 4u � 8 cm s�1; (9.74)

implying, as we noted earlier, an EKE that is an order of magnitude larger than the mean
kinetic energy. Associated with this are typical temperature perturbations whose mag-
nitude we can estimate using (9.66) or (9.67) as being about 2 K. These estimates are
comparable to those observed in mid ocean, with more energetic eddies forming near
intense western boundary currents where gradients are large and barotropic instability
also provides a source of energy for the eddies. There is least a factor of a few uncer-
tainty, but it is noteworthy that they are roughly comparable to the values observed.

Lifecycles

The lifecyle of a mid-oceanic baroclinic eddy will differ from its atmospheric counter-
part in two main respects:

(i) Baroclinic eddies may be advected by the mean flow into regions with quite dif-
ferent properties from where they initially formed.

(ii) The nonuniformity of the stratification affects the passage to barotropic flow.
Both of these can properly only be studied by numerical means. Regarding the first,
eddies will often form in or near intense western boundary currents, but then will be
advected by that current into the potentially less unstable open ocean before completing
their lifecyle. Regarding the second, an oceanic analog of the lifecyle illustrated in Fig.
9.8 is shown in Fig. 9.11. The main difference between this and the atmospheric case is
that baroclinic instability initially leads to the transfer of energy to vertical mode one,
followed by a transfer to larger horizontal scales in the barotropic mode, as illustrated
schematically in Fig. 9.12.16 If the energy is initially solely in the first baroclinic mode
the cycle is more similar to the atmospheric one, but higher baroclinic modes may be
more readily excited in the ocean than the atmosphere.
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Figure 9.12 Energy transfer
paths as a function of vertical
mode and horizontal wavenumber,
in a fluid with an oceanic stratifica-
tion — i.e., with a thermocline. BT
is the barotropic mode, and BC re-
fer to the baroclinic modes.
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Notes

1 Rhines (1975). See also Holloway and Hendershott (1986) and Vallis and Maltrud
(1993).

2 Adapted from Vallis and Maltrud (1993).

3 Simulation kindly performed by K. S. Smith.

4 Quasi-geostrophic turbulence was introduced by Charney (1971). Salmon (1980)
and Rhines (1977) provided much of the two-level phenomenology discussed here.
Some laboratory experiments are reviewed by Read (2001).

5 Adapted from Salmon (1980)

6 Lindborg (1999) concluded that the data was consistent with a forward cascade of
enstrophy between wavelengths of a few thousand kilometers and a few hundred
kilometers. Boer and Shepherd (1983) also found a k�3 spectrum at similar scales.
At scales smaller than than 100 km or so the spectrum is shallower. This may be
due to nongeostrophic effects, for example a forward cascade of energy associated
with gravity wave breaking or perhaps a two-dimensional inverse cascade of energy
with a energy source at very small scales due to convection.

7 Larichev and Held (1995) and Held and Larichev (1996). See Spall (2000) for an
oceanic extension.

8 Atmospheric energetics, and atmospheric observations in general, are described
by Peixoto and Oort (1992). For the oceanic case, see Wyrtki et al. (1976), Richard-
son (1983) and Stammer (1997). Related arguments concerning eddy magnitudes
were given by Gill et al. (1974).

9 This does not address the issue as to why the Rhines scale and deformation radius
are similar. See chapter 12.

10 Modified from Smith and Vallis (2001).

11 Adapted from Simmons and Hoskins (1978).

12 The theory of this has been developed by Farrell and Ioannou (1996), and ref-



9.4 † Phenomenology of Baroclinic Eddies in the Atmosphere and Ocean 423

erences therein. These authors have emphasized that exponential growth is the
exception, not the rule, in the real world.

13 The realization that the ocean is, literally, a sea of eddies came to fruition as a
result of the bilateral US-USSR POLYMODE project in the 1970s. See Robinson
(1984).

14 From Chelton et al. (1998).

15 Stammer (1997).

16 Fu and Flierl (1980) and Smith and Vallis (2001) examined this issue in more detail,
both analytically and numerically. Fig. 9.12 is adatpted from these papers. Barnier
et al. (1991) and Hua and Haidvogel (1986) looked at the role of high baroclinic
modes in oceanic eddies and geostrophic turbulence.





Damn the torpedoes! Full speed ahead!

Admiral David Farragut, at the battle of Mobile Bay, 1864.

CHAPTER 10

Turbulent Diffusion and Eddy Transport

T
HE TRANSPORT OF FLUID PROPERTIES BY UNSTEADY MOTION, that is, the way in which
the properties of a fluid may be carried from one location to another by waves
and turbulence, is one of the most important topics in geophysical fluid dynam-

ics. It may be the dominant transport in a fluid, greatly exceeding that of the mean flow
— in the atmosphere, for example, heat is transferred polewards primarily by the action
of unsteady weather systems, not by the much weaker time-mean flow. Thus, we might
seek to parameterize such transport in terms of the mean flow; unfortunately, no general
theory exists for such transport, for indeed such a theory would amount to a theory of
turbulence. In the absence of this, we focus our attention in this chapter on the theory
(such as it is) and practice of turbulent diffusion. In such models, the turbulent transport
is often simply related to the gradient of the mean flow, and it is the simplicity of the
resulting expressions that has led to their wide adoption in areas as different as turbu-
lent pipe flow, atmospheric boundary layer transport and large-scale ocean modelling.
These models are, by and large, rational, simple and tractable — a blend of heuristic
reasoning and elementary mathematics, the latter needed to ensure that certain basic
requirements (conservation laws, for example) of a physical process are captured by a
parameterization. However, just like other turbulent closures, they rely on rather phys-
ical assumptions that cannot be rigorously justified. In the first part of the chapter we
consider turbulent diffusion from a general standpoint, and then specialize our discus-
sion to geofluids, and in particular to large-scale transport by baroclinic eddies. Those
readers with some background in the former may choose to skip ahead to section 10.6.

425
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10.1 DIFFUSIVE TRANSPORT

We begin with a brief discussion of the diffusion equation itself, to wit

@�

@t
D �r

2�; (10.1)

where � is a constant, positive, scalar diffusivity and the tracer � is a scalar field. We
expect that an initially concentrated blob of tracer would spread out — it would diffuse
— and thus small parcels of tracer are transported. How quickly does this occur, or, put
another way, is there an effective diffusive transport velocity?

If the rate of spreading becomes independent of the initial conditions then, purely
from dimensional considerations, the spreading can depend only on the diffusivity and
time itself and we can write

X 2 D ˛�t (10.2)

where X 2 is the mean square displacement, t is time and ˛ is a nondimensional con-
stant. Let us quantify this with an explicit calculation. If � is interpreted as the density
of markers of fluid parcels, then the mean square displacement of the markers is given
by (in three dimensions)

X 2 D

R1

0
r2�r2 drR1

0
�r2 dr

(10.3)

where the denominator, the total amount of tracer present, is a constant and we have
assumed a spherically symmetric distribution of tracer. Using (10.1) we find

d
dt

Z 1

0

r2�r2 dr D �

Z 1

0

r2 1

r2

@

@r

�
r2 @�

@r

�
r2 dr D 6�

Z 1

0

�r2 dr (10.4)

after a couple of integrations by parts. Thus

d
dt

X 2 D 6� (10.5)

and because � is a constant we have the important result that

X 2 D 6�t : (10.6)

In two dimensions the equivalent calculation begins with

X 2 D

R1

0
r2�r drR1

0
�r dr

(10.7)

and using the diffusion equation we find

d
dt

Z 1

0

r2�r dr D �

Z 1

0

r2 1

r

@

@r

�
r
@�

@r

�
r dr D 4�

Z 1

0

�r dr: (10.8)

Thus we obtain
X 2 D 4�t : (10.9)

Finally, in one dimension (i.e. spreading along a line) it is easy to show that

X 2 D 2�t : (10.10)
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10.1.1 An explicit example

We gain gain a little more intuition about what the above calculations mean by consid-
ering the case in which the initial tracer distribution is a delta function at the origin.
If the total amount of tracer is unity, then in three dimensions at subsequent times the
tracer is given by the distribution

�.r; t/ D
1

8. �t/3=2
exp.�r2=4�t/; (10.11)

as may be checked by substitution back into the equation of motion. (See problem
10.1.) The distribution clearly broadens with time, and the mean square distance from
the origin is given by

X 2 D

Z 1

0

4 r2

8. �t/3=2
exp.�r2=4�t/ dr D 6�t; (10.12)

as in (10.6). The important point is that the mean distance travelled by a particle during
a time interval t is proportional to the square root of that time interval. This is, of course,
redolent of a random walk, which brings us to the subject of turbulent diffusion.

10.2 TURBULENT DIFFUSION

Fluids differ from solids in that they can transport properties by advection — thus, heat
is transferred polewards in the atmosphere by air motion, warm parcels of air moving
polewards and cool parcels of air moving equatorwards. Turbulent fluid motion differs
from laminar fluid motion in that such advective transport may be greatly enhanced
by the seemingly random motion of the fluid, the net transport being much larger than
that which would be effected by the time-mean fluid motion alone. Indeed, to continue
the atmospheric example, away from the tropics the polewards transport of heat in the
atmosphere is largely effected by way of the (large-scale) turbulent transfer of heat in
mid-latitude weather systems. Of course, such transfer is simply by advection, and if we
could explicitly calculate the motion of the fluid parcels we could explicitly calculate
the transport. However, turbulent transport is both very complicated and sensitive to the
initial conditions, so that any hope of performing such a calculation in a real situation
is often forlorn one.

Turbulent transport is most important in inhomogeneous situations, because it is the
divergence of the transport that is important and the mean divergence is non-zero only
if there is inhomogeneity. The theories of chapters 8 and 9 do not lend lend themselves
to an easy extension to inhomogeneous flow, and we turn to a slightly more empirical
approach.1

10.2.1 Simple theory

Let us consider how fluid markers are transported in a statistically steady, homogeneous,
turbulent flow. The markers are introduced at the origin x D y D z D 0 at t D 0;
we may create an ensemble of such markers by performing many such tracer release
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A Random Walk

Here we give an elementary derivation of the most basic result in random walk
theory, the relationship of the mean-square displacement to the number of steps
taken.2 A loose analogy is that of drunkards staggering randomly from here to
there, with no correlation between their successive steps. After any number of
steps, the mean displacement the drunkards is zero, but we expect their root-mean-
square displacement to increase: this is because drunkards independently thrown
out of the same bar will generally wander off in different directions (which is why
the mean displacement is zero), but after some time most of them will indeed end
up some distance away.

For simplicity consider steps, sn, each with random orientation but equal mag-
nitude, s. The displacement after n steps is related to the displacement after n � 1

steps by
Dn D Dn�1 C sn: (R.1)

so that the amplitude of Dn, namely Dn, is given by

D2
n D .Dn�1 C sn/ � .Dn�1 C sn/

D D2
n�1 C s2

C 2Dn�1 � sn (R.2)

Taking an ensemble average over many realizations gives

D2
n D D2

n�1
C s2 (R.3)

having used Dn�1 � sn D 0, because each step is random.

Now, D0 D 0, so that D2
1

D s2, D2
2

D 2s2 and so on. Thus, using (R.3) to
proceed inductively, we have

D2
n D ns2; (R.4)

or

D2
n

1=2
D

p
ns : (R.5)

Thus, in a random walk the root mean square displacement increases with the
half-power of the number of steps taken. More work is required to calculate the
distribution of the random walkers, but it may be shown that in the limit of infinites-
imally small steps the random walk becomes a Wiener process and the distribution
becomes Gaussian, as in (10.11) (but with the exact form depending on the dimen-
sionality of the problem), indicating a diffusive process.
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experiments on different realizations of the turbulent flow, but with each flow having
the same statistical properties. The question is, what is the average rate of dispersion of
a single particle of fluid?

The displacement of a marker at a time t is given by

X.t/ D

Z t

0

V .t 0/ dt 0 (10.13)

where V is the velocity of the fluid parcel — a material velocity. [We will use upper case
variables to denote material (‘Lagrangian’) quantities.] The mean square displacement
is

X 2.t/ D

Z t

0

dt1

Z t

0

V .t1/ � V .t2/ dt2 (10.14)

where the overbar denotes an ensemble average, and thus V .t1/ � V .t2/ is a measure
of the velocity correlation between the velocities of the fluid parcels at times t1 and t2.
That is,

V .t1/ � V .t2/ D v2R.t2 � t1/ D v2R.�/ (10.15)

where R.t2 � t1/ is the velocity correlation function and, because the turbulence is
statistically steady, this depends only on the time difference � D t2 � t1. Furthermore,
R.��/ D R.�/. Thus,

X 2.t/ D

Z t

0

dt1 v2

Z t

0

R.t2 � t1/ dt2 (10.16a)

D

Z t

0

dyt v2

Z t�yt

�yt

R.�/ d� (10.16b)

changing variables to � and yt D t1 (see Fig. 10.1). We expect the velocity correlation
function to fall monotonically from its initial value of unity to a value approaching zero
as � ! 1, as in Fig. 10.2, and typically, there will be some characteristic time �corr

that parameterizes the behaviour of the function. In general, we cannot obtain explicit
general solutions without detailed knowledge of this correlation function, but there are
two interesting limits:

(i) The short-time limit: For small times, i.e., for t � �corr (and so t1; t2 � �corr) the
correlation function will be approximately unity and so (10.16) becomes

X 2.t/ �

Z t

0

dyt v2

Z t

0

dyt

D v2t2 (10.17)

Thus, the root mean square displacement increases linearly with time, and linearly
with the root mean square velocity of the flow. For small times, the fluid parcel’s
behaviour is well correlated with that at the initial time, and so the displacement
increases linearly in the direction it was initially going. Indeed, directly from
(10.13) we have, for small times, X.t/ � V t , which directly leads to (10.17).
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Fig. 10.1 Changes of time variables involved in (10.16) and (10.32). The
original two dimensional integral is over the rectangle ABCD. Defining
� D t2 � t1 and yt D t1, then the area is spanned by Œyt D .0; t/; � D

.t � yt ;�yt/� as in (10.16), or by Œ� D .0; t/; yt D .0; t � �/� (i.e. ACD) plus
Œ� D .�t; 0/; yt D .��; t/� (i.e. ABC ) in (10.32).

(ii) The long-time limit: We are now concerned with the case t � �corr. Because
the correlation function falls with time, most of the contributions to the second
integrand (involving R.�/) in (10.16b) are from � � �corr. Thus, without much
loss in accuracy, we can replace the limits of integration by �1 and C1; that is

X 2.t/ �

Z t

0

dyt v2

Z 1

�1

R.�/ d� (10.18)

Assuming the second integral converges, it is just a number; in fact, noting that
R.�/ D R.��/, we may use it to define the correlation time �corr by:

�corr �

Z 1

0

R.�/ d�: (10.19)

We then have the important result that

X 2.t/ � 2v2t

Z 1

0

R.�/ d� D 2v2�corrt : (10.20)

That is, for times long compared to the turbulence correlation time, the distance
travelled by a fluid parcel in some time interval is proportional to the square-root of
that time interval, just as for a diffusive process; this is because the fluid parcels too
are largely undergoing random walks. The expression connects two quite different
fluid properties: the left-hand side tells us how tracers are dispersed in a turbulent
flow, a material property, whereas the right-hand side can be evaluated from the
Eulerian velocity field at different times. Both the left- and right-hand sides can
be directly measured, by looking at the dispersion of a dye and by measuring the
velocity at successive times.

We may define a coefficient of turbulent diffusivity by

Kturb D
1
3
v2�corr ; (10.21)
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and then we have the result that

X 2.t/ D 6Kturbt: (10.22)

Comparison of (10.22) with (10.6) indicates that the transport of turbulent flow,
under these conditions, is like a diffusive transport, with a coefficient of diffusivity
given by (10.21). [Sometimes, the numerical factors are neglected, and a diffusiv-
ity is defined by the expressions

Kturb �
dX 2.t/

dt
or Kturb �

1

2

dX 2.t/

dt
: (10.23)

These lose the exact connection with a true diffusion coefficient, but usually the
turbulent diffusivity can only be estimated, anyway.]

We may define a correlation length scale equal to the approximate distance that a
parcel moves, on average, in a Lagrangian correlation time. Thus

lcorr � vrms�corr (10.24)

where vrms D .v2/1=2, whence

Kturb D
1
3
vrmslcorr : (10.25)

In most situations, the numerical coefficient (1=3 here) cannot be trusted because
a real turbulent flow is unlikely to satisfy the restrictions of stationarity and ho-
mogeneity that we have imposed. Nevertheless, a relationship similar to (10.25)
— that a turbulent diffusivity is proportional to an r.m.s. turbulent velocity and
a decorrelation length-scale, is the foundation for semi-empirical mixing length
theories that we discuss in section 10.4.

The simple relationships between the mean-square displacement, the Lagrangian
time-scale, the mean square velocity and the eddy diffusivity allows the diffusivity
to be computed from the statistics of particle trajectories. Thus, suppose that a
cluster of floats is released into the ocean, or some balloons are released in the at-
mosphere. If neutrally buoyant, these instruments then essentially become labeled
fluid particles, and one may compute Kturb directly from the dispersion of the
cluster using (10.22). If it is possible to measure their root-mean-square velocity,
then one may use (10.21) to estimate the diffusivity from this and the Lagrangian
correlation timescale.

10.2.2 * A slight generalization

We now consider the correlation between the different components of the displacement
in anisotropic, but still homogeneous, flow.3 The displacement of a fluid particle is
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Figure 10.2 Schematic of a ve-
locity correlation function in tur-
bulent flow with correlation time
�corr D O.1/. For small times,
� � �corr, R.�/ � 1. For large
times, � � �corr, R.�/ � 1. We
may define the correlation time by
�corr D
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given by (10.13), and this is a random vector. Thus, generalizing (10.14), we may
define the fluid particle displacement covariance tensor by

Dij .t/ D Xi.t/Xj .t/ D

Z t

0

Z t

0

Vi.t1/Vj .t2/ dt1 dt2: (10.26)

where the velocity denoted by Vi is the i ’th component of the velocity of a fluid element.
For small times, Xi.t/ � vi.a; 0/t , where vi.a; 0/ is the fluid velocity at the parcel’s
initial position, a, and we obtain

Dij .t/ � vi.a; 0/vj .a; 0/t
2: (10.27)

If the flow is statistically steady and homogeneous the average of any quantity has no
spatial or temporal dependence and so

Dij .t/ D Aij t2; (10.28)

where the tensor Aij D vivj has constant entries, and this is a slight generalization of
(10.17).

The velocity covariance of a fluid parcel at times t1 and t2 is, as before, function
only of the time difference t1 � t2 and so it must have the form

Vi.t1/Vj .t2/ D

�
v2

i v
2
j

�1=2

Rij .t2 � t1/; (10.29)

Except in the case of isotropic flow Rij .�/ ¤ Rij .��/, but we do have

Rij .�/ D Rji.��/: (10.30)

Now, to obtain a generalization of (10.20), we first use (10.29) in (10.26) to obtain

Dij .t/ D

�
v2

i v
2
j

�1=2
Z t

0

Z t

0

Rij .t2 � t1/ dt1 dt2: (10.31)
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If we change variables to � D t2 � t1 and yt D t1 we obtain4

Dij .t/ D

�
v2

i v
2
j

�1=2
 Z t

0

d�
Z t��

0

dyt Rij .�/C

Z 0

�t

d�
Z t

��

dyt Rij .�/

!
; (10.32)

(see Fig. 10.1) and using (10.30) this becomes

Dij .t/ D 2
�
v2

i v
2
j

�1=2
Z t

0

d�
Z t��

0

dyt yRij .�/; (10.33)

where yRij D .Rij C Rji/=2. This order of integration enables us to perform the
integration over yt , giving

Dij .t/ D 2
�
v2

i v
2
j

�1=2
Z t

0

.t � �/ yRij .�/ d�: (10.34)

For long times, i.e., for t � �corr, the upper limit of the integration may be taken to
be infinity, again because the contributions to the integrand from yRij .�/ all come from
small � . Furthermore, we expect that for large tZ 1

0

t yRij .�/ d� �

Z 1

0

� yRij .�/ d�: (10.35)

because Rij .�/ is only non-negligible for small � , and t � � in this range. Thus
we finally obtain a generalization of (10.20) for the displacement covariance of two
components of the displacement, namely

Dij D 2
�
v2

i v
2
j

�1=2

t

Z 1

0

yRij .�/ d�: (10.36)

The integral is a tensor with constant entries, analogous to the turbulent decorrelation
timescale of (10.19). Then, with �ij �

R1

0
yRij .�/ d� , the corresponding turbulent

diffusivity is

Kij D
1
3

�
v2

i v
2
j

�1=2

�ij : (10.37)

10.2.3 Discussion

We have shown that, for sufficiently long times, the distance travelled by a fluid par-
cel in some time is proportional to the square root of that time, just as for a diffusive
process and just as for a random walk. The motion of our fluid parcel is analogous to
that of a dust particle undergoing Brownian motion — both are continually buffeted
and undergo random walks as a result. Still, it may appear that the usefulness of our
results is limited by the assumptions of stationarity and homogeneity — it is well-nigh
impossible in nature to produce a statistically stationary, homogeneous turbulent flow,
because statistical stationarity implies there must be an energy source and this, as well
as the presence of boundaries, militate against homogeneity. However, we should not
be so pessimistic, on two counts:
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(i) The above results may be directly applied to flows that are homogeneous in one
direction.5

(ii) Often, a flow will not be homogeneous in any direction. However, if the statistics
of the eddy motion vary on a space scale that is longer than vrms�corr, then the eddy
transport properties may be determined by a local theory. For example, the size
of the eddy diffusivity is then determined by Dt � vrmslcorr where the parameters,
and so the diffusion coefficient, vary, but only on a scale longer than the energy-
containing scale.

The essential results of this section then lie in equations (10.20), (10.21) and (10.25):
that the dispersion of a fluid particle in a turbulent flow is diffusive in nature, and that
the turbulent diffusivity is proportional to the product of the root-mean-square velocity
and the correlation length.

10.3 TWO-PARTICLE DIFFUSIVITY

Now consider the problem of determining the mutual separation of two fluid parcels.
The problem differs from the one-particle problem, because the separation of the parti-
cles itself will affect the rate of increase of the separation. In the one-particle problem
in homogeneous flow, the position of the particular tagged fluid particle plays no direct
role in determining its rate of spreading from its initial condition — any one position
is the same as any other. But if two particles are close together, they may be swept
away together by some large eddy, without affecting their mutual separation whereas
two particles that are widely separated will undergo largely uncorrelated motion. Thus,
we identify two regimes:

(i) A regime in which the separation of the particles is greater than the scale of the
largest eddies. In this case, each particle is undergoing a random walk that is
effectively uncorrelated with that of the other particle.

(ii) A regime in which the separation of the particles is less than the energy-containing
scale of the motion. In this case, the eddies that most contribute to the two-particle
separation are those that are comparable in scale to the separation itself.

If we attempt to apply the Taylor analysis ab initio we evidently have, by analogy
to (10.13)

Y .t/ D X1.0/ � X2.0/C

Z t

0

ŒV1.t
0/ � V2.t

0/� dt 0 (10.38)

and a mean square separation of

Y 2.t/ D .X1.0/ � X2.0//2 C

Z t

0

dt1

Z t

0

ŒW1.t1/ � W2.t2/� dt2 (10.39)

where W .t/ D V1.t/�V2.t/. However, it is now difficult to proceed much further. The
problem is that we cannot write

W .t1/ � W .t2/ D w2R.t2 � t1/ (10.40)
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because the correlation will depend on the initial separation of the particles as well as the
time since then. Thus, the diffusivity will depend on both time and the initial particle
separation, and the results analogous to those of the single-particle diffusivity cannot
easily be recovered. However, we can make some progress by separately considering
the two above-mentioned regimes.

10.3.1 Large particle separation

This case is analogous to the single-particle case. The particle separation is given by

Y .t/ D X1.t/ � X2.t/ (10.41)

so the mean square separation is

Y 2.t/ D X1.t/2 C X2.t/2� (10.42)

For long times, the last term is zero because the motion of the two particles is uncorre-
lated. Furthermore, each of the first two terms is given by (10.20) or (10.22), so that the
mean separation varies as

Y 2.t/ D 4v2�corrt (10.43)

and the rate of separation, for large t , is given by

dY 2.t/

dt
D 4v2�corr D 12Kturb: (10.44)

Thus, the relative diffusion is twice that of the single-particle process, in the limit that
the particles are separated by an amount larger than the largest eddies.

10.3.2 Separation within the inertial range

How do fluid parcels whose separation is at inertial scales behave relative to each
other?6 Suppose that two particles are tagged, and that their separation is greater than
the viscous scale but smaller than the scales of the largest eddies — that is, the sepa-
ration lies within the inertial range of the flow. Then, the rate of separation of the two
particles can depend only on two quantities, the separation itself and properties of the
inertial range, meaning (in three dimensions) the energy flux, ", through the system.
It cannot depend on the time itself, because this would imply that the subsequent rate
of particle separation depends on the history of how the particles came to their current
positions. Thus we can write

dL
2

dt
D g.L; "/ (10.45)

where L � Y .t/2
1=2

. Dimensional analysis then gives

dL
2

dt
D "1=3L

4=3
: (10.46)
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where A is a nondimensional constant, and this is known as ‘Richardson’s four-thirds
law’. We can also integrate this to give

L
2

� "t3: (10.47)

Another way of deriving (10.46) is to suppose that the separation obeys the diffusive
law

dL
2

dt
D Kturb (10.48)

where Kturb is a turbulent diffusivity that is a function of the separation itself. This
is because the farther apart the eddies are, the larger the scale of the eddies that can
move the two particles independently, rather than just sweeping them along together.
An estimate of the diffusivity is then

Kturb � vl (10.49)

where v is the characteristic velocity of an eddy of scale l , and l � L D Y 2
1=2

. Using
the inertial range scaling v � .l"/1=3 this is

Kturb � "1=3L
4=3
; (10.50)

and so (10.48) becomes

dL
2

dt
� "1=3L

4=3
; (10.51)

as before. Of course, dimensional consistency demands that we obtain the same result,
but the derivation is intuitive and the estimate of the two-particle diffusivity, (10.50), is
useful — that the eddy diffusivity governing the separation of two fluid parcels goes as
the 4/3 power of their root mean square separation. If the particle separation is greater
than the scale of the largest eddies in the system, lmax, then

Kturb � v.lmax/lmax � "1=3l4=3
max D constant: (10.52)

The two-particle separation then proceeds as a conventional random walk or diffusive
process, with the mean square separation increasing linearly with time.

Diffusion in two-dimensional flow

In two dimensions the turbulent diffusivity will differ depending on whether the two-
particle separation is in the energy inertial range or in the enstrophy inertial range. In
the energy inertial range the scaling is the same as in the three-dimensional case, but in
the enstrophy inertial range the rate of separation will depend on the enstrophy cascade
rate, �, and the separation itself. Dimensional analysis then leads to

dL
2

dt
D B�1=3L

2
; (10.53)
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Figure 10.3 Trajectories of
surface drifters in the Gulf of
Mexico, each truncated to pro-
duce paths of just 25 days. The
drifters were released as part of
‘SCULP’ — the Surface CUrrent
and Lagrangian drift Program.7

where B is a nondimensional constant. This integrates to

L
2

D L.0/
2

exp.B�1=3t/; (10.54)

or Y 2.t/ D Y 2.0/ exp.B�1=3t/. Thus, the rate of separation is exponential in the
enstrophy inertial range, a result unique to two-dimensional turbulence. Similarly, using
v � �1=3l , the turbulent diffusivity is given by

Kturb � �1=3L
2
: (10.55)

A geophysical example

These ideas are well illustrated by analysing the trajectories of surface drifters in the
Gulf of Mexico. The drifters are free-moving buoys which float about a half meter
below the surface and which thus act as imperfect fluid markers — imperfect because
they cannot follow the full three-dimensional motion of water parcels. Nevertheless, the
motion at these scales can be expected to be quasi-geostrophic and nearly horizontal,
so the associated error will be small. The drifters are tracked by satellite and their
trajectories, proxies for the motion of fluid parcels, are shown in Fig. 10.3. The two-
particle, or two-drifter, separation is illustrated in Fig. 10.4 and two regimes may be
discerned. In the first, the pair separations grow approximately exponentially in
time, with an e-folding time of 2 days, consistent with motion within an enstrophy
inertial range using (10.54). The second regime is charaterized by a power law growth,
proportional to t2:2, somewhat slower than the t3 separation expected for an energy
inverse cascade using (10.47). The boundary for the two regimes occurs at about 75 km,
which is similar to the first deformation radius. Note that no late-time diffusive regime
(where the dispersion goes like t1=2) is observed, suggesting that there exist long-time
drifter correlations; these correlations arise because the separation of the drifters is
never significantly larger than the energy-containing scale of the eddies themselves.

In the atmosphere similar exponential separation of pairs of drifting balloons in the
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Figure 10.4 Relative disper-
sion (the mean square separa-
tion) for 140 drifter pairs as a
function of time. The analy-
sis utilizes all drifter pairs which
come within 1 km of each other
during their lifetimes.
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stratosphere at scales of less than 1000 km has been seen, consistent with an enstrophy
inertial range. Evidence of a t3 separation at larger scales, consistent with an energy
inverse cascade, has been less forthcoming.8

10.4 MIXING LENGTH THEORY

The above discussion of the previous two sections deals with the dispersion of marked
fluid parcels. For practical reasons, we would like to be able to represent the turbulent
transport of a fluid property in an Eulerian form. For definiteness, consider the equation
for a conserved quantity � in an incompressible turbulent flow

D�
Dt

D �r � .v0�0/C �r
2� (10.56)

where � is the molecular diffusivity and the overbar denotes some kind of averaging,
perhaps a time average. We also adopt the convention that, unless noted, whenever the
material derivative written as D=Dt is applied to an averaged field, the advection is by
the averaged velocity only. We expect the transport of � to be enhanced by the turbulent
flow and, as we saw in the previous sections, in some circumstances this transport will
have a diffusive nature, completely overwhelming the molecular diffusivity. Let us
consider this from an Eulerian angle, and by analogy with molecular mixing.

Given the mean distribution �.x;y; z/, let a fluid parcel be displaced from its mean
position by a turbulent fluctuation. Suppose that the displaced parcel of fluid is able
to carry its initial properties a distance l 0 before mixing with its surroundings. Then
just prior to mixing with the environment the fluctuation of � is given by, in the one-
dimensional case,

�0
D �l 0 @�

@x
�

1

2
l 02 @

2�

@x2
C O.l 03/ (10.57)

If the mean gradient if varying on a space-scale that is larger than the mixing length l 0,
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that is if
j@�=@x j

j@2�=@x2j
� l 0 (10.58)

then we can neglect terms in l 02 and higher. The turbulent flux of �-stuff is then given
by

F D u0�0 D �v0l 0
@�

@x
: (10.59)

In more than one dimension, we have

F D Fi D �v0
i l

0
j@j� D �Kij@j� (10.60)

with summation over repeated indices, where Kij � v0
i l

0
j . Thus, in a two-dimensional

flow,

Fx D �u0l 0
x

@�

@x
� u0l 0

y

@�

@y
: (10.61)

The quantity Kij (which we shall also write as K) is known as the eddy (or turbu-
lent) diffusivity tensor. At high Reynolds number it is a property of the flow rather than
the fluid itself but, supposing that it can somehow be determined the equation for the
mean value of � becomes

D�
Dt

D r � .Kr�/ D @i.Kij@j�/; (10.62)

neglecting molecular diffusion.
Suppose that there exists a coordinate system in which the displacements in one

direction (say the yx-direction) are not correlated with the fluctuating velocity in another,
orthogonal, direction (the Oy-direction) and for simplicity we restrict ourselves to two
dimensions. Then, in that coordinate system K is symmetric and

K D

 
u0l 0

yx
u0l 0

yy

v0l 0

yx
v0l 0

yy

!
D

�
u0l 0

yx
0

0 v0l 0

yy

�
(10.63)

The tensor may then, if needs be, be rotated to a conventional Cartesian coordinate
system, but it will remain a symmetric tensor. In isotropic flow the two diagononal
entries are equal and the equation of motion is,

D�
Dt

D r � .Kr�/; (10.64)

which is identical to the equation with molecular diffusion, save that the eddy diffu-
sivity, K, is different from the molecular diffusivity. To the extent, then, that Kij is a
symmetric tensor with constant entries, then the turbulence acts like an enhanced diffu-
sion. If the flow is homogeneous, then K does not spatially vary.
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10.4.1 Requirements for turbulent diffusion

Turbulent diffusion evidently seems to be a tractable and rational approach for param-
eterizing the effects of turbulent transport.9 However, the underlying assumptions are
not always satisfied and the derivation itself is rather heuristic, and turbulent diffusion
is in no way a fundamental solution to the turbulence closure problem. Nonetheless,
it can be an extremely useful parameterization in the appropriate circumstances, these
being that, ideally,

(i) There should be a scale separation between the mean gradient and the maximum
mixing length, and the mixing length and decorrelation time-scale should be well-
defined;

(ii) The diffused property � should be a semi-materially conserved variable; that is,
materially conserved except for the effects of item (iii);

(iii) The diffused property � should be able to mix with its environment.

These are all largely self-evident from the derivation, but items (ii) and (iii) deserve
more discussion.

Conservation of tracer

We assumed that a parcel of fluid carries its value of � a distance, on average, equal
to its mixing length before irreversibly mixing with its environment; this assumption is
necessary in order that one may write �0 D �l 0@�=@x . If � is not materially-conserved
over this scale other terms enter this formula. In particular, momentum is affected by
the pressure force, and so is not normally a good candidate for turbulent diffusion al-
though it was, in fact, momentum to which Ludwig Prandtl originally applied such a
theory, and in some boundary layer applications this may be appropriate. Using mo-
mentum is also complicated because it is a vector and so its eddy diffusivity tensor is
fourth order, although if the flow is isotropic many of its entries can be simplified by
symmetry considerations. Potential vorticity is better candidate, because it is a true ma-
terial invariant, save for dissipative terms, and in large-scale geophysical flows potential
vorticity also contains most of the information about the flow. Note that there is no ab
initio requirement that the tracer be passive, and if it is not then its turbulent transport
will of course affect the flow itself.

Mixing and turbulent cascades

If a parcel cannot mix with its surroundings, then turbulent mixing cannot take place
at all. Instead, we then have what might be called turbulent stirring and if � were,
say, a dye then it would merely become threaded through the environment, producing
streaks and swirls of colour rather than a truly mixed fluid. As another example, let �
be temperature and suppose that it has mean gradient, so that temperature falls in the
direction of increasing y. Now, we intuitively expect that turbulence can be a much
more efficient transporter of heat than molecular diffusion. However, if a displaced
parcel of fluid does not mix with or assume the value of its new environment at some
stage, then there will be no correlation between the velocity producing the displacement
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and the value of the fluctuating quantity �0. To see this, suppose that an eddy causes
parcels to be displaced from their mean positions, as in Fig. ??. If a displaced parcel
mixes with its surroundings, then a correlation will develop between v0 and �0, and
in the situation illustrated, we would have v0�0 > 0. However, if no mixing occurs,
then the eddy simply recirculates with eddies retaining their initial values, and v0�0 is
zero because of a lack of correlation between the two quantities. Thus, it is essential
that there be a degree of irreversibility to the flow in order that turbulent diffusion be
appropriate.

Molecular diffusion is not the only process that enables an eddy to assume the value
of its surroundings — a Newtonian or other relaxation back to a specified temperature
may have much the same effect. Indeed, in the atmosphere a displaced parcel will be
subject to a radiation field that acts in qualitatively this way. That is to say, suppose that
the temperature equation is

DT

Dt
D ��.T � T �.y; z//: (10.65)

where the right-hand-side crudely represents radiative effects via a relaxation back to a
specified profile. Then a displaced parcel will be subject to a radiative damping that is
different from that at its initial position, and this will allow the the parcel to take on the
value of its surroundings, and so enable turbulent diffusion to potentially occur.

For molecular diffusion to be the mechanism whereby a parcel mixes with its sur-
roundings, the turbulence must create scales that are small enough for it to act. This
means that turbulence must create a cascade of �-stuff to small scales. This is entirely
consistent with the notion that � is a Lagrangian conserved quantity, because a scalar
field satisfying

D�
Dt

D F Œ��C �r
2�; (10.66)

(where F might represent a source of variance of �) is certainly cascaded to smaller
scales. The presence of a molecular diffusion does not substantially affect the require-
ment that � be conserved on parcels, because on scales comparable to the eddy mixing
length the effect of molecular diffusion is negligible. (And if it were not, perhaps be-
cause � were extremely large or because the turbulence were anæmic, we would not be
particularly interested in the turbulent transport.)

10.4.2 A macroscopic perspective

Consider turbulent diffusion from more macroscopic point of view, an in particular
consider the transport of a nearly materially conserved tracer obeying

D�
Dt

D D (10.67)

where the advecting flow is incompressible and D is a dissipative process such that
D� � 0, and A conventional harmonic diffusision has this property, for example. By
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decomposing the fields into mean and eddy components in the usual way an equation
for the evolution of the tracer variance can be straightforwardly derived, namely

1

2

@

@t
�02 C v0�0 � r� C

1

2
v � r�02 C

1

2
r � v0�02 D D0�0; (10.68)

and where we may assume D0�0 < 0. If the mean flow is small and if the third-order
term may be neglected then in a statistically steady state we have

v0�0 � r� � D0�0 < 0 (10.69)

Therefore, on average, the flux of � is downgradient in regions of dissipation, implying
a positive eddy diffusivity, and a balance is maintained between the downgradient flux
of � (which increases the variance) and dissipation. However, it should also be clear
from (10.68) that if the turbulence is not statistically stationary, or if there is a mean
flow, then downgradient diffusion cannot necessarily be expected. Indeed, the transport
may be upgradient in regions where the eddy variance is falling, for then we may have
the balance

v0�0 � r� � �
1

2

@

@t
�02 > 0: (10.70)

10.5 HOMOGENIZATION OF A SCALAR THAT IS ADVECTED AND DIFFUSED

Let us now assume that the effects of turbulence on a tracer are indeed diffusive. An
important consequence of this is that, in the absence of additional forcing, there can be
no extreme values of the tracer in the interior of the fluid and, in some circumstances,
the diffusion will homogenize values of the tracer in broad regions. In this section we
demonstrate and explore these properties.

10.5.1 Non-existence of extrema

Consider a tracer that obeys the equation

D�
Dt

D r � .�r�/C S (10.71)

where � > 0 and the advecting velocity is divergence-free. We now show that in regions
where the source term, S , is zero there can be no interior extrema of � if the flow is
steady.

The proof is in the form of a reductio ad absurdum — we first suppose there is an
extrema of � in the fluid. There will then be a surrounding surface (in three dimensions),
or a surrounding contour (in two), connecting constant values of �. For simplicity we
consider the two-dimensional problem for which the steady flow satisfies

r � .u�/ D r � .�r�/: (10.72)
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Integrating the left-hand-side over the area enclosed by the above-mentioned contour,
and applying the divergence theorem, gives“

r � .u�/ dA D

I
.u�/ � n dl D �

I
u � n dl D �

“
r � u dA D 0: (10.73)

But the integral of right-hand side of (10.72) over the same area is nonzero. That isI
�r� � n dl ¤ 0: (10.74)

if the integral surrounds an isolated extremum. This is a contradiction for steady flow.
Hence, there can be no isolated extrema of a conserved quantity in the interior of a fluid,
if there is any diffusion at all. The result (which applies in two or three dimensions) is
kinematic, in that � can be any tracer at all, active or passive. The physical essence of
the result is the intergrated effects of diffusion are non-zero surrounding an extremum,
and they cannot be balanced by advection.

10.5.2 Homogenization in two-dimensional flow

The non-existence of an isolated extremum in a steady fluid is quite a rigorous result,
requiring minimal assumptions. However, it tells us little else about the circulation. We
can obtain a more informative result if we allow ourselves to make more assumptions
about the strength and nature of the diffusion, and restrict ourselves to two-dimensional
advection. The steady distribution of a scalar quantity being advected by an incom-
pressible flow is governed by

J. ; �/ D r � .�r�/C S: (10.75)

where the terms on the right-hand-side represent diffusion and source terms. Suppose
that these terms are small, in the sense that the individual terms on the left-hand-side
nearly balance, so that

jJ. ; �/j �
U˚

L
: (10.76)

This means we are in the high Peclet number limit:

P D
UL

�
� 1: (10.77)

It also suggests that the solution to (10.75) is of the form

� D G. /C O.P �1/ (10.78)

where G is (at the moment) any function of its argument. Thus, isolines of � are nearly
coincident with streamlines, and

r� � r 
d�
d 

: (10.79)
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Integrating (10.72) around a mean streamline,  D  0, gives

0 D

“
S dA C

I
 0

�r� � n dl (10.80)

and using (10.79) gives “
S dA D �

I
 0

�
d�
d 

r � n dl (10.81)

Since d�=d is constant along streamlines we have

d�
d 

D �

’
S dAH

 0
�u � dl

: (10.82)

This relationship determines � as a function of  in terms of the forcing and dissipation
acting on the fluid. If the fluid is both unforced and inviscid, then a steady solution per-
tains when � is an arbitrary function of  . If the source term S is zero, but dissipation
is non-zero then the denominator of (10.82) is nonzero and therefore the � is uniform:
� has been homogenized.

The homogenization result also follows we choose to integrate over an area sur-
rounded by an isoline of �, �0 say. Then the advective term again vanishes and

0 D

“
S dA C

I
�0

�r� � n dl: (10.83)

In this case the direction normal to the contour is given by n D .r�=jr�j/ so that“
S dA D �

I
�0

r� � r�

jr�j
dl (10.84)

Again, if the source term is zero, � must be uniform.

Interpretation

The homogenization result applies to a statisically steady flow in which the eddy trans-
port of �-stuff by the eddying motion may be parameterized diffusively, and in which
there is an approximate functional relationship between mean � and mean  . The first
of these assumptions we have discussed at length in previous sections. The second re-
quires that the diffusion must not be too strong, so that locally the tracer is conserved
on fluid parcels. In the steady state the tracer is then a function of streamfunction, the
same function everywhere within the closed region.

Given these assumptions, the dynamics giving rise to homogenization is transpar-
ent: integrating round a contour of  or � the effect of the advective terms vanish; the
source (S ) and the diffusion must balance each other, and if there is no source term
there can be no tracer gradient. Put another way, the flow will circulate endlessly and
steadily around the contours of  , which nearly coincide with contours of �. Advection
cannot alter the mean value of �, so diffusion smooths out gradients within the closed
contours, effectively expelling gradients of � to the boundaries and forming a plateau of
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�-values. Because extrema of � are forbidden, the value of � on the plateau cannot be a
maximum or minimum: at the edge of the plateau the values of � must fall somewhere,
and rise somewhere else. The plateau can be a flat region etched out of a hillside, but
a plateau on top of a butte is forbidden, for in that case diffusion would erode the butte
down to the level of the surrounding land.

Our derivation makes no distinction between a passive scalar like a dye and an
active scalar, like potential vorticity. In the latter case, dynamics will further constrain
the flow because the scalar distribution must be consistent with the velocity field that
advects it, and this is particularly important in the dynamics of ocean gyres.

10.6 † TRANSPORT BY BAROCLINIC EDDIES

In the next few sections we discuss the transport of fluid properties by large-scale ed-
dies typically generated by baroclinic instability — mesoscale eddies in the ocean, and
weather systems in the atmosphere. Our motivation is twofold:

(i) Mesoscale eddies in the ocean cannot be easily resolved in numerical models of
its large-scale circulation, especially those used for climate simulations involving
integrations of the global ocean over decades and centuries. In such models, the
effects of eddies must be parameterized in terms of properties of the mean flow.

(ii) An understanding of this eddy-mean flow interaction is simply an essential part of
the dynamics of the atmosphere and ocean.

The first of these will, ultimately, be ‘solved’ for us by the increasing power of
computers, and indeed in the atmosphere numerical models of the general circulation
already resolve most of the effects of baroclinic eddies, although for paleo-climate stud-
ies involving timescales of millions of years such eddy-resolving atmospheric models
are still too slow and inefficient. We may also feel we should be able to predict the
statistics of the climate of the ocean and atmosphere without resolving the smaller-scale
eddies, since it is only the cumulative effects of such eddies that really matter. In any
case, as computer power increases and we resolve mesoscale eddies, item (i) is replaced
with the no less difficult problem of undertanding those massive, turbulent, numerical
integrations.

10.6.1 Diffusion: basic properties

A tracer evolving freely save for the effects of molecular diffusivity obeys the equation

D�
Dt

D r � .�mr�/ (10.85)

where �m is the molecular diffusivity, a positive scalar quantity. Let us now consider
the dynamics of the more general case

D�
Dt

D �r � F Œ�� D r � Kr� (10.86)
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where K is, in general, a second-rank tensor and F Œ�� D �Kr� is the diffusive flux of
�. (We will omit the identifying field in square brackets if no ambiguity is so caused.)
The flux has a component across the gradient of �, which we will call the diagradient
flux, and a component along the gradient, called a skew flux [c.f., (7.83) and (7.84)]. We
will see below that these fluxes are associated with the symmetric and antisymmetric
components of the diffusivity tensor, respectively, where

K D S C A (10.87)

and, using component notation,

Smn D
1

2
.Kmn C Knm/; Amn D

1

2
.Kmn � Knm/: (10.88)

The diagonal elements of antisymmetric tensor are zero. The transport that is effected
by these two tensors has different physical characteristics, as we now discuss.

10.6.2 Diffusion with the symmetric tensor

In the simplest case of all, with an isotropic medium, K is diagonal with equal entries,

K D S D

0@� 0 0

0 � 0

0 0 �

1A ; (10.89)

and we have the familiar
F D ��r�: (10.90)

and (10.86) has the same form as (10.85). If � is positive, then the flux is downgradient,
meaning that

F � r� < 0; (10.91)

even if � is spatially nonuniform. Furthermore, such a diffusion is variance-dissipating;
to see this, suppose we have the equation of motion

D�
Dt

D r � .�r�/: (10.92)

Multiplying by � and integrating over the domain V gives

1

2

d
dt

Z
V

�2 dV D

Z
V

F � r� dV D �

Z
V

�.r�/2 dV � 0; (10.93)

after an integration by parts and assuming that the normal derivative of � vanishes at the
boundaries — i.e. there is no flux of �-stuff through the boundary. However, diffusion
does preserve the first moment of the field; that is

d
dt

Z
V

� dV D

Z
V

r � .�r�/ dV D 0: (10.94)
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again assuming no flux through the boundaries.
The transport that is effected by the symmetric diffusion tensor is the diagradient

diffusive flux, Fd , where
Fd D �Sr� D �Smn@n� (10.95)

where we employ the common convention that repeated indices are summed. Suppose,
for simplicity, we have the equation of motion

@�

@t
D �r � Fd D r � .Sr�/: (10.96)

This equation preserves the first moment of �, provided there is no flux through the
boundary. (The boundary condition that assures this is slightly more complicated than a
simple vanishing of the normal derivative; it is left as a problem for the reader.) Tracer
variance evolves according to

1

2

@

@t

Z
V

�2 dV D

Z
V

�r � .Sr�/ D �

Z
V

.Sr�/ � r� dV (10.97)

This can be shown to be negative or zero, provided that S is positive semi-definite,
meaning that

r� S r� D @m� Smn@n� � 0: (10.98)

The flux effected by such a diffusivity is then downgradient in the sense that

Fd � r� D �Sr� � r� � 0: (10.99)

10.6.3 Skew-diffusion

The transport associated with the antisymmetric transport tensor is perpendicular to the
gradient of �, and so is neither upgradient nor downgradient. The flux is

Fsk D �Ar� D �Amn@n� (10.100)

and thus
Fsk � r� D �Ar� � r� D �Amn@n�@m� D 0; (10.101)

where the final result follows because of the antisymmetry of A — the contraction of
a symmetric tensor and an antisymmetric tensor is zero.10 For this reason, the asso-
ciated transport is known as a skew flux (a term applying in general to fluxes that are
along-gradient) or a skew diffusion (when those fluxes are parameterized using an anti-
symmetric diffusivity). It follows from this that if a tracer obeys

@�

@t
D r � .Ar�/; (10.102)

then the tracer variance is conserved. This may be verified by multiplying this equation
by � and integrating by parts, assuming that the flux vanishes at the boundaries. That is,
a skew diffusion has no effect on the variance of the skew-diffused variable. One other
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familiar physical process shares these properties, and that is advection by a divergence-
free flow. A skew-diffusion is physically equivalent to such an advection in that the
divergence of a skew-diffusive flux is the same as the divergence of an appropriately
chosen advective flux. We proved this in section 7.3.4, but let us look at it again from
the point of view of diffusion.

We define an advective flux of a tracer � to be a flux of the form

Fad D zv� (10.103)

where zv is a divergence-free vector field. The divergence of the flux is just

r � Fad D r � .zv�/ D zv � r�: (10.104)

The field zv is a pseudo-velocity or a quasi-velocity — it acts like a velocity but is not
necessarily the velocity of any fluid particle. Because zv is divergence-free, we may
define a vector streamfunction  such that

zv D r � (10.105)

The field  is not unique: the divergence of an arbitrary function may be added to it,
this divergence vanishing upon taking the curl, resulting in the same velocity field. That
is, if  0 D  C r , then zv D r �  D r �  0. The scalar field  is known as the
gauge, and the freedom to choose it is the gauge freedom.

The advective flux Fa is related to the skew flux Fsk by

�zv D �r � D r � .� / � r� � (10.106)

or
Fad D Fr C F 0

sk (10.107)

where Fr D r � .� / is a rotational flux with no divergence, and

F 0
sk D �r� � (10.108)

is a skew-flux — ‘skewed’ because it is manifestly orthogonal to the gradient of �, i.e.,
r� � F 0

sk D 0. Because r � Fr D 0 we have

r � Fad D r � F 0
sk: (10.109)

However, the skew-flux �r� �  and the advective flux �r �  may have, and in
general do have, different magnitudes and directions; only their divergences are equal.
Furthermore, the divergence of the skew-fluxes given by (10.100) and (10.108) are the
same, if  is properly related to the antisymmetric tensor A. We have

r � Fsk D �@m.Amn@n�/

D �.@n�/.@mAmn/ � ŒAmn@n@m��

D �@n.�@mAmn/C Œ�@n@mAmn�

(10.110)
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where the quantities in square brackets are zero as a consequence of the antisymmetry
of A — a symmetric operator acting on an antisymmetric tensor is zero. But the skew
flux divergence is equal to the advective flux divergence

r � Fsk D r � Fad D @n.�zvn/; (10.111)

so the associated skew velocity is given by

zvn D �@mAmn (10.112)

and this is divergence-free because @n@mAmn D 0. The streamfunction and the anti-
symmetric tensor are thus related, because

zvn D �lmn@l m (10.113)

where the latter expression is equivalent to zv D r � , as can be verified by expanding
the expression out in Cartesian coordinates. (The Levi-Civita symbol �mnp is such that
�123 D �231 D �312 D 1, �132 D �321 D �213 D �1, and �mnp D 0 for other
combinations.) Using (10.112) and (10.113), and just a little algebra, gives

Amn D �mnp p D

0@ 0  3 � 2

� 3 0  1

 2 � 1 0

1A : (10.114)

If the antisymmetric tensor Amn is known, this formula immediately provides the stream-
function for the skew velocity zv, to within a gauge.

10.6.4 The story so far

In this chapter we are making a rather large assumption — that we can parameterize
turbulent fluxes via some form of diffusive parameterization, but given that let us be
reasonably careful how we do it. Thus far, we have established:

? Any flux can be decomposed into a component across the gradient of a scalar, the
diagradient flux, and a component along the gradient, the skew flux.

? The diagradient flux is effected by a diffusion using a symmetric diffusivity tensor.

? The skew flux is effected by a diffusion using an antisymmetric diffusivity tensor,
and this is equivalent to an advection by some divergence-free velocity.

? The diagradient diffusive flux reduces tracer variance if the diffusivity is positive,
whereas the skew difffusion has no effect on it.

Let us now consider how all this is relevant to the large-scale flow in the atmosphere
and ocean.
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10.7 † EDDY DIFFUSION IN THE ATMOSPHERE AND OCEAN

10.7.1 Preliminaries

Consider a tracer that obeys the equation

D�
Dt

D r � .�mr�/ (10.115)

where �m is the molecular diffusivity. If the advecting flow is divergence-free then the
ensemble average flow obeys, neglecting the molecular diffusion,

D�
Dt

D �r � v0�0: (10.116)

We can imagine, for example, that we prepare the ensemble by varying the initial condi-
tions; then, if the flow is chaotic, the realizations will differ from each other but the flow
statistics will, we will assume, converge such that � and the other averaged quantities
are well-defined. If we parameterize the eddy transport by a diffusion then

F D r � v0�0 D �Kr� (10.117)

where K is, in general, a second-rank tensor. If the average is a zonal average then

D�
Dt

D �
@v0�0

@y
�
@w0�0

@z
: (10.118)

If we are to employ a diffusive parameterization for the eddy terms these equations, the
issues that then arise fall into two general camps:

(i) The overall magnitude of the eddy diffusivity, possibly as a function of the mean
flow;

(ii) The structure of the diffusivity tensor, and in particular the separate structure of its
symmetric and anti-symmetric parts.

10.7.2 Magnitude of the eddy diffusivity

If we restrict attention for the moment to the horizontal transfer of tracer properties,
then we might write

v0�0 D ��vy @�

@y
� �vz @�

@z
(10.119)

where �vy and �vz are components of the eddy diffusivity tensor. These components
have the dimensions of a length times a velocity and, to the extent that the diffusion
represents the eddying motion we expect that �vy has an approximate magnitude of

�vy
� v0l 0 (10.120)

where u0 is a typical magnitude of the horizontal eddy velocity, and l 0 is a typical length
scale of the eddies, the mixing length of the eddies. Larger and more energetic eddies



10.7 † Eddy Diffusion in the Atmosphere and Ocean 451

thus have a larger effect on the mean flow. We can estimate u0 and l 0 in a number of
reasonable ways depending on the flow conditions, as the boxed equations below will
indicate.11

Suppose that the eddies are a consequence of baroclinic instability. Then, we may
suppose that a mixing length is given by the first deformation radius, this being the
characteristic horizontal scale of the instability. Such linear arguments cannot, however,
determine the velocity scale because the equilibration of baroclinic waves, and hence
their magnitude, depends on nonlinear processes. It is simplest to suppose that the eddy
velocity is of the same approximate magnitude as the mean flow, u. With these two
estimates we have

�vy
� Ldu D

NHu

f
: (10.121)

Another way of deriving this result is by noting that

� � l 02=T (10.122)

where T is a characteristic eddy time scale. We may suppose that this is the Eady
timescale (the inverse Eady growth rate), namely Ld=u. With l 0 � Ld we then repro-
duce (10.121), which may also be written as

�vy
� Ldu �

L2
df0

p
Ri

� L2
d Frf0: (10.123)

where Ri � N 2=�2 D N 2H 2=u2 and Fr � U=.NH / are the Richardson and Froude
numbers. Writing the estimate in this way may be useful for general scaling purposes or
in primitive equation models, but note that f0 is not a parameter in a quasi-geostrophic
model.

Another plausible choice would be to suppose that the mixing length is not the de-
formation scale, but the overall size of the baroclinically unstable zone. The rationale
for this choice is that the ultimate size of the eddies is determined by nonlinear pro-
cesses, and if there is an inverse cascade then the energy containing scale is determined
not by the scale of the initial instability, but it is the size to which eddies ultimately
grow, perhaps by way of an inverse cascade. Supposing that the eddy magnitude is still
that of the mean flow then gives the simple estimate

�vy
� Lu (10.124)

where L is the size of the baroclinic zone. If this is much larger than the deformation
radius, as it might be in the ocean, then we might expect the eddy magnitude, u0, also
to be larger than that of the mean flow, u. In that case, rather than explicitly estimat-
ing the eddy velocity via some turbulence model, one possibility would be to estimate
the diffusivity from the length-scale (the domain scale, L) and a timescale, which one
assumes still to be the Eady timescale Ld=u — see chapter 9 and section 9.3. This gives

�vy
�

L2

.Ld=u/
D uLd

 
L2

L2
d

!
: (10.125)
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This may differ significantly from (10.121) if the baroclinic zone is much larger than
the deformation radius, as for example in the oceanic Antarctic Circumpolar Current.
Quantitatively, the two estimates differ less in the atmosphere, where L � Ld, but
the scaling properties of the two, and so their respective behaviours when parameters
change, still differ qualitatively.

The most rational way to choose between all these estimates is to say that our best
estimate of the mixing length is that it be the (eddy) energy containing scale. If there is
a vigorous inverse cascade then indeed the eddy scale need not be related to the initial
instability scale. However, in the atmosphere there is little scale separation between
the deformation radius and domain scale, and in the ocean the transfer of energy from
deformation scale to larger scales may be rather inefficient,12 and so eddies may be ad-
vected away from each other and away from the unstable zone, or dispersed by Rossby
waves, before an inverse cascade can be organized. Thus, in both atmosphere and ocean
the energy containing scales may be reasonably close to the deformation scale.

Let us suppose that there is an inverse cascade, with an energy cascade rate ". If
this is halted by the ˇ-effect, then the energy containing scale Le is given by

Le �

�
"

ˇ3

�1=5

(10.126)

and the velocity at that scale is given by

ue � ."Le/
1=3 (10.127)

Combining these gives an estimate for the diffusivity,

�vy
�

�
"3

ˇ4

�1=5

: (10.128)

This estimate may also be obtained directly by dimensional analysis, if it is assumed
that the only factors determining � are " and ˇ.

If the inverse cascade is halted by friction, say by a linear Ekman drag with coeffi-
cient r (such that @�=@t C � � � D �r�), then the eddy diffusivity is found to be

�vy
�

�
"

r2

�
: (10.129)

To summarize: of all the above, the estimates (10.128) and (10.129) are the best jus-
tified for fully-developed geostrophic turbulence, and of these if friction is sufficiently
small then (10.128) is appropriate. To apply these, we must have an estimate of ",
which might conceivably be supplied by completely independent means (for example,
by considering the atmosphere as a heat engine). However, a mixing length based on the
deformation radius may be preferred if the inverse cascade is inefficient and the eddies
remain at the scale of the deformation radius. The component �vz may be estimated by
arguments concerning the plane of parcel displacements, as we now consider.
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10.7.3 Structure: the symmetric transport tensor

Diagradient diffusion is transport by a symmetric transport tensor, as in (10.95). Let
us consider transfer in re-entrant channel with zonally homogeneous eddy statistics so
that the averaging operator is the zonal average; we are then concerned with both the
meridional and upward transport of tracer, and

v0�0 D ��vy @�

@y
� �vz @�

@z
(10.130)

w0�0 D ��wy @�

@y
� �wz @�

@z
(10.131)

where �wy D �vz by the posited symmetry. The relationship between the various transfer
coefficients will be affected both by the slope of the isopycnals, or isentropes, and the
relationship of the eddy trajectories to those isentropes. In the Cartesian y–z frame the
transport tensor is not necessarily diagonal (i.e. �vz and �wy may be nonzero) but locally
there is always a natural coordinate system in which the diffusivity tensor is diagonal.
(This is a mathematical result, because a symmetric matrix may always be diagonalized
by a suitable rotation of axes.) In the diagonal frame we can write

S0
D �s

�
1 0

0 ˛

�
; (10.132)

where �s determines the overall size, and ˛ is the ratio of the transport coefficients in the
two orthogonal directions. Now, fluid displacements in large-scale baroclinic eddies are
nearly, but not exactly, horizontal — they may be along isopycnals, for example, or at
an angle between the horizontal and the isopycnals. We may argue that the coordinate
system in which the tensor is diagonal is the coordinate system defined by the plane
along which fluid displacements occur. This is sensible because the transfers along and
orthogonal to the fluid paths are each a consequence of different physical phenomena,
and so we may expect the transfer tensor to be diagonal in this frame.

Because eddy displacements are predominantly horizontal, this coordinate system
slopes at a small angle with respect to the horizontal s D tan � � � � 1. Furthermore,
we expect that the parameter ˛ to be small (˛ � 1), because this represents transfer
in a direction orthogonal to the eddy fluid motion. We rotate the tensor S0 through an
angle � to move into the usual y � z frame; that is

S D �s

�
cos � � sin �
sin � cos �

��
1 0

0 ˛

��
cos � sin �

� sin � cos �

�
(10.133a)

� �s

�
1 C s2˛ s.1 � ˛/

s.1 � ˛/ s2 C ˛

�
(for small s) (10.133b)

� �s

�
1 s

s s2 C ˛

�
(for small s and small ˛)

(10.133c)

We can follow the same procedure in three dimensions. Then, if the eddy transport
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is isotropic in the plane of eddy displacements, the three-dimensional transport tensor
is

S0
D �s

0@1 0 0

0 1 0

0 0 ˛

1A ; (10.134)

and the slope of the motion is a two-dimensional vector s D .sx; sy/. (Recall our nota-
tion that a subscript x, y or z denotes a derivative; other subscripts are simply markers.)
If we rotate the transport tensor into physical space then we obtain, analogously to
(10.133), ,

S D �s

0@1 C s2
y C ˛s2

x .˛ � 1/sxsy .1 � ˛/sx

.˛ � 1/sxsy 1 C s2
x C ˛s2

y .1 � ˛/sy

.1 � ˛/sx .1 � ˛/sy ˛ C s2

1A (10.135a)

� �s

0@ 1 0 sx

0 1 sy

sx sy ˛ C s2

1A ; (10.135b)

for small s and small ˛, where s2 D s2
x C s2

y .

The plane of eddy displacements

We are now in a position to make heuristic choices about the transfer coefficients, and
we will consider two bases for this:

I Using linear baroclinic instability theory.13 In a simple model of a growing
baroclinic (Eady) wave, parcel trajectories that are along half the slope of the mean
isopycnals are able to release the most potential energy. We thus suppose that s D

s�=2, where s� is the isopycnal slope, and that ˛ D 0 in (10.133c) or (10.135b). In
two dimensions this gives

S D �s

�
1 s�=2

s�=2 s2
�=4

�
(10.136)

and so
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: (10.137b)

If the tracer � is potential temperature (and not just a passive tracer) then (10.137),
along with one of the estimates for the size of �s given in section 10.7.2, consti-
tutes a parameterization for the diffusive polewards and upwards heat flux in the
atmosphere.
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II Flow along neutral surfaces. If the fluid interior is adiabatic and steady, then fluid
trajectories are along neutral surfaces; that is, along surfaces of potential density
or potential temperature. One might therefore be inclined to assume that the eddy
fluxes are aligned along the mean neutral surfaces and choose s D s�. However,
even in the adiabatic case, this is not always a good choice. From the adiabatic
thermodynamic equation Db=Dt D 0 we may derive the equation for the eddy
buoyancy variance, namely
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@z
w0b02 D 0:

(10.138)

and specialize to the case of a zonally-uniform, small-ampliude wave. In this case
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@b02
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D �u0b0

@b

@y
� w0b0

@b

@z
: (10.139)

If the wave is statisically steady then the left-hand side is zero and

v0
mb0 � rmb D 0 (10.140)

where the subscript m indicates vectors are in the meridional plane. In this case
there is indeed no diagradient flux. But if the wave is growing, then

w0b0

u0b0
< �

@b=@y

@b=@z
(10.141)

and so the mixing slope is less steep than the mean isopycnal slope, even though
the flow may be adiabatic. Similarly, if the wave is decaying the, mixing slope is
steeper than that of the mean isopycnals. In an inhomogeneous flow, the advection
by the mean flow in (10.138) plays a similar role to time-dependence: the advection
of eddy variance by the mean flow into a region of larger variance will give rise to
a mixing slope that is less steep than the isopycnal slope, and conversely if for flow
entering a region of less variance. Only for a statistically steady, adiabatic, linear
wave field is the mixing slope guaranteed to be along the isopycnals.

Having said this, let us proceed by assuming that the fluid trajectories are indeed
along neutral surfaces. If there is no diffusion orthogonal to this ˛ D 0, and the
transport tensor is

S D �s

0@ 1 0 s�x

0 1 s�y

s�x s�y js�j
2

1A ; (10.142)

or in two dimensions

S D �s

�
1 s�
s� s2

�

�
; (10.143)
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and in this case
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Suppose that � is potential temperature � , and that surfaces of potential tempera-
ture do define neutral surfaces. Then plainly eddy motion along potential temper-
ature surfaces does not transfer potential temperature, and the diffusion defined by
(10.144) should have no effect. The equations themselves respect this, for then

s� D �
@�=@y

@�=@z
(10.146)

and the eddy transfer of potential temperature is then
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In the real ocean the presence of salinity means that the potential temperature,
potential density and salinity surfaces are, in general, not parallel and there will
be eddy diffusion of � and S (salinity) along neutral surfaces. However, this does
not provide a parameterization for the heat flux by baroclinic eddies, because we
cannnot expect such transfer to depend for its existence on the presence of a second
tracer, salinity. For such a parameterization, we turn to the antisymmetric transport
tensor.

10.7.4 Structure: the antisymmetric transport tensor

The antisymmetric transport tensor gives rise to the skew flux, or the pseudo-advection.
In two dimensions (one horizontal, one vertical) then we can immediately write down
its form, namely,

A D

�
0 ��0

a

�0
a 0

�
(10.149)

where �0
a, which may vary space and time depending on the flow itself, determines the

overall strength of the transport. In three dimensions then by inspection we can write

A D

0@ 0 0 ��0x
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0 0 ��
0y
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�0x
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0y
a 0

1A : (10.150)
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where the superscripts denote components and we have chosen our gauge by conve-
nience and set A21 D �A12 D 0. Note that (10.150) preserves the form of (10.149) if
one of the horizontal dimensions is absent — that is, if either row one and column one,
or row two and column two, is eliminated. Our remaining choice is to determine the
sign and magnitude of the transport coefficients.

An adiabatic, potential-energy diminishing eddy transport scheme

Gent and McWilliams proposed a particular parameterization for the transport of tracers
in ocean models by baroclinic eddy fluxes, commonly known as the GM scheme.14 The
maintenance of two properties is the foundation of their scheme:

(i) Moments of the tracer should be preserved; in particular, the amount of fluid
between two isopycnal surfaces should be preserved. This suggests the scheme
should not diffuse buoyancy across its gradient.

(ii) The amount of available potential energy in the flow should be reduced. In this
sense, the parameterization should mimic the effects of baroclinic instability, which
transfers available potential energy to kinetic energy.

The first of these is automatically satisfied by using an antisymmetric diffusivity ten-
sor. The second property can be satisfied by choosing the transfer coefficients to be
proportional to the slope of the isopycnals, in which case we may write

A D �a

0@ 0 0 �sx

0 0 �sy

sx sy 0

1A ; (10.151)

where s D .sx; sy/ D r�z D �rz�=.@�=@z/ is the isopycnal slope. In an ocean model
separately carrying temperature and salinity fields, then (10.151) would be applied to
each of these, with the isopycnal slope being determined using the equation of state.
To more easily see what properties are implied by the transport, let us specialize to the
salt-free case, with buoyancy, b, the only thermodynamic variable. The isopycnal slope
is then s D �.bx=bz; by=bz/ and the horizontal eddy buoyancy transfer Fh D .Fx;Fy/

is given by
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which for positive � is the same as conventional downgradient diffusion.
The vertical transfer is given by

Fz D ��a
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�
D �as2 @b

@z
(10.152b)

where s2 D s � s. This flux is up the vertical gradient; however, by construction, the
total skew flux is neither upgradient nor down gradient.

The combination of the downgradient horizontal flux and the upgradient vertical
flux acts to reduce the potential energy of the flow at the same time as preserving the
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volume of fluid within each density interval. The upgradient flux in the vertical is
a consequence of the need to reduce available potential energy: suppose warm light
fluid overlays cold dense fluid in a statically stable configuration, then a downgradient
vertical diffusion would raise the centre of gravity of the fluid, increasing its potential
energy — just the opposite of the action of baroclinic instability. Thus, the sign on
the vertical diffusivity must be negative and this, in combination with the structure of
(10.151) (and so a positive horizontal diffusivity) allows both properties (i) and (ii)
above to be satisfied. The parameterization does not preserve total energy; the loss of
potential energy is not balanced by a corresponding gain of kinetic energy, rather it is
supposed lost to dissipation. Finally, to determine the magnitude of the (skew) eddy-
diffusivity we may turn again to the phenomenological estimates of section 10.7.2.

The eddy transport velocity

Applying (10.112) to (10.151) gives the eddy transport velocities,

zu D �
@

@z
.�as/;

zw D rz � .�as/

: (10.153)

The streamfunction associated with A is found using (10.114) and (10.151) giving

 D .��asy ; �sx; 0/ D k � �as: (10.154)

Two equivalent ways of implementing the Gent-McWilliams parameterization are
thus as a skew-flux, as in (10.152), or as an advection by the pseudo-velocities (10.153).
The vanishing of the normal component of the velocity is equivalent to the vanishing
of the normal component of the flux at the boundary, and ensures that the scheme con-
serves tracer moments. The advective flux of buoyancy is just

Fad D bzv D br � D br � .k � �as/; (10.155)

whereas using (10.108) the skew flux is given by

Fsk D �rb � D �rb � .k � �as/: (10.156)

Vector manipulation easily shows that the divergences of these two fluxes are equal.

10.7.5 Examples

Consider a situation with sloping isotherms (and with density determined solely by tem-
perature) as illustrated in Fig. 10.5. The vertical flux attempts to tighten the temperature
distribution, whereas the horizontal flux, being downgradient, attempts to smooth out
horizontal inhomogeneities. Taken together, their net is to preserve the amount of fluid
between any two isotherms, but at the same time to rotate flatten the isotherms; in this
way the available potential energy of the flow is reduced. This is different from a con-
ventional downgradient diffusion. A purely horizontal diffusion would, in principle, act
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Figure 10.5 The GM skew fluxes
arising from sloping isotherms.
The flux itself is parallel to the
isotherms, with the horizontal flux
being directed down the horizon-
tal gradient but the vertical flux
being upgradient. The effect of the
vertical flux is to lower the centre
of gravity of the fluid, and reduce
the potential energy. The horizon-
tal flux tries to make the tempera-
ture more uniform in the horizon-
tal. The net effect of the skew flux
is to flatten the isotherms.

to equalize values at each level, and a three-dimensional downgradient diffusion would
try to equalise all values. Thus, a skew flux behaves quite differently from the usual
downgradient diffusion, which merely acts to reduce gradients without caring much
about other fluid properties.

To illustrate this consider a very simple example, that of a two-dimensional (y–z)
fluid in which the initial density field is a 3 � 3 grid, with initial conditions

�init D

242 1 1

3 2 1

3 3 2

35 : (10.157)

The isopycnals are sloping, much as in Fig. 10.5, and the flow is statically stable every-
where.

A purely horizontal diffusion would lead to, in the absence of other processes and
with zero normal flux at the boundaries, a final state of

�hd D

241:33 1:33 1:33

2 2 2

2:66 2:66 2:66

35 ; (10.158)

and a full (vertical and horizontal) diffusion would give

�hvd D

242 2 2

2 2 2

2 2 2

35 : (10.159)

Neither of the above two final states preserves the density census, and both imply strong
diabatic effects — the fluid has been mixed, and the density variance has been reduced.
This implies that diabatic effects have occurred; since large-scale eddies themselves
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Fig. 10.6 The eddy-induced velocities in the Gent-McWilliams parameteri-
zation. The induced circulation attempts to flatten the sloping isopycnals.
The induced vertical velocity, W �, is zero on flat isopycnals.

cannot mix water properties (because the eddies themselves merely advect tracer prop-
erties).

In contrast, a skew-diffusion or eddy-transport advection will rotate the density
surfaces clockwise until the isopycnal slope is zero, at which point the value of the
transfer coefficients becomes zero and the process stops. The final state is then

�GM D

241 1 1

2 2 2

3 3 3

35 : (10.160)

This both preserves the density census (and so the density variance) and reduces the
available potential energy.

We can equally well interpret these effects in terms of eddy-transport velocities,
and this will emphasize that it is not the eddy flux itself that is important; rather, it is
the flux divergence. If the slopes of Fig. 10.5 extended uniformly everywhere, then the
associated fluxes would have zero divergence, and the eddy-induced velocities, given
by (10.153), would be zero. On the other hand, consider the case illustrated in Fig.
10.6, with variously sloping isotherms. For a constant value of the eddy diffusivity �
the slope of the isopycnals, s D �.@�=@y/=.@�=@z/, provides the stream function for
the eddy-induced velocity:

zv D �
@ 

@z
D �

@

@z
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@y
.�as/ (10.161)

This induces the velocities illustrated in Fig. 10.6, which evidently serve to flatten the
isopycnals. (If the isopycnals steepen as they approach the surface, the effects of the
scheme may be harder to interpret.)

Finally, we note that diagradient diffusion and skew diffusion would normally be
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used together, and the transport tensor will then have both symmetric and antisymmetric
components. In ocean models the diagradient (symmetric) diffusion of temperature
and salinity is often chosen to mix along isopycnals, because the mixing in the ocean
interior is largely adiabatic. On the other hand, in the atmosphere (especially in the
troposphere) diabatic effects are quite important and the symmetric tensor should be
chosen appropriately.

10.8 † THICKNESS DIFFUSION

In the previous section, we considered the structure of the diffusivity tensor, and then
chose the entries by physical reasoning to mimic the effects of baroclinic instability. An
alternative approach is to choose, a priori, a quantity to be diffused across its gradient
(i.e., not skew-diffused), and to then transform this appropriately to see how that effect
should be represented in the equations of motion as commonly used, for example the
thermodynamic equation in z-coordinates. The diffusivity need not be isotropic if, for
example, the ˇ-effect is important. However, if the diffused quantity is chosen appro-
priately we would expect there to be a coordinate system in which the diffusion tensor is
diagonal; it will then remain symmetric if transformed to a perhaps more convenient co-
ordinate system. In this section we explore the use of thickness as a ‘diffusee’, from an
essentially first-principles perspective, and we see how similar thickness diffusion is to
the GM scheme. In the next section we see how these schemes fit into the transformed
Eulerian mean (TEM) framework.

Thickness is the vertical distance between two isotherms or isopycnals. It is a can-
didate for diffusion because a downgradient thickness transfer within an isopycnal layer
satisfies two conditions:

(i) The total mass contained between two isopycnals is preserved, provided there is
no flux through the lateral boundaries.

(ii) Such a flux serves to flatten isopycnals, and hence reduce the available potential
energy of the flow, mimicking baroclinic instability.

However, thickness is not a Lagrangian conserved quantity; thus, the arguments of
section 10.2 do not apply and so turbulent diffusion of thickness is somewhat ad hoc.
The following sections explains these issues more fully.

10.8.1 Equations of motion

Thickness and its variance

In a Boussinesq fluid the distance between two surfaces of constant buoyancy is given
by

Thickness D ˙ D

Z h.b2/

h.b1/

dh D

Z b2

b1

@h

@b
db; (10.162)

and thus we may define the thickness field (strictly a ‘thickness density’ field), � �

@h=@b . The volume of fluid between two isopycnal surfaces is proportional to ��A,
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where �A is an infinitesimal area, and in the absence of diabatic processes this is con-
served. Thus, we have D.��A/=Dt D 0 and using D�A=Dt D �Arb � u we obtain
the the equation of motion for thickness,

D�
Dt

C �rb � u D D� or
@�

@t
C rb � .u�/ D D� ; (10.163)

now including a term D� to represents any diabatic terms. From (10.163) we obtain the
variance equation
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rb � u0� 02 D �w0� 0 C D�� 0 (10.164)

where we have written w0 D .�rb � u/0. This equation is to be compared with the
corresponding equation for a conserved tracer, (10.68). If the mean flow is small and
the the third order correlations may be neglected then

u0� 0 � r� � �w0� 0 C D�� 0: (10.165)

Unlike the case for a conserved tracer [c.f., (10.69)], the transport of thickness is not
necessarily downgradient in regions of dissipation. However, in regions of baroclinic
instability where there may be conversion of available potential energy to kinetic en-
ergy w0� 0 is positive and we do then expect thickness to be transferred downgradient,
suggesting a diffusive parameterization.

The eddy-induced and residual velocities

Now, let us decompose these variables in the usual manner into a mean component (say
an ensemble mean, denoted with an overbar), and an eddy component, denoted with a
prime. Then the averaged thickness equation is

@�

@t
C rb �

�
� u C � 0u0

�
D 0: (10.166)

where � 0u0 is the eddy thickness flux. This equation may be written

@�

@t
C rb � Œ.u C zu/�� D 0: (10.167)

where

zu �
� 0u0

�
(10.168)

is the ‘eddy-induced velocity’, sometimes referred to as the bolus velocity, this appel-
lation arising because the thickness flux is said to be evocative of a peristaltic transfer
along a passage bounded by impermeable but elastic walls. The quantity

u�
D u C zu (10.169)

is the residual velocity we encounted in chapter 7, and it accounts for the total transport
of thickness, including both eddy and Eulerian mean.
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The evolution of a conserved tracer � , (an amount per unit volume) is given by

D
Dt
.�h�A/ D 0 (10.170)

whence, because h�A is a constant,
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or equivalently
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The averaged tracer equation (10.172) may be written as
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or, using (10.166),
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(To derive these, first let ��u D .�u/0� 0 C�u � .) If we neglect the correlation between
� 0 and � 0, then (10.174) has the form
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1
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rb � Œ.�u/0� 0� (10.175)

Thus, the averaged tracer evolves as if it were advected by two velocity fields: the
large scale field itself, u, and the eddy-induced velocity zu, their sum being the residual
velocity. The term on the right-hand-side of (10.175) is the divergence of the transport
of tracer along the isopycnals by the eddy-transport .�u/0.

10.8.2 Diffusive thickness transport

A diagradient diffusion of thickness parameterizes the eddy transport velocity by

zu �
� 0u0
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D �

1

�
�rb�: (10.176)

Similarly, we may parameterize right-hand-side of (10.174) by

�
1
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1

�
rb � .�0�rb� /; (10.177)

that is, as a diffusion of tracer along isopycnals.
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Height coordinates

In height coordinates the eddy transport velocity will be a three-dimensional field, ob-
tained by appropriately transforming zu. We have
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(10.178)

where to go to the second line we use rbh D s, the isopycnal slope. The final result is
not quite the same as (10.153), because the diffusivity is now outside the z-derivative.
It is a subtle but important distinction, because it means that if � varies the vertical
velocity can no longer be obtained easily as a local function. That is to say, given
(10.178), we no longer have zw D rz � �s as in (10.153). Rather, zw must be evaluated
by a nonlocal integration of the mass conservation requirement so that
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�
dz: (10.179)

This should not be disconcerting from a physical standpoint, because the baroclinic
activity of eddies certainly involves vertical communication — recall for example the
tendency toward barotropic flow in baroclinic lifecycles. From a computational stand-
point, it is a little less convenient. Nevertheless, the GM scheme is evidently very
similar to a thickness diffusion.

10.9 † EDDY TRANSPORT AND THE TRANSFORMED EULERIAN MEAN

A natural framework to discuss how eddy fluxes interact with the mean flow is the trans-
formed Eulerian mean (TEM), discussed in chapter 7. It provides a simplification of the
formalism (especially if one is already familiar with TEM theory!) and, more impor-
tantly, a means to consider more general cases, such as the flux of potential vorticity
and other variables.

From section 7.3.4 the averaged thermodynamic equation may be written as
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and
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If the eddy fluxes are parallel to the isopycnals, then G D 0 and the sole effect of the
eddies on the mean flow is via the eddy induced velocity. Again using the results of
section 7.3.4 and diffusing thickness we have
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recovering, for constant �a, the GM scheme. (Strictly, we have only demonstrated the
above transformation for a zonal average.) Note that if we write the residual velocity in
standard TEM fashion as v�

D v�r � then with the GM parameterization the TEM
streamfunction may be written as

 D �a

k � rzb

bz

: (10.184)

10.9.1 Potential vorticity diffusion

Preliminaries

From a more fundamental perspective, potential vorticity, Q, is a better candidate for
diffusion than thickness because it is a Lagrangian conserved quantity.15 It is not the
only variable that is materially conserved — potential temperature is also. However,
potential temperature is advected by the three-dimensional velocity field. The vertical
advection complicates matters, since any diffusion tensor certainly cannot be isotropic
and probably not symmetric. On the other hand, in isentropic coordinates the adia-
batic potential vorticity advection occurs the isentropic plane, an in quasi-geostrophic
flow advection is purely horizontal. Thus, only the two dimensional diffusion need be
considered, and the diffusion tensor will be much simplified. Indeed, if the effects of
differential rotation are unimportant, the turbulence may be nearly isotropic and the
diffusivity becomes a simple scalar.

However, near the upper and lower boundaries buoyancy may in fact be the appro-
priate field to diffuse. This is because (for flat boundaries) w D 0 and buoyancy is
conserved on parcels when advected by the horizontal flow:

@b

@t
C u � rzb D 0: (10.185)

Potential vorticity, on the other hand, becomes singular at boundaries where outcrop-
ping occurs: the thickness between two isentropic surfaces goes to zero and .� C f /=�

is ill-defined. This has an analog in quasi-geostrophic dynamics, where the equations of
motion are horizontal advection of potential vorticity in the fluid interior with horizontal
buoyancy advection at the boundaries providing the boundary conditions. Horizontal
diffusion of buoyancy is, of course, not an adiabatic parameterization, but diabatic ef-
fects do occur at the surface. These considerations suggest that downgradient potential
vorticity diffusion on isentropic surfaces in the fluid interior, combined with downgra-
dient buoyancy diffusion at the upper and lower boundaries, is as rational a parameter-
ization of eddy transfer effects as any simple diffusion scheme can be. However, its
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implementation may be considerably more difficult than for a thickness diffusion, be-
cause of the dynamical and energetic constraints that potential vorticity transport must
satisfy, and because when the equations of motion are written in conventional form the
potential vorticity flux does not directly appear.

Implementations and approximations

Suppose that the large-scale fields obey planetary-geostrophic scaling, and for simplic-
ity we remain on the ˇ-plane. Then, in isentropic coordinates the potential vorticity
is

Q D
f C �

�
�
f

�
; (10.186)

which gives
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Potential vorticity diffusion is then just
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where K is the diffusivity (a two-dimensional symmetric tensor in the isentropic plane,
or a scalar). If the eddy flux of potential vorticity also satisfies planetary-geostrophic
scaling then

u0Q0 � �
f

�2
u0� 0: (10.189)

Using (10.168) and (10.189) gives
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and using (10.188) yields

zu D K

�
ˇ

f
j �

1

�
rb�

�
(10.191)

This differs from (10.176) mainly in the existence of the term involving ˇ on the right-
hand-side. It is singular at the equator, a consequence of ignoring the relative vorticity
term in the expression for potential vorticity. For use in a z-coordinates, it can be
transformed in the same way as (10.176), giving
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Using the quasi-geostrophic equations

Baroclinic eddies generally obey quasi-geostrophic scaling, and the dynamics of Ertel
potential vorticity on isopycnals are mimicked by the dynamics of quasi-geostrophic
potential vorticity on height surfaces, thus suggesting the use of quasi-geostrophic scal-
ing. The quasi-geostrophic potential vorticity flux is comprised of a buoyancy flux and
a flux of relative vorticity:

u0q0 D u0�0 C f0u0
@

@z

�
b0

N 2

�
: (10.193)

We also note that:
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and
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having used the thermal wind relation, f0@v=@z D k � rb D r?b.
Now suppose that two conditions are satisfied:

(i) The magnitude of the eddy available potential energy is about the same as the eddy
kinetic energy; that is, jb0=N j � ju0j; jv0j.

(ii) The eddy statistics only vary on scales much larger than the deformation radius
NH=f0 (where H is a typical vertical scale of the eddies). That is, @�=@x �

�f0=.NH / where � is some field of eddy statistics.

If both of these are satisfied, the potential vorticity flux given by (10.193) will be dom-
inated by the thickness flux and so

u0q0 � f0u0
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N 2

�
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Furthermore, the second assumption suggests that first terms on the right-hand-side of
(10.195) are smaller than the corresponding second ones so that

u0q0 � f0
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�
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The left-hand side is the potential vorticity flux, which is to be parameterized by a
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diffusion. The right-hand side is, again, closely related to a thickness flux and so to the
eddy-induced velocity in the TEM. Thus, the eddy transport velocity is
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To close this, we note that at large scales the potential vorticity gradient is domi-
nated by the gradient of planetary vorticity (ˇ) and the buoyancy gradient. Thus,
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and a diffusive closure for the quasi-geostrophic potential vorticity flux is effected by
setting
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with corresponding eddy transport velocity
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This is the quasi-geostrophic version of (10.192).

10.9.2 Final Remarks

The above manipulations indicate that it is possible to construct parameterizations for
the skew-component of the buoyancy flux based on the assumption that potential vor-
ticity is diffused down gradient on isentropic surfaces, or down the horizontal gradient
in quasi-geostrophic theory. Other approaches may be possible, perhaps choosing the
transformed Eulerian mean to be with respect to potential vorticity rather than potential
temperature. One might also write the entire system of equations in TEM form, whence
potential vorticity fluxes appear directly in the momentum equation. However, in all
these cases there remain some difficulties, for example:

– Potential vorticity flux is the divergence of a flux (the Eliassen Palm flux). Thus,
its integral is determined by the values of the flux at the boundaries, and in
particular its vertical integral is determined by the horizontal buoyancy flux.
Relatedly, the isopycnal interior diffusion of PV should transition smoothly to a
horizontal diffusion of buoyancy or temperature at the boundary.

– To diffuse potential vorticity requires energy, and if the flow is not baroclinically
unstable there should be no eddy transport.

– If the Coriolis parameter is allowed to vary, the above closures are singular at
the equator, where geostrophic scaling naturally fails.

There seems no unique or self-evidently correct way overcome these, but time will
tell!16
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Notes

1 Much of the theory of turbulent diffusion stems from G. I. (Geoffrey Ingram) Taylor
(1886–1975), who made important contributions to both fluid and solid mechan-
ics, in the former to meteorology, oceanography, and ærodynamics. In addition
to his work in turbulence, Taylor is known for his work on the theory of rotating
fluids (the ‘Taylor-Proudman’ effect, for example) and on hydrodynamic stability
(analysis of stability of Couette flow, for example), and for his clear and simple
laboratory experiments. The results of this section were first derived by Taylor
(1921a). For more details on Taylor, see Batchelor (1986) and other references in
that volume.

2 Many textbooks in both fluid dynamics and stochastic processes cover this mate-
rial, and more. Gardiner (1985) is one.

3 Batchelor (1949).

4 The way variables are changed between (10.31) and (10.32) could also have been
used to derive (10.20), but in that case a simpler transformation sufficed.

5 Batchelor and Townsend (1956).

6 This topic was first addressed empirically by Richardson (1926), although it was
Obukhov (1941) who first properly obtained the ‘4/3 power law’ describing how
the eddy diffusivity varies with separation for parcels in the inertial range. Our
treatment takes advantage of Kolmogorov scaling.

7 The figures in this section were kindly provided by Joe LaCasce; see LaCasce and
Ohlmann (2003).

8 Morel and Larcheveque (1974) and Er-El and Peskin (1981). Earlier dispersion cal-
culations were made by Richardson (1926) who measured smoke spreading from
chimneys, finding results that are consistent with a three-dimensional energy iner-
tial range at small scales.

9 Turbulent diffusion is both widely used and widely criticized. If there is a scale-
separation between a well-defined mean flow and the eddies, and if the eddies
have a well-defined energy containing scale, then turbulent diffusion can be an
extremely useful parameterization in many engineering and geophysical contexts.
At the same time, these conditions are often not satisfied, because it is unusual in
fluid mechanics for the turbulent eddies to be significantly smaller than the mean
flow — look at turbulent Rayleigh-Bénard convection, or turbulent Couette flow,
for example. Baroclinic turbulence is unusual because there is a natural scale of
the turbulence — the deformation radius — that is in general different from the
scale of the mean flow, although even this scale separation may be lost if there is
an inverse cascade or if the deformation scale is sufficiently large, as in the Earth’s
atmosphere. Furthermore, properly choosing what is to be diffused, and ensuring
that various fluid conservation properties remain respected by the diffusion, are
difficult problems.

10 If Sij and Aij are symmetric and antisymmetric tensors respectively, then, sum-
ming over repeated indices, their contraction is Aij Sij D �Aj i Sij D �Aj i Sj i D

�Aij Sij , where the last equality follows because the indices are dummy. Thus,
the contraction must equal zero.

11 Green (1970) and Stone (1972), in the context of the meridional transport of heat
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in the earth’s atmosphere, suggested that the magnitude of the turbulent diffu-
sivity coefficients could be obtained by dynamical arguments using such things as
baroclinic instability theory and the amount of available potential energy in the at-
mosphere, although their suggestions differ in such important details as the eddy
mixing length. More recent efforts have drawn on geostrophic turbulence theory,
for example Held and Larichev (1996) and Smith and Vallis (2002).

12 See Smith and Vallis (2001).

13 Green (1970).

14 What is now called the Gent-McWilliams (GM) scheme originated in Gent and McWill-
iams (1990) and was clarified by Gent et al. (1995). Previously, Plumb (1979) had
noted the connection between symmetric and antisymmetric diffusities and diffu-
sive and advective fluxes, and Griffies (1998) explicitly showed how the GM bolus
velocities are related to a skew flux and can be calculated using an antisymmetric
diffusivity tensor (see also Griffies 2004). Visbeck et al. (1997) suggested that the
values of eddy diffusivities in the GM scheme might be determined by dynamical
arguments like those of Green (1970) and Stone (1972).

15 Potential vorticity diffusion was suggested by Green (1970) as a parameterization
for large-scale eddies in the atmosphere, and used by Welander (1973), Marshall
(1981) and Rhines and Young (1982a) in ocean contexts. Treguier et al. (1997)
further explored the use of potential-vorticity based parameterizations for ocean
models.
Lee et al. (1997), Marshall et al. (1999), Drijfhout and Hazeleger (2001), and others,
have explored numerically whether the eddy transfer of tracers in the ocean is in
fact diffusive, and whether potential vorticity or thickness is a better quantity to
diffuse. Numerical results can be difficult to interpret because if a property is
diffused downgradient then that property tends to become homogeneous, and the
resulting diagnostics may be inaccurate.

16 At the time of writing these are active issues in research. See for example Killworth
(1997), Smith and Vallis (2002).

Further Reading

Aris, R., 1962, Vectors, Tensors and the Basic Equations of Fluid Mechanics, 286pp.
A straightforward introduction to tensors and Cartesian tensors and their applica-
tion to fluid mechanics.

Monin, A. S. and Yaglom, A. M. 1971, Statistical Fluid Mechanics: Mechanics of Turbu-
lence.
This two-volume encyclopaedic reference contains a wealth of information on all
aspects of turbulence, and it is particularly strong on turbulent diffusion.

Problems

10.1 (a) On the line the Dirac delta function is given (non-uniquely) by
ı.x/ D lim�!0. �/

�1=2exp.�x2=�/. What are the two- and three-dimensional
analogs, given circular and spherical symmetry?

(b) In two-dimensions, show that the solution to the diffusion equation

@�

@t
D Dr

2� (P10.1)
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with initial conditions �.r; t D 0/ D ı.r/ is given by

�.r; t/ D
1

4 Dt
exp.�r2=4Dt/: (P10.2)

Show that the mean square distance of a particle that spreads from the origin
is given by

r2 D 4Dt: (P10.3)

You may assume a circularly symmetric solution.
(c) Do this problem in one dimension.

10.2 � Repeat problem 10.1, but in a space of arbitrary dimension m, which if needs be
may be integer.

10.3 � Solve the two-dimensional advection-diffusion equation, @�=@t Cu �r� D �r2�,
exactly for a passive tracer � in a flow .u; v/ D .�y; 0/, with the initial condition � D

A cos kx. Provide a physical explanation of the long-time behaviour of the solution.
Hint: Use an integrating factor, and look for a solution like � � Ae�BŒx�u.y/t�.





Part III

LARGE-SCALE ATMOSPHERIC
CIRCULATION





That the action of the Sun is the original cause of these Winds, I think
all are agreed.

George Hadley, Concerning the Cause of the General Trade Winds, 1735

CHAPTER 11

The Overturning Circulation: Hadley and
Ferrel Cells

I
N THIS CHAPTER AND THE TWO FOLLOWING we discuss the large-scale, circulation, or the
general circulation, of the atmosphere. In this chapter we focus first on the dynam-
ics of the Hadley Cell and then, rather descriptively, the mid-latitude overturning

cell, the Ferrel Cell. This provides a starting point for our second major topic, a dis-
cussion of the dynamics of the extra-tropical zonally averaged circulation, and this is
presented in chapter 12. Finally, in chapter 13, we explicitly consider the deviations
from zonally symmetry — the stationary wave pattern — and the stratosphere. We will
use many of the tools developed in the previous chapters, but those readers who already
have some acquaintance with GFD may wish to jump directly in here. We preface all
of this with a brief observational overview of some of the large-scale features.

11.1 OBSERVED FEATURES

Here we give only a brief overview of the observed circulation, concentrating on the
zonally-averaged fields.1

11.1.1 The Radiative Equilibrium Distribution

A gross measure characterizing the atmosphere, and the effects that dynamics have on it,
is the pole-to-equator temperature distribution. The radiative equilibrium temperature
distribution is the (three-dimensional) distribution that would obtain if there were no at-
mospheric or oceanic motion, and given the composition and radiative properties of the
atmosphere and surface and this is a function only of the incoming solar radiation at the
top of the atmosphere. To evaluate this temperature entails a complicated calculation,
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Fig. 11.1 (a) The (approximate) observed net average incoming solar
radiation and outgoing infra-red radiation at the top of the atmosphere,
as a function of latitude (plotted on a sine scale). (b) The temperatures
associated with these fluxes, calculated using T D .R=�/1=4, where R is
the solar flux for the radiative equilibrium temperature and R is the infra-
red flux for the effective emitting temperature. Thus, the solid line is an
approximate radiative equilibrium temperature

especially as the radiative properties of the atmosphere depend on the amount of water
vapour and cloudiness in the atmosphere. A much simpler calculation that illustrates
the essence of the situation is to note that at the top of the atmosphere the incoming solar
radiation is balanced by the outgoing infra-red radiation, and to parameterize the latter
by a single temperature. A black body subject to a net incoming radiation of S (Watts
per square meter) has a radiative-equilibrium temperature Trad given by �T 4

rad D S , this
being Stefan’s law with Stefan-Boltzmann constant � D 5:67 � 10�8W m�2 K�4. Thus,
for the earth, we have

�T 4
rad D S.#/.1 � ˛/; (11.1)

where ˛ is the albedo of the earth and S.#/ is the incoming solar radiation at the top
of the atmosphere, and its solution is shown in Fig. 11.1. This solution does not quan-
titatively characterize that temperature at the earth’s surface, nor at any single level in
the atmosphere, because the atmosphere is not a black body and the outgoing radiation
originates from multiple levels. Nevertheless, the qualitative point is evident: the ra-
diative equilibrium temperature has a much stronger pole-to-equator gradient than does
the effective emitting temperature, indicating that that there is a polewards transport
of heat in the atmosphere-ocean system. More detailed calculations indicate that the
atmosphere is further from its radiative equilibrium in winter than summer, indicating
a larger heat transport. The transport occurs (in all seasons) because polewards mov-
ing air and water tends to be at a higher temperature than the equatorwards moving air
and water, and most of this motion is associated with the large-scale circulation. The
radiative forcing thus seeks to maintain a pole-to-equator temperature gradient, and the
ensuing circulation seeks to reduce this gradient.
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11.1.2 Observed wind and temperature fields

The observed zonally-average temperature and zonal wind fields are illustrated in Fig.
11.2. The vertical coordinate is log pressure, multiplied by a constant factor H D

RT0=g D 7:5 km, so that the ordinate is similar to height in kilometers. (In an isother-
mal hydrostatic atmosphere .RT0=g/d ln p D � dz, and the value of H chosen cor-
responds to T0 D 256 K.) To a good approximation temperature and zonal wind are
related by thermal wind balance, which in pressure coordinates is

f
@u

@p
D

R

p

@T

@y
: (11.2)

In the lowest several kilometers of the atmosphere temperature falls almost monotoni-
cally with latitude and height, and this region is called the troposphere. The tempera-
ture in the lower atmosphere varies more rapidly with latitude than does the effective
emitting temperature, TE , the latter being more characteristic of the temperature in the
mid-to-upper troposphere. The meridional temperature gradient is much larger in win-
ter than summer, because in winter high-latitudes receive virtually no direct heating
from the sun. It is also strongest at the edge of the subtropics, and here it is asso-
ciated with a zonal jet, particularly strong in winter. There is no need to ‘drive’ this
thermal wind with convergent momentum fluxes: given the temperature, the flow is a
conseqence of thermal wind balance, and to the extent that the upper troposphere is rel-
atively frictionless there is no need to maintain it against dissipation. Of course just as
the radiative-equilibrium temperature gradient is much larger than that observed, so the
shear associated with it is much larger than that observed. Thus, the overall effect of the
atmospheric and oceanic circulation, and in particular of the turbulent circulation of the
mid-latitude atmosphere, is to reduce the amplitude of the vertical shear of the eastward
flow by way of a polewards heat transport. Observations indicate that about two-thirds
of this transport is effected by the atmosphere, and about a third by the ocean, more in
low latitudes.

Above the troposphere is the stratosphere, and here temperature typically increases
with height. The boundary between the two regions is called the tropopause, and this
varies in height from about 16 km in the tropics to about 8 km in polar regions. We
consider the maintenance of this stratification in section 12.6.

The surface winds are not explained by thermal wind balance. From the equator
to the pole these have a typical E-W-E (easterly-westerly-easterly) pattern, although
the polar easterlies are weak and barely present in the northern hemisphere. In a given
hemisphere, the surface winds are stonger in winter than summer, and they are also
consistently stronger in the Southern Hemisphere than in the Northern Hemisphere,
because in the former the surface friction is weaker because of the relative lack of con-
tinental land masses and topography. The surface winds, unlike upper level winds, must
be maintained against the dissipating effects of friction, and this implies a momentum
convergence, either from eddies or from the mean flow, into regions of nonzero flow.
Typically, the maxima in the eastward surface winds are in midlatitudes and somewhat
poleward of the subtropical maxima in the upper-level westerlies and at latitudes where
the zonal flow is a little more constant with height.
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Fig. 11.2 (a) Annual mean, zonally averaged zonal wind (heavy contours
and shading) and the zonally averaged temperature (lighter contours). (b)
Annual mean, zonally averaged zonal winds at the surface. (c) and (d) Same
as (a) and (b), except for northern hemisphere winter (DJF). The wind con-
tours are at intervals of 5 m s�1 with shading for eastward winds above
20 m s�1 and for all westward winds, and the temperature contours are la-
belled. The ordinate of (a) and (c) is Z D �H log.p=p00/, with scale height
H D 7:5 km.
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Fig. 11.3 The observed, zonally averaged, meridional overturning circula-
tion of the atmosphere, in units of kg/s, averaged over December-January-
February (DJF). In each hemisphere note the presence of a direct Hadley
Cell (HW and HS in winter and summer) with rising motion near the equator,
descending motion in subtropics, and an indirect Ferrel Cell (FW and FS) in
midlatitudes. There are also hints of a weak direct cell at high latitudes.
The winter Hadley Cell is far stronger than the summer one.

11.1.3 Meridional overturning circulation

The observed (Eulerian) zonally-averaged meridional overturning circulation is illus-
trated in Fig. 11.3. The figure shows a streamfunction, 	 for the vertical and meridional
velocities such that, in the pressure coordinates used in the figure,

@	

@y
D !;

@	

@p
D �v: (11.3)

where the overbar indicates a zonal average. In each hemisphere there is rising motion
near the equator and sinking in the subtropics, and this circulation is known as the
Hadley Cell.2 The Hadley Cell is a thermally direct cell (i.e., the warmer fluid rises, the
colder fluid sinks), much stronger in the winter hemisphere, and extending to about 30°.
In mid-latitudes the sense of the overturning circulation is apparently reversed, with
rising motion in the high-mid-latitudes, at around 60° and sinking in the subtropics, and
this is known as the Ferrel Cell. However, as with most pictures of averaged streamlines
in unsteady flow, this gives a misleading impression as to the actual material flow of
parcels of air because of the presence of mid-latitude eddies, and we discuss this in
the next chapter. In low latitudes the circulation is more nearly zonally symmetric
and the picture does give a qualitatively correct representation of the actual flow. At
high latitudes there is again a thermally direct cell, although it is weak and not always
present, and thus the atmosphere is often referred to as having a three-celled structure.
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Features of the Large-scale Atmospheric Circulation

From Figures 11.1 through 11.3 we see or infer:

? A pole-equator temperature gradient that is much smaller than the radiative equi-
librium gradient.

? A troposphere, in which temperature generally falls with height, above which
lies the stratosphere, in which temperature increases with height. The two re-
gions are separated by a tropopause, which varies in height from about 16 km at
the equator to about 6 km at the pole.

? A monotonically decreasing temperature from equator to pole in the tropo-
sphere, but a weakening and sometimes reversal of this above the tropopause.

? A westerly (i.e., eastward) tropospheric jet. The time- and zonally-averaged
jet is a maximum at the edge or just polewards of the subtropics, where it is
associated with a strong meridional temperature gradient. In mid-latitudes the
jet has a stronger barotropic component.

? An E-W-E (easterlies-westerlies-easterlies) surface wind distribution. The lat-
itude of the maximum in the surface westerlies is in mid-latitudes, where the
zonally-averaged flow is more barotropic.

11.1.4 Summary

Some of the main features of the zonally averaged circulation are summarized in the
shaded box above. We emphasize that the zonally-averaged circulation is not synony-
mous with a zonally symmetric circulation, and the midlatitude circulation is highly
asymmetric. On the other hand, the large-scale tropical circulation of the atmosphere is
to a large degree zonally symmetric or nearly so, and although monsoonal circulations
and the Walker circulation are zonally asymmetric these are relatively weaker than mid-
laitude weather systems. Indeed the boundary between the tropics and midlatitude may
be usefully defined by the latitude at which such zonal asymmetries become dynami-
cally important on the large scale and this boundary, at about 30° on average, is quite
sharp. We thus begin our dynamical description with a study of the low latitude zonally
symmetric atmospheric circulation.

11.2 A STEADY MODEL OF THE HADLEY CELL

11.2.1 Assumptions
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Let us try to construct a zonally symmetric model of the Hadley Cell.3 Such a model
is likely applicable mainly to the tropical atmosphere, this being observed to be more
zonally symmetric than the midlatitudes. We will suppose that heating is maximum
at the equator, and our intuitive picture, drawing on the observed flow of Fig. 11.3,
is of air rising at the equator and moving poleward at some height H , descending at
some latitude #H , and returning equatorwards near the surface. We make three major
assumptions about this circulation:

(i) That it is steady.
(ii) That the polewards moving air conserves its axial angular momentum, whereas the

zonal flow associated with the near-surface, equatorwards moving flow is friction-
ally retarded and is weak.

(iii) That it is in thermal wind balance.
We also assume the model is symmetric about the equator (an assumption we relax
in section 11.4). These are all reasonable assumptions, but they cannot be rigorously
justified — in other words, we are constructing a model of the Hadley Cell, schemat-
ically illustrated in Fig. 11.4. The model defines a limiting case — steady, invisicid
flow — that cannot be expected to quantitatively describe the atmosphere, but that can
be analysed fairly completely. Another limiting case is described in section 11.5. The
real atmosphere may defy such simple characterizations, but they provide in invaluable
benchmark of understanding.

11.2.2 Dynamics

We seek, then, to determine the strength and poleward extent of the Hadley circulation
in the steady model. For simplicity we will work with a Boussinesq atmosphere, but this
is not an essential aspect. Neglecting friction, the zonally-averaged zonal momentum
equation is

@u

@t
� .f C �/v C w

@u

@z
D �

1

cos2 #

@

@#
.cos2 #u0v0/ �

@u0w0

@z
: (11.4)

where � D �.a cos#/�1@y.u cos#/. If we neglect the vertical advection and the eddy
terms on the right-hand-side, then a steady solution, if it exists, obeys

.f C �/v D 0: (11.5)

Presuming that the meridional flow v is nonzero (an issue we address in section 11.2.6)
then f C � D 0, or equivalently

2˝ sin# D
1

a

@u

@#
�

u tan#
a

: (11.6)

At the equator we shall assume that u D 0, because here parcels have risen from the
surface where, by assumption, the flow is weak. Eq. (11.6) then has a solution of

u D ˝a
sin2 #

cos#
� UM : (11.7)



482 Chapter 11. The Overturning Circulation: Hadley and Ferrel Cells

 

           

     Angular momentum conserving flow   

Equator                                                 Subtropics            Latitude 

Warm
ascent

Cool
descent

Tropopause

Frictional return flow

Weak zonal flow at surfaceGround

Large zonal flow aloft

Fig. 11.4 A simple model of the Hadley Cell. Rising air near the equa-
tor moves polewards near the tropopause, descending in the subtropics
and returning near the surface. The polewards moving air conserves its
axial angular momentum, leading to a zonal flow that increases away from
the equator. By the thermal wind relation the temperature of the air falls,
slowly, as it moves poleward, and to satisfy the thermodynamic budget it
sinks in the subtropics, so defining the polewards edge of the cell. The
return flow at the surface is frictionally retarded and small.

This gives the zonal velocity of the polewards moving air in the upper branch of the
(model) Hadley Cell, above the frictional boundary layer.

We can derive this result directly from the conservation of axial angular mometum,
m, of a parcel of air at a latitude # . In the shallow atmosphere approximation we have
[c.f., (2.65) and equations following]

m D .u C˝a cos#/a cos#; (11.8)

and if u D 0 at # D 0 and if m is conserved on a polewards moving parcel, then (11.8)
leads to (11.7). It also may be directly checked that

.f C �/ D �
1

a2 cos#
@m

@#
(11.9)

Thus, if eddy fluxes and frictional effects are negligible, the polewards flow will con-
serve its angular momentum, and the zonal flow in the earth’s rotating frame increases
with latitude (see Fig. 11.5). If we do assume this, our model is zonally symmetric and
we drop the overbars over the variables.

If (11.7) gives the zonal velocity in the upper branch of the Hadley Cell, and that
in the lower branch is close to zero, then the thermal wind equation can be used to
infer the vertically averaged temperature. Although the geostrophic wind relation is
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Axis of rotation

Figure 11.5 If a ring of air at the equa-
tor moves polewards it moves closer to
the axis of rotation. If the parcels in
the ring conserve their angular momentum
their zonal velocity must increase; thus, if
m D .uC˝a cos#/a cos# is preserved and
u D 0 at # D 0 we recover (11.7).

not valid at the equator (a more accurate balance is the so-called cyclostrophic balance,
f u C u2 tan#=a D �a�1@�=@# ) the zonal wind is in fact geostrophically balanced
until very close to the equator, and at the equator itself the horizontal temperature gra-
dient in our model vanishes, because of the assumed interhemispheric symmetry. Thus,
conventional thermal wind balance suffices for our purposes, and this is

2˝ sin#
@u

@z
D �

1

a

@b

@#
(11.10)

where b D gı�=�0 is the buoyancy and ı� is the deviation of potential temperature
from a constant reference value �0. Vertically integrating from the ground to the height
H where the outflow occurs, and substituting (11.7) for u yields

1

a�0

@�

@#
D

2˝2a

H

sin3 #

cos#
; (11.11)

where � D H �1
RH

0
ı� dz is the vertically averaged potential temperature. If the lati-

tudinal extent of the Hadley Cell is not too great we can make the small-angle approxi-
mation, and replace sin# by # and cos# by one, then integrating (11.11) gives

� D �.0/ �
�0˝

2y4

2gHa2
: (11.12)

where y D a# and �.0/ is the potential temperature at the equator, as yet unknown.
Away from the equator, the zonal velocity given by (11.7) increases rapidly polewards
and the temperature correspondingly drops. How far poleward is this solution valid?
And what determines the value of the integration constant �.0/? To answer these ques-
tions we turn to thermodynamics.
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Thermodynamics

In the above discussion, the temperature field is slaved to the momentum field in that it
seems to follow passively from the dynamics of the momentum equation. Nevertheless,
the thermodynamic equation must still be satisfied. Let us assume that the thermody-
namic forcing can be represented by a Newtonian cooling to some specified radiative
equilibrium temperature, �E ; this is a severe simplification, especially in equatorial
regions where the release of heat by condensation is important. The thermodynamic
equation is then

D�
Dt

D
�E � �

�
; (11.13)

where � is a relaxation timescale, perhaps a few weeks. Let us suppose that �E falls
monotonically from the equator to the pole, and that it increases linearly with height,
and a simple representation of this is

�E.#; z/

�0

D 1 �
2

3
�H P2.sin#/C�V

�
z

H
�

1

2

�
; (11.14)

where �H and �V are nondimensional constants that determine the fractional tem-
perature difference between equator and pole, and the ground and the top of the fluid,
respectively. P2 is the second Legendre polynomial, and it is usually the leading term
in the Taylor expansion of symmmetric functions (symmetric around the equator) that
decrease from pole to equator; it also integrates to zero over the sphere. P2.y/ D

.3y2 � 1/=2, so that in the small angle approximation and at z D H=2, or for the
vertically averaged field, we have

�E

�0

D 1 C
1

3
�H ��H

�y

a

�2
(11.15)

or

�E D �E0 ���
�y

a

�2
; (11.16)

where �E0 is the equilibrium temperature at the equator, �� determines the equator-
pole radiative-equilibrium temperature difference, and

�E0 D �0.1 C�H =3/; �� D �0�H : (11.17)

Now, let us suppose that the solution (11.12) is valid between the equator and a
latitude #H where v D 0, so that within this region the system is essentially closed.
Conservation of potential temperature then requires that the solution (11.12) must sat-
isfy Z YH

0

� dy D

Z YH

0

�E dy; (11.18)

where YH D a#H is as yet undetermined. Poleward of this, the solution is just � D �E ,
and

Furthermore, we may demand that the solution be continuous at y D YH — without
temperature continuity the thermal wind would be infinite — and so

�.YH / D �E.YH /: (11.19)
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The constraints (11.18) and (11.19) determine the values of the unknowns �.0/ and YH .
A little algebra (excercise 11.1) gives

YH D

�
5��gH

3˝2�0

�1=2

; (11.20)

and

�.0/ D �E0 �

�
5��2gH

18a2˝2�0

�
: (11.21)

A useful nondimensional number that parameterizes these solutions is

R �
gH��

�0˝2a2
D

gH�H

˝2a2
; (11.22)

which is the the square of the ratio of of the speed of shallow water waves to the ro-
tational velocity of the earth, multiplied by the fractional temperature difference from
equator to pole. In terms of this we have

YH D a

�
5

3
R

�1=2

; (11.23)

and

�.0/ D �E0 �

�
5

18
R

�
�� : (11.24)

The solutions are plotted in Fig. 11.6 and Fig. 11.7. Perhaps the single most important
aspect of the model is that it predicts that the Hadley Cell has a finite meridional extent,
even for an atmosphere that is completely zonally symmetric. The baroclinic instability
that does occur in midlatitudes is not necessary for the Hadley Cell to terminate in
the subtropics, although it may be an important factor, or even the determining factor,
in the real world. More specifically, the model predicts the the latitudinal extent of
the Hadley cell is: (i) proportional to the square root of the meridional temperature
gradient; (ii) proportional to the square root of the height of the outward flowing branch;
(iii) inversely proportional to the rotation rate ˝.

Zonal wind

The angular momentum conserving zonal wind is given by (11.7), which in the small
angle approximation becomes

UM D ˝
y2

a
: (11.25)

This holds for y < YH . The zonal wind corresponding to the radiative-equilibrium
solution is given using thermal wind balance and (11.16), which leads to

uE D ˝aR: (11.26)
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Fig. 11.6 The radiative equilibrium temperature (�E , dashed line) and
the angular-momentum-conserving solution (�M , solid line) as a function
of latitude. The two dotted regions have equal areas. The parameters cho-
sen which give the solution here are: �EO D 303 K; �� D 50 K; �0 D

300 K; ˝ D 7:272 � 10�5 s�1; g D 9:81 m s�2; H D 10 km. These give
values of R D 0:076 and YH =a D 0:356, with a corresponding latitude for
the edge of the Hadley Cell of 20.4°.

That the radiative equilibrium zonal wind is a constant follows from our choice of the
second Legendre function for the radiative equilibrium temperature and is not a funda-
mental result; nonetheless, for most reasonable choices of �E the corresponding zonal
wind will vary much less than the angular momentum conserving wind (11.25). The
winds are illustrated in Fig. 11.7. There is a discontinuity in the zonal wind at the edge
of the Hadley Cell, and of the meridional temperature gradient, but not of the tempera-
ture itself.

11.2.3 Properties of solution

We can see that the model predicts that the latitudinal extent of the Hadley Cell is:

? Proportional to the square root of the meridional radiative equilibrium tempera-
ture gradient — the stronger the gradient, the farther the circulation must extend
to achieve thermodynamic balance via the equal area construction in Fig. 11.6;

? Proportional to the square root of the height of the outward flowing branch —
the higher the outward flowing branch, the weaker the ensuing temperature gra-
dient of the solution (via thermal wind balance), and so the further polewards
the circulation must go;



11.2 A Steady Model of the Hadley Cell 487

0 10 20 30
0

25

50

75

100

Latitude

Z
on

al
 V

el
oc

ity

U
M

 

U
E

 

Fig. 11.7 The zonal wind corresponding to the radiative equilibrium
temperature (uE) and the angular-momentum-conserving solution (uM) as
a function of latitude, using (11.25) and (11.26). The parameters are the
same as those of Fig. 11.6. The radiative equilibrium wind is a constant,
˝aR, which for these parameters is about 35 m s�1. The actual zonal wind
(in the model) follows the thick solid line: for # < #H .y < YH /, the angu-
lar momentum solution holds, but the radiative equilibrium solution holds
for # > #H , with a discontinuity at #H .

? Inversely proportional to the rotation rate ˝ — the stronger the rotation rate,
the stronger the angular momentum conserving wind, the stronger the ensuing
temperature gradient and so the more compact the circulation.

These precise dependencies on particular powers of parameters are not especially im-
portant, nor robust. For example, had we chosen a meridional distribution of radiative
equilibrium temperature different from (11.14) we would find different powers, but nev-
ertheless the qualitative dependencies would remain. With reasonable parameters, the
predicted extent of the Hadley Cell is indeed comparable with the observations.

Furthermore, for tropical latitudes (i.e., y < YH ), then u D UM , the constant
angular momentum solution, whereas for y > YH , u D UE , the radiative equilibrium
temperature (discussed below) and � D �E . There is thus a discontinuity of u at y D

YH , because u is related to the meridional gradient of � which changes discontinuously,
but � itself is continuous. Such a discontinuity is likely to to be barotropically unstable,
and so produce eddying motion and a momentum transport that tries to smooth the
discontinuity.

11.2.4 Strength of the circulation
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We can make an estimate of the strength of the Hadley Cell by consideration of the
thermodynamic equation at the equator, namely

w
@�

@z
�
�E0 � �

�
; (11.27)

a balance between adiabatic cooling and radiative heating. If the static stability is de-
termined largely by the forcing, and not by the meridional circulation itself, then

1

�0

@�

@z
�
�V

H
: (11.28)

and so

w �
H

�0�V

�E0 � �

�
: (11.29)

Thus, the circulation is proportional to the distance of the solution from the radiative
equilibrium temperature. The right-hand side of (11.27) can be evaluated from the
solution itself, and from (11.24) we have

�E0 � �

�
D

5R��

18�
: (11.30)

The vertical velocity is then given by

w �
R��H

��V �0

D
R�H H

��V

: (11.31)

Using mass continuity we can transform this into an estimate for the meridional veloc-
ity. Thus, if we let

v

YH

�
w

H
(11.32)

and use (11.23), we obtain

v �
R3=2a�H

��V

/
�

5=2
H

�V

; (11.33)

and the mass flux, or the meridional overturning stream function 	 , of the circulation
scales as

	 � vH �
R3=2aH�H

��V

/ .��/5=2: (11.34)

This evidently increases fairly rapidly as the gradient of the radiative equilibrium tem-
perature increases. The characteristic overturning time of the circulation, �d is then

�d D
H

w
�
��V

R�H

: (11.35)

We require �d=� � 1 for the effects of the circulation on the static stability to be small
and therefore �V =�H � 1, or equivalently, using (11.27).

�0�V � .�E � �/: (11.36)

If the converse were true, and � � �d , then potential temperature would be nearly
conserved as a parcel ascended in the rising branch of the Hadley Cell, and the static
stability would be nearly neutral.
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11.2.5 Effects of moisture

Suppose now that moisture is present, but that the Hadley Cell remains a self-contained
system — that is, it neither imports nor exports moisture. We envision that water vapour
joins the circulation by way of evaporation from a saturated surface into the equator-
ward, lower branch of the Hadley cell, and that this water vapour then condenses in and
near the upward branch of the cell. The latent heat released by condensation is exactly
equal to the heat required to evaporate moisture from the surface, and no heat is lost or
gained to the system. However, the heating distribution is changed from the dry case,
becoming a strong function of the solution itself and likely with a sharp maximum near
the equator. Even if we were to try to parameterize this by simply choosing a flow
dependent radiative equilibrium temperature, the resulting problem would still be quite
nonlinear and a general analytic solution seems out of our reach.4

Nevertheless, we may see quite easily the qualitative features of moisture, at least
within the context of this model. The meridional distribution of temperature is still given
by way of thermal wind balance with an angular momentum conserving zonal wind,
and so is still given by (11.12). We may assume that a solution exists with circulation
confined to # < #H , that is that the extent of the Hadley Cell is unaltered (although
it may not be the unique solution). Then, if ��

E
is the effective radiative equilibrium

temperature of the moist solution, we have that ��
E
.YH / D �E.YH / and, in the small

angle approximation, Z YH

0

� dy D

Z YH

0

��
E dy D

Z YH

0

�E dy (11.37)

where the first equality holds because it defines the solution, and the second equality
holds because moisture provides no net energy source. Because condensation will oc-
cur mainly in the upward branch of the Hadley Cell, ��

E
will be peaked near the equator,

as schematically sketched in Fig. 11.8. This construction makes it clear that the main
difference between the dry and moist solutions is that the latter has a much more intense
overturning circulation, because, from (11.27), this increases with the temperature dif-
ference between the solution and the forcing temperature. Concomitantly, the upward
branch of the moist Hadley circulation will become much narrower and more intense
than the downward branch, and these expectations are confirmed by numerical integra-
tions of the three-dimensional moist equations of motion.

11.2.6 The radiative equilibrium solution

Instead of a solution given by (11.12), could be temperature not be simply be radiative
equilibrium temperature everywhere? Such a state would have no meridional overturn-
ing circulation and the zonal velocity would be determined by thermal wind balance;
that is

v D 0; � D �E ; f
u

H
D �g

@

@y

�
�E

�0

�
: (11.38)

To answer this question we consider the steady zonally-symmetric zonal angular mo-
mentum equation with viscosity; that is, the zonally-averaged, viscous, steady, shallow
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Fig. 11.8 Schematic of the effects of moisture on a model of Hadley cell.
The temperature of the solution (solid line) is the same as that of a dry
model, because this is determined from the angular momentum conserving
wind. The heating distribution (as parameterized by a forcing temperature)
is peaked near the equator in the moist case, leading to a more vigorous
overturning circulation.

atmosphere version of (2.69), namely

1

a cos#
@

@#
.vm cos#/C

@.mw/

@z
D �r

2m; (11.39)

or, in a compact notation,
rx � .vm/ D �r

2
xm; (11.40)

where the variables vary only in the #-z, or y-z, plane. Now, in section 10.5.1 we
showed that equations of this form can have no extrema of the advected variable within
the fluid, m in this case. Thus, there can be no maximum or minimum of angular
momentum in the interior of the fluid.5 In effect, diffusion always acts to smooth away
an isolated extremum, and this cannot be counterbalanced by advection. The result also
implies that there cannot be any interior extrema in a statistically steady state if there is
any zonally asymmetric eddy motion that transports angular momentum downgradient.

As an aside, we note that maxima of m can, however, occur at the surface. Suppose
we add a surface stress to the right-hand side of (11.40), and that this stress acts in the
opposite direction to that of the zonal wind. Then, in a region of surface easterlies the
surface stress contribution would be positive, acting as a source of postive angular mo-
mentum, and there exists the possibility that this will exactly balance the diffusion term
away from the surface so that the right-hand side of (11.40) would be zero surrounding
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the maximum. However, such a surface stress does not allow this maximum to be a re-
gion of surface westerlies at the equator, because the stress would then act in the same
way as the diffusion and act to reduce the angular momentum.

Now, returning to the question posed at the head of this section, suppose that the
radiative equilibrium solution does hold. Then a radiative equilibrium temperature de-
creasing away from the equator more rapidly than the angular momentum conserving
solution �M implies, using thermal wind balance, a maximum of m at the equator and
above ther surface, in violation of the no-extremum principle. Of course, we have de-
rived the angular momentum conserving solution in the inviscid limit, in which the
principle does not apply. But any small viscosity will make the radiative equilibrium
solution completely invalid, but have only a small effect on the angular momentum
conserving solution; that is, in the limit of small viscosity the angular momentum con-
serving solution can still approximately hold, whereas the radiative equilibrium solution
cannot.

However, if the radiative equilibrium temperature varies more slowly with latitude
than the temperature corresponding to the angular momentum conserving solution then
a radiative equilibrium solution can pertain, without violating Hide’s theorem. In par-
ticular, this is the case if �E / P4.sin#/, where P4 is the fourth Legendre polynomial,
and so the possibility exists of two equilibrium solutions for the same forcing. However,
P4 is an unrealistically flat radiative equilibrium temperature for the earth’s atmosphere.

11.3 A SHALLOW WATER MODEL OF THE HADLEY CELL

Although expressed in the notation of the primitive equations, the model described
above takes no account of any vertical structure in its stratification and is, de facto, a
shallow water model. Furthermore, the geometric aspects of sphericity play no essential
role. Thus, we may transparently express the essence of the model by:

(i) Explicitly using the shallow water equations instead of the stratified equations;
(ii) Using the ˇ-plane instead of spherical coordinates.

Let us therefore construct a ‘reduced-gravity’ model with an active upper layer overly-
ing a stationary lower layer.

11.3.1 Momentum balance

The inviscid zonal momentum equation of the upper layer is

Du

Dt
� ˇyv D 0 (11.41)

or
D
Dt

�
u �

ˇy2

2

�
D 0: (11.42)

which is the ˇ-plane analog of the conservation of axial angular momentum. (In this
section, all variables are zonally averaged, but we omit any explicit notation denoting
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this.) From (11.42) we obtain the zonal wind as a function of latitude,

u D
1

2
ˇy2

C A: (11.43)

where A is a constant, which is zero if u D 0 at the ‘equator’, y D 0. The flow given
by (11.43) is then analogous to the angular momentum conserving flow in the spherical
model, (11.7). Because the lower layer is stationary, the analog of thermal wind balance
in the stratified model is just geostrophic balance, namely

f u D �g0 @h

@y
; (11.44)

where h is the thickness of the active upper layer. Using (11.44) and f D ˇy we obtain

g0 @h

@y
D �

1

2
ˇ2y3 (11.45)

giving

h D �
1

8g0
ˇ2y4

C h.0/ (11.46)

where h.0/ is the value of h at y D 0.

11.3.2 Thermodynamic Balance

The thermodynamic equation in the shallow water equations is just the mass conserva-
tion equation, which we write as

Dh

Dt
D �

1

�
.h � h�/; (11.47)

where the right-hand side represents heating — h� is the field to which the height re-
laxes on a timescale � . For illustrative purposes we will choose

h�
D h0.1 � ˛jyj/: (11.48)

(If we chose the more realistic quadratic dependence on y, the model would be more
similar to that of the previous section.) To be in thermodynamic equilibrium we require
that the right-hand side integrates to zero over the Hadley Cell; that isZ Y

0

.h � h�/ dy D 0 (11.49)

where Y is the latitude of the poleward extent of the Hadley Cell, thus far unknown.
Poleward of this, the height field is simply in equilibrium with the forcing — there is no
meridional motion and h D h�. Since the height field must be continuous, we require
that

h.Y / D h�.Y /: (11.50)
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The two constraints (11.49) and (11.50) provide values of the unknowns h.0/ and Y ,
and give

Y D

�
5h0˛g0

ˇ2

�1=3

; (11.51)

which is analogous to (11.20), and an expression for h.0/ that we leave as a problem
for the reader. The qualitative dependence on the parameters is similar to that of the
full model, although the latitudinal extent of the Hadley Cell is proportional to the cube
root of the meridional thickness gradient ˛.

11.4 † ASYMMETRY AROUND THE EQUATOR

The sun is overhead at the equator but two days out of the year, and in this section
we investigate the effects that asymmetric heating has on the Hadley circulation. Ob-
servations indicate except for the brief periods around the equinoxes, the circulation is
dominated by single cell with rising motion centered in the summer hemisphere, but
extending well into the winter hemisphere. That is, as seen in Fig. 11.3, the ‘winter
cell’ is broader and stronger than the ‘summer cell’, and it behooves us to try to explain
this. We will stay in the framework of the inviscid angular-momentum model of section
11.2, changing only the forcing field to represent the asymmetry and being a little more
attentive to the details of spherical geometry.6

To represent an asymmetric heating we may choose a radiative equilibrium temper-
ature of the form

�E.#; z/

�0

D1 �
2

3
�H P2.sin# � sin#0/C�V

�
z

H
�

1

2

�
D1 C

�H

3

h
1 � 3.sin# � sin#0/

2
i

C�V

�
z

H
�

1

2

�
:

(11.52)

This is similar to (11.14), but now the forcing temperature falls monotonically from
a specfied latitude #0. If #0 D 0 the model is identical to the earlier one but if not
then w we might then envision a circulation as qualitatively sketched in Fig. 11.9, with
rising motion off the equator at some latitude #1, extending into the winter hemisphere
to a latitude #w , and into the summer hemisphere to #s . It turns out that, in general,
#1 ¤ #0 except when #0 D 0, as we will discover. Following our previous procedure
as closely as possible, we then make the following assumptions:

(i) The flow is quasi-steady. That is, for any given time of year the flow adjusts to
a steady circulation on a timescale more rapid than that on which the solar zenith
angle appreciably changes. Then, even though the forcing is time-dependent, we
neglect local time derivatives in the momentum and thermodynamic equations.

(ii) The flows in the upper branches conserve angular momentum, m. Further assum-
ing that u D 0 at # D #1 so that m D ˝a2 cos2 #1 we obtain

u.#/ D
˝a.cos2 #1 � cos2 #/

cos#
: (11.53)
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Fig. 11.9 Schematic of a Hadley circulation model when the heating is
centered off the equator, at a latitude #0. The lower level convergence
occurs at a latitude #1 not in general equal to #0. The resulting winter
Hadley Cell is stronger and wider than the summer cell.

Thus, we expect to see westward (negative) winds aloft at the equator. In the lower
branches the zonal flow is assumed to be approximately zero, i.e., u.0/ � 0.

(iii) The flow satisfies cyclostrophic and hydrostatic balance. Cyclostrophic balance is

f u C
u2 tan#

a
D �

1

a

@�

@#
(11.54)

and because the flow crosses the equator we cannot neglect the second term on the
left-hand side. Combining this with hydrostatic balance (@�=@z D g�=�0) leads
to a generalized thermal wind balance, which may be written as

m
@m

@z
D �

ga2 cos2 #

2�0 tan#
@ı�

@#
(11.55)

If the undifferentiated m is approximated by ˝a2 cos2 # , this reduces to conven-
tional thermal wind balance, (11.10). The form of (11.55) is useful because we
are assuming that m is conserved, and so from it we can immediately infer the
temperature distribution.

(iv) Potential temperature in each cell is conserved when integrated over the extent of
the cell. Thus,Z #s

#1

.� � �E/ cos# d# D 0;

Z #w

#1

.� � �E/ cos# d# D 0; (11.56)
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for the summer and winter cells, respectively, where � is the vertically averaged
potential temperature.

(v) Potential temperature is continuous at the edge of each cell, so that

�.#s/ D �E.#s/; �.#w/ D �E.#w/; (11.57)

and is also continuous at #1. This last condition must be explicitly imposed in the
asymmetric model, whereas in the symmetric model it holds by symmetry. Now,
recall from the symmetric model that the value of the temperature at the equator
was determined by the integral constraint (11.18) and the continuity constraint
(11.19). We have analogs of these in each hemisphere [(11.56) and (11.57)] and
thus, if #1 is set equal to #0 we cannot expect that they each would give the same
temperature at #0. Thus. #1 must be a free parameter to be determined.

Given these assumptions, the solution may be calculated. Using thermal wind bal-
ance, (11.55), with m.H / D ˝a2 cos2 #1 and m.0/ D ˝a2 cos2 #1 we find

@�

@#
D
˝2a2

gH

�
sin#

cos3 #
cos4 #1 � sin# cos#

�
(11.58)

which integrates to

�.#/ � �.#1/ D
˝2a2

2gH

.sin2 # � sin2 #1/
2

cos2 #
: (11.59)

The value of #1, and the value of �.#1/, are determined by the constraints (11.56) and
(11.57). It is not in general possible to obtain a solution analytically, but one may be
found numerically by an iterative procedure and one such is illustrated in Fig. 11.10.
The zonal wind is of the solution is always symmetric around the equator, because it
is determined solely by angular momentum conservation, and so, therefore, is temper-
ature — as (11.59) explictly shows. However, the width of the solution in each hemi-
sphere will, in general, be different. Furthermore, because the strength of the circula-
tion increases with difference between the temperature of the solution and the radiative
equilibrium temperature, the circulation in the winter hemisphere will also be much
stronger than that in the summer (Fig. 11.3), a prediction that is qualitatively consistent
with the observations. More detailed calculations show that, because the strength of
the model Hadley cell increases nonlinearly with #0, the time-average strength of the
Hadley Cell with seasonal forcing is stronger that that produced by annually-averaged
forcing. However, this does not appear to be a feature of either the observations or more
complete complete numerical simulations, suggesting that an angular-momentum con-
serving model has, at least, quantitative deficiences.8 Possible weaknesses of the model
include:

(i) The quasi-steady assumption in the presence of a seasonal cyle. Because the lati-
tude of the upward branch of the Hadley Cell is varying with season, the value of
the angular momentum entering the system also varies, and so a homogenized
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Fig. 11.10 Solutions of the Hadley Cell model with heating centered at
the equator (#0 D 0°, top) and off the equator (#0 D C6° N, bottom), with
�H D 1=6. Dashed line is the radiative equilibrium temperature, and the
solid line the angular-momentum conserving solution. In the lower panel,
#1 � C18°, and the circulation is dominated by the cell extending from
C18° to �36°.7

value of angular momentum is hard to achieve. That is, if �s is the seasonal
timescale we require

�s � �e; (11.60)

where �e is some dynamical equilibration timescale, similar to the dynamical time-
scale �d D H=w (section 11.2.4).

(ii) The lack of consideration of zonal asymmetries, such as monsoonal circulations.

(iii) The lack of angular momentum conservation, even in a steady model with zonally
symmetric boundary conditions. Such nonconservation will arise if either diffu-
sion of momentum caused by small-scale turbulence, or the angular momentum
transport by baroclinic eddies, are significant.
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11.5 EDDIES, VISCOSITY AND THE HADLEY CELL

So far, we have ignored the effects of baroclinic eddies on the Hadley circulation —
‘ignored’ rather than ‘neglected’, because we have no a priori or observational reason
to believe that their effects will be negligible. If their effects are strong, then none
of the models we discussed above will be quantitatively valid. With this in mind, in
this section we look at the Hadley circulation from a quite different perspective, by
supposing that the zonal momentum equation is linear, save for the effects of eddy
fluxes on the right-hand side. Our approach is illustrative, not quantitative, and we stay
again within the Boussinesq approximation.

We might expect eddy fluxes to be important because the angular momentum con-
serving solution will develop a large vertical shear and if this extends sufficiently far
polewards it will become baroclinically unstable (compare Fig. 11.7 with the mininum
shear needed for baroclinic instability sketched in Fig. 6.16). It is a quantitative issue as
to whether the Hadley flow becomes strongly unstable before it reaches its polewards
extent, and if it does not the angular momentum conserving solution can be expected to
be a good one. But let us here assume that the flow is strongly unstable and that the en-
suing instability transfers both heat and angular momentum polewards (the mechanisms
of this are discussed in the next chapter).

11.5.1 Qualitative considerations

The zonally-averaged zonal momentum equation (11.4) may be written (restoring the
overbar on zonally averaged quantities) as an equation for angular momentum, m,

@m

@t
C

1

cos#
@

@y
.vm cos#/C

@

@z
.wm/

D �
1

cos#
@

@y
.u0v0a cos2 #/ �

@

@z
.u0w0a cos#/:

(11.61)

where m D .u C˝a cos#/a cos# , y D a# , and the vertical and meridional velocities
are related by the mass continuity relation

1

cos#
@

@y
.v cos#/C

@w

@z
D 0: (11.62)

(See section 2.2.) In the angular momentum conserving model the eddy fluxes were
neglected and (11.61) was approximated by the simple expression @m=@y D 0. The
observed values of these eddy terms on the right-hand side are shown in Fig. 11.11.
The eddy momentum flux is polewards over most of the midltatitudes in both summer
and winter and, although it has a maximum value between 30° and 45°, depending on
hemisphere and season, its magnitude, and more particularly its meridional gradient,
are not obviously negligible. Neglecting vertical advection and vertical eddy fluxes,
(11.61) may be written

@m

@t
C v

@m

@y
D �

1

cos#
@

@y
.u0v0a cos2 #/: (11.63)
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Fig. 11.11 (a) The average meridional eddy heat flux and (b) and the
eddy momentum flux in northern hemisphere winter (DJF). The ordinate is
Z D �H log.p=p00/, with scale height H D 7:5 km. Positive (northward)
fluxes are shaded in both cases, and the dashed line marks the thermal
tropopause. The eddy heat flux (contour interval 2 K m s�1) is largely pole-
wards, and down the temperature gradient, in both hemispheres. The eddy
momentum flux (contour interval 10 m2 s�2) converges in midlatitudes in
the region of the mean jet, and must be upgradient there.9

Thus, if v > 0 (as in the upper branch of the Northern Hemisphere Hadley Cell) and
the flow is steady, the eddy fluxes are such as to cause the angular momentum of the
zonal flow to decrease as it moves polewards, and the zonal velocity would be lower
than it would be in the absence of eddies. (In the Southern Hemisphere the signs of v
and the eddy momentum flux are reversed, but the dynamics are equivalent.) Note that
we cannot a priori determine whether eddies are likely to be important by comparing
the magnitudes of the eddy terms with the terms on the left-hand side of (11.63) in
the angular momentum conserving solution, because in that solution these terms are
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individually zero. Rather, we should compare the eddy fluxes to v@m�=@y , where
m� D ˝a2 cos# is the angular momentum of the solid earth.

The eddy flux of heat will also affect the Hadley Cell, although in a different fash-
ion. We see from Fig. 11.11 that the eddy flux of temperature is predominantly pole-
wards, and therefore that eddies export heat from the subtropics to higher latitudes.
Now, the zonally averaged thermodynamic equation may be written

@b

@t
C

1

cos#
@

@y
.vb cos#/C

@

@z
.wb/

D �
1

cos#
@

@y
.v0b0 cos#/ �

@

@z
.w0b0/C QŒb�:

(11.64)

where QŒb� represents the heating. On vertical averaging the vertical advection terms
vanish and the resulting equation is the thermodynamic equation implicitly used in the
angular momentum conserving model, with the addition of the merfional eddy flux
on the right-hand side. If this is taken as given, then a diverging eddy heat flux in
the subtropics (as in Fig. 11.11) is equivalent to increasing the meridional gradient of
the radiative equilibrium temperature, and therefore will increase the intensity of the
overturning circulation.

11.5.2 A simple eddy-driven model

Consider now the extreme case of an ‘eddy-driven’ Hadley Cell. (The driving for the
Hadley Cell, and the atmospheric circulation in general, ultimately comes from the
differential heating between equator and pole. Recognizing this, ‘eddy driving’ is a
convenient way to refer to the mediating role of eddies in producing a zonally-averaged
circulation.) The model is over-simple, but revealing. The zonally-averaged zonal mo-
mentum equation (11.4) may be written as

@u

@t
� .f C �/v D �

1

cos2 #

@

@#
.cos2 #u0v0/: (11.65)

If the Rossby number is sufficiently low this becomes simply

@u

@t
� f v D M (11.66)

where M represents the eddy terms. This approximation is not quantitatively accurate
(indeed earlier we assumed f C � D 0!) but it will highlight the role of the eddies. At
a similar level of approximation let us write the thermodynamic equation, (11.64), as

@b

@t
C N 2w D J (11.67)

where J D QŒb� � .cos#/�1@y.v
0b0 cos#/ represents the diabatic terms and eddy

forcing. We are assuming, as in quasi-geostrophic theory, that the mean stratification,
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N 2 is fixed, and now b represents only the (zonally-averaged) deviations from this. If
we simplify further by using Cartesian geometry then the mass conservation is

@v

@y
C
@w

@z
D 0: (11.68)

and we may define a meridional streamfunction 	 such that

w D
@	

@y
; v D �

@	

@z
(11.69)

We may then use the thermal wind relation,

f
@u

@z
D �

@b

@y
: (11.70)

to eliminate time-derivatives in (11.66) and (11.67), giving

f 2 @
2	

@z2
C N 2 @

2	

@y2
D f

@M

@z
C
@J

@y
: (11.71)

This is a linear equation for the overturning streamfunction, one that holds even if the
flow is not in a steady state, and we see that the overturning circulation is forced by eddy
fluxes of heat and momentum, as well as heating and other terms that might appear
on the right-hand sides of (11.66) and (11.67). If we rescale the vertical coordinate
by the Prandtl ratio (i.e., let z D z0f=N ) then (11.71) is a Poisson equation for the
streamfunction. A few other germane points are:

(i) The horizontal gradient of the thermodynamic forcing partially drives the circula-
tion. In low latitudes, both the heating term and the horiontal eddy flux divergence
act in the same sense. An overturning circulation that is forced by diabatic terms,
and so with warm fluid rising and cold fluid sinking, is called a ‘direct cell’.

(ii) The vertical gradient of the horizontal eddy momentum divergence also partially
drives the circulation, and from Fig. 11.11 it is clear these fluxes will intensify the
circulation. That is, the same terms that cause angular momentum nonconserva-
tion act to strengthen the overturning circulation. This balance is reflected in the
momentum equation — the Coriolis term f v is balanced by the eddy momentum
flux convergence.

(iii) If M contains frictional terms, such as �@2u=@z2, then these may also act to
strengthen the meridional circulation.

(iv) If N is small, then the circulation will become stronger if the other terms remain
the same. Thus, for example, in a dry atmosphere with a lapse rate close to zero
the dry adiabatic lapse rate may have a stronger overturning circulation, because
the air can circulate without transporting any heat.
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We can generalise (11.71) somewhat by replacing (11.66) by (11.63),

@m

@t
C v

@m

@y
D M (11.72)

Then, using thermal wind equation in the form

f

a cos#
@m

@z
D �

@b

@y
: (11.73)

an equation very similar to (11.71) may be derived. However, the coefficients on the
left-hand side are functions of the solution, and f 2@2	=@z2 is replaced by a term like
f @m=@y@2	=@z2. Then, to the extent that @m=@y < f and the other terms are the
same, the overturning will be stronger than that given using (11.71).10

11.5.3 Summary

We have presented two models for the Hadley Cell: (i) An angular momentum con-
serving model and (ii) A largely eddy-driven model. These are the opposite extremes,
and both are severe approximations to a more complete representation of the Hadley
Cell comprising the zonal momentum equation (11.61), the thermodynamic equation
(11.64), and thermal wind balance. In reality, both the conservation of angular momen-
tum and eddy fluxes play a role, and delineating the importance of their respective roles
is a task that must be guided by observations and numerical simulations. Illustrative
results from two idealized GCM experiments are shown in Fig. 11.12 and Fig. 11.13.
The GCM has no explicit representation of moisture, except that the lapse rate is ad-
justed to a value close to the moist adiabatic lapse rate if exceeds that value. In one
experiment the model is constrained to produce an axi-symmetric solution (top panels
of the figures), and the zonal wind produced by the model in the Hadley Cell outflow is
fairly close to being angular momentum conserving. (The lack of perfect angular mo-
mentum conservation may be due to a stress at the upper boundary, which is neglected
in the analytic model, and the strength of the Hadley Cell is also more dependent on
viscosity than the simple model would suggest.) In a three-dimensional version of the
model, in which baroclinic eddies are allowed to form, the zonal wind is significantly
reduced from its angular momentum-conserving value, and correspondingly the over-
turning circulation is much stronger. Indeed, the strength of the Hadley Cell increases
roughly linearly with the strength of the eddies in a sequence of numerical integrations
similar to those shown, as suggested by (11.71). Qualitatively similar results are found
in a model with no convective parameterization. In this case, the lapse rate is closer
to neutral, N 2 is small, and the overturning circulation is generally stronger, as also
expected from (11.71).

Is the real Hadley circulation ‘eddy-driven’, as in section 11.5.2, or is it a largely
zonally symmetric structure constrained by angular momentum conservation, as in sec-
tion 11.2 and its hemispherically asymmetric extensions? Observations of the over-
turning flow in summer and winter provide a guide. Fig. 11.14 shows the thickness
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Fig. 11.12 The zonal wind in two numerical simulations. The lower panel is
from an idealized dry, three-dimensional atmospheric GCM, and the upper
panel is an axi-symmetric version of the same model. Plotted are the zonal
wind at the level of the Hadley Cell outflow, uo; the surface wind, us; and
the angular momentum conserving value, um.11

weighted mass transport overturning circulation in isentropic coordinates, and as dis-
cussed in chapter 7 this circulation includes both the Eulerian mean transport and the
transport due to eddies. In winter there is considerable recirculation within the Hadley
Cell, most of it coming from the zonally symmetric flow, and it is a quite distinct struc-
ture from the mid-latitude circulation. This suggests that the poleward extent of the
winter Hadley Cell is strongly influenced by axisymmetric dynamics, perhaps more
than by the baroclinic unstability of the subtropical jet, for if the Hadley Cell were pri-
marily a response to eddy fluxes one might expect it to join more smoothly with the
mid-latitude Ferrel Cell. It may be that the effects of moisture, and specifically conden-
sation and the concentration of the thermodynamic source, act to give the axisymmetric
circulation a significant role. In some contrast, there is virtually no recirculation within
the summer Hadley Cell and it does not appear as a self-contained structure, suggestive
of eddy effects and strong mid-latitude influence.
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Fig. 11.13 As for Fig. 11.12, but now showing the streamfunction of the
overturning circulation. ‘Altitude’ is � D p=psurface, and contour interval is
5 Sv (i.e., 5 � 109 kg s�1).

Figure 11.14 The observed
mass transport streamfunction
in isentropic coordinates in
northern hemisphere winter
(DJF). The dotted line is the me-
dian surface temperature. The
return flow is nearly all in a layer
near the surface, much of it at a
lower temperature than the me-
dian surface temperature. Note
the more vigorous circulation in
the winter hemisphere.12
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11.6 THE FERREL CELL

In this section we give a brief introduction to the Ferrel Cell, taking the eddy fluxes of
heat and momentum to be given and viewing the circulation from a zonally-averaged
and Eulerian perspective. We return to the problem from more dynamical perspective
in the next chapter.

The Ferrel Cell is an indirect meridional overturning circulation in mid-latitudes
(Fig. 11.3) that is apparent in the zonally-averaged v and w fields, or the meridional
overturning circulation defined by (11.3) or (11.69). It is ‘indirect’ because cool air
apparently rises in high latitudes, moves equatorwards and sinks in the subtropics. Why
should such a circulation exist? The answer, in short, is that it is there to balance the
eddy momentum convergence of the mid-latitude eddies and is effectively driven by
those eddies. To see this, consider the zonally averaged zonal momentum equation in
mid-latitudes; at low Rossby number, and for steady flow this is just

� f v D �
1

cos2 #

@

@#
.cos2 #u0v0/C

1

�

@�

@z
(11.74)

This is a steady version of (11.66) with the addition of a frictional term @�=@z on the
right-hand side. At the surface we may approximate the stress by the simple linear
drag � D rus , where r is a constant, with the stress falling away with height so that it
is important only in the lowest kilometer or so of the atmosphere, in the atmospheric
Ekman layer. Above this the eddy momentum flux convergence is balanced by the
Coriolis force on the meridional flow. In mid-latitudes (from about 30° to 70°) the eddy
momentum flux divergence is negative in both hemispheres (Fig. 11.11) and therefore,
from (11.74), the averaged meridional flow must be equatorward.

The flow cannot be equatorward everywhere, simply by mass continuity, and the
return flow occurs largely in the Ekman layer, of depth d say. Here the eddy balance is
between the Coriolis term and the frictional term, and integrating over this layer gives

� f V � �rus: (11.75)

where V D
R d

0
�v dz is the meridional transport in the boundary layer, above which the

stress vanishes. The return flow is polewards (i.e., V > 0 in the Northern Hemisphere)
producing an eastward Coriolis force that balances the westward frictional force on the
eastward flow at the surface. In this picture, then, the zonal flow at the surface is a
consequence of the polewards flowing surface branch of the Ferrel Cell, this polewards
flow being required by mass continuity given the equatorwards flow in the upper branch
of the cell. In this way, the Ferrel Cell is responsible for bringing the mid-latitude eddy
momentum flux convergence to the surface where it may be balanced by friction, and
this is schematically illustrated in Fig. 11.15.

A more direct way to see that the surface flow must be eastward, given the eddy mo-
mentum flux convergence, is to vertically integrate (11.74) from the surface to the top of
the atmosphere. By mass conservation, the Coriolis term vanishes (i.e.,

R1

0
�v dz D 0)

and we obtain Z 1

0

1

cos2 #

@

@#
.cos2 #u0v0/� dz D

�
�
�1

0
D �rus: (11.76)
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Fig. 11.15 The eddy-driven Ferrel Cell, from an Eulerian point of view.
Above the planetary boundary layer the mean flow is largely in balance
with the eddy heat and momentum fluxes, as shown. The lower branch of
the Ferrel Cell is largely confined to the boundary layer, where is is in a
frictional-geostrophic balance.

That is, the surface wind is proportional to the vertically integrated eddy momentum
flux convergence. Because there is a momentum flux convergence, the left-hand side is
negative and the surface winds are eastward.

The eddy heat flux also plays a role in the Ferrel Cell, for in a steady state we have,
from (11.67)

w D
1

N 2

"
QŒb� �

1

cos#
@.v0b0 cos#/

@y

#
(11.77)

and inspection of Fig. 11.11 shows that the observed eddy heat flux produces an over-
turning circulation in the same sense as the observed Ferrel Cell (again see Fig. 11.15).

Is the circulation produced by the heat fluxes necessarily the same as that produced
by the momentum fluxes? In a non-steady state the effects of both heat and momentum
fluxes on the Ferrel Cell are determined by (11.71) (an equation which applies more
accurately in mid-latitudes than in low because of the low-Rossby number assumption),
and there is no particular need for the heat and momentum fluxes to act in the same
way. But in a steady state they must act to produce a consistent circulation. To show
this, for simplicity let us take f and N 2 to be be constant, let us suppose the fluid is
incompressible and work in Cartesian coordinates. Take the y-derivative of (11.74) and
the z-derivative of (11.77) and use the mass continuity equation. Noting that v0�0 D

�@u0v0=@y we obtain
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: (11.78)
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The expression on the left-hand side is the divergence of the eddy flux of quasi-geostrophic
potential vorticity! That the heat and momentum fluxes act to produce a consistent
overturning circulation is therefore equivalent to requiring that the terms in the quasi-
geostrophic potential vorticity equation be in a steady-state balance.

Notes

1 Many of the observations presented here are so-called ‘reanalyses,’ prepared by
NCEP and ECMWF (e.g., Kalnay 1996). Unless stated, we use the NCEP re-analysis
with data from 1958–2003. Reanalysis products are syntheses of observations and
general circulation model results and so are not completely accurate representa-
tions of the atmosphere but, especially in data-sparse regions of the globe and for
poorly measured fields, they are likely to be more accurate representations of the
atmosphere than could be achieved using only the raw data. However, this in turn
means they contain biases introduced by the models.

2 George Hadley (1685–1768) was a British meteorologist who formulated the first
dynamical theory for the trade winds, presented in a paper (Hadley 1735) entitled
‘Concerning the cause of the general trade winds.’ He realized that in order to
account for the zonal winds the Earth’s rotation makes it necessary for there also
to be a meridional circulation. His vision was of air heated at low latitudes, cooled
at high latitudes, giving rise to a single meridional cell between the equator and
each pole. Although he thought of the cell as essentially filling the hemisphere,
and he did not account for the instability of such a flow, it was a nevertheless
foundational contribution to meteorology. The thermally direct cell in low latitudes
is named for him.

A three-celled circulation was proposed by William Ferrel (1817–1891), an Ameri-
can school teacher and meteorologist, and the middle of these cells is now named
for him. His explanation of the cell (Ferrel 1856a) was not correct, but this is
hardly surprising because the eddy motion producing the angular momentum con-
vergence that drives the Ferrel Cell was not understood for another 100 years or
so. Ferrel did however give the first essentially correct description of the role of
the Coriolis force and the geostrophic wind in the general circulation (Ferrel 1858),
a key development in the history of geophysical fluid dynamics. Ferrel also con-
tributed to tidal theory (in Ferrel (1856b) he noted, for example, that the tidal
force due to the moon would slow the earth’s rotation) and to ocean dynamics (see
http://www.history.noaa.gov/giants/ferrel2.html).

Although Hadley’s single-celled picture was superceded by the three-celled one
of Ferrel, the modern view of the overturning circulation is, ironically, that of a
single cell of ‘residual circulation’, which, although having distinct tropical and
extra-tropical components, in some ways qualitatively resembles Hadley’s original
picture.

3 Following Held and Hou (1980), who in built on Schneider (1977).

4 However, Fang and Tung (1996) do find some analytic solutions in the presence of
moisture and convection.

5 When applied to angular momentum, the requirement that there be no interior
extremum of an advected and diffused quantity is often called Hide’s theorem,
after Hide (1969).
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6 Lindzen and Hou (1988).

7 Solutions from Lindzen and Hou (1988).

8 See Dima and Wallace (2003) for an analysis of the relevant observations. They
noted that the Hadley cell is also affected by zonally asymmetric monsoonal cir-
culations (which are, of course, not accounted for in the model presented here).
Fang and Tung (1999) investigated the effects of time dependence, and essentially
noted that (11.60) is not well satisfied, although this alone was unable to limit the
nonlinear amplification effect. Walker and Schneider (2005) showed that the effects
of vertical momentum diffusion and momentum transport by baroclinic eddies of
are both significant in a GCM.

9 Figure courtesy of M. Juckes, using an ECMWF re-analysis.

10 A still more general elliptic equation for the overturning circulation may be derived
from the zonally-averaged primitive equations, assuming only that the zonally av-
eraged zonal wind is in cyclostrophic balance with the pressure field (Vallis 1982).

11 Simulations performed and figures kindly provided by C. Walker.

12 Figure courtesy of T. Schneider, using an ECMWF re-analysis.

Further Reading

Lorenz, E. N. 1967. The General Circulation of the Atmosphere.
A classic monograph on the atmospheric general circulation.

Peixoto, J. P. and Oort, A. H., 1992. Physics of Climate
A descriptive but physically based discussion of the climate and the general circu-
lation, with an emphasis on the observations.

Problems

11.1 Explicitly derive equations (11.20) and (11.21).

11.2 Suppose that, in the vertically-integrated Hadley Cell model considered in section
11.2 the radiative equilibrium temperature falls linearly from the equator to the
pole. For example, suppose that �E D �E0 ���.jyj=a/, rather the quadratic fall-
off in (11.16). Obtain and discuss the solutions to the Held-Hou problem. Include
an expression for the latitudinal extent of the Hadley Cell, and comment on any
discontinuities at the edge of the Hadley Cell and at the equator.

11.3 Suppose that the radiative equilibrium temperature falls off with latitude as P4.sin#/,
where P4 is the fourth Legendre polynomial. Show that the zonal velocity that is in
thermal wind balance with this does not violate Hide’s theorem, which states that
there can be no interior maximum of angular momentum in the fluid if viscosity is
non-zero. Comment on the relevance of this to the issue of whether the radiative
equilibrium solution is physically realizable.

11.4 In the angular momentum conserving model of the Hadley Cell, air that starts at rest
at the equator develops a large zonal velocity, and hence a large kinetic energy, as
it moves polewards. Explain carefully where this energy comes from. (Note that the
Coriolis force itself does no work on a fluid parcel.)

11.5 A spinning ice skater with arms outstretched lowers his arms. Show that if the
skater’s angular momentum is conserved his kinetic energy increases. Where has
this energy come from?
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11.6 (a) Derive and plot the layer thickness as a function of latitude in the shallow-water
Hadley Cell model, and the corresponding zonal wind.

(b) Suppose that the equilibrium thickness, h�, falls quadratically with latitude,
rather than linearly as we assume in (11.48). Obtain and plot expressions for
the extent of the Hadley Cell, the thickness and the zonal wind.

11.7 The oceanic thermohaline circulation seems similar to Hadley’s vision of the the
atmospheric circulation, with a large thermally driven cell between pole and equa-
tor. Discuss. Is conservation of angular momentum an important factor in the
thermohaline circulation? If so, what are its manifestations? If not, why not?



Any theory of the atmospheric circulation must be based on a theory
of (large-scale) atmospheric turbulence.

Eric Eady, The cause of the general circulation of the atmosphere, 1950.

CHAPTER 12

Zonally-Averaged Mid-latitude
Atmospheric Circulation

T
HE MID-LATITUDE ATMOSPHERIC CIRCULATION differs from the tropical circulation in
being essentially zonally asymmetric. It is the zonally asymmetric circulation
that provides most of the polewards flux of heat, and that provides the momen-

tum convergence that produces the surface winds. In this chapter our goal is to gain
a qualitative understanding of this circulation, and in particular to see how the zonal
asymmetries produce the observed zonally averaged circulation.

Because the circulation is so complicated that we cannot expect to understand it
fully, or to ‘explain’ it in terms of a few closed equations that submit to an analytic
solution. Unlike the ocean or the low-latitude atmosphere, the large-scale mid-latitude
circulation is intrinsically unsteady on the large-scale. And whereas in the ocean, or
the low-latitude atmosphere, we could make a great deal of progress by treating the
fluid as absolutely steady, this approach fails miserably for the mid-latitude atmosphere.
Rather, the eddies are the circulation. Put another way, the large-scale midlatitude
circulation of the atmosphere is a turbulent flow. Since (alas!) no fully satisfactory
theory of turbulence exists we try to make progress by constructing models that are
robust in their predictions, that don’t depend delicately on how we parameterize some
particular turbulent process. Indeed, one of our approaches is to use turbulent diffusion
to represent the transport due to large-scale eddies in the atmosphere; the subtlety arises
in the quantities we choose to parameterize this way, and the constraints that must be
imposed to satisfy various dynamical identities.

We will understand the atmosphere when we can describe it in a consistent way on
many levels simultaneously. One of these levels will be to predict the flow by numeri-
cally solving the governing equations of motion as completely as possible, for example
using a comprehensive General Circulation Model (GCM). As successful and impor-
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510 Chapter 12. Mid-Latitude Atmospheric Circulation

tant as this activity is, it cannot and should not be the whole story, and in this chapter
we concentrate on simpler, more conceptual models (although this includes numerical
approaches). Our emphasis in this chapter is on the zonally-averaged circulation, and
in the next chapter we consider the deviations from that average.1

The zonal asymmetries that are present in the mid-latitude atmosphere at any given
time are there because of baroclinic instability: even if the boundary conditions and
forcing were perfectly zonally symmetric, the corresponding zonally symmetric solu-
tions of the equations of motion would have a large shear in the zonal wind, and this
would be unstable to zonally-asymmetric perturbations, leading to the formation of
time-dependent finite amplitude asymmetries in the circulation, also known as weather.
We considered the mechanisms of baroclinic instability in chapter 6, and we considered
one consequence of this, namely geostrophic turbulence, in chapter 9. In the follow-
ing section we explore how these gives rise to some of the observed features in the
midlatitude atmosphere.

12.1 MAINTENANCE OF A BAROTROPIC JET

12.1.1 Motivation

If we look again at the zonally average wind in Fig. 11.2 we see hints of a second jet
somewhat polewards of the subtropical jet. Such a jet is particularly apparent in certain
regions of the globe, when a zonal average is not taken, as in Fig. 12.1. This midlatitude
jet (sometimes called the subpolar jet) is fairly barotropic (it has little vertical structure)
and lies above an eastward surface flow. This flow feels the effect of friction and so
there must be a momentum convergence into this region, and we see this clearly in
Fig. 11.11. Although the eddies in which this convergence occurs are a product of
baroclinic instability, the essential mechanism is present in barotropic dynamics, so let
us consider first how an eastward jet can be maintained in a turbulent flow on the surface
of a rotating sphere.2

In barotropic turbulence, alternating east-west jets can be maintained if ˇ is non-
zero. However, the case considered in chapter 9 was homogeneous, with no preferred
latitude for a particular direction of jet, whereas in the atmosphere there appears to be
but one mid-latitude jet, and although it meanders it certainly has a preferred average
location. In the subsections that follow we give four explanations as to how this is
achieved. The first of these has a different flavour than the others, but they are all just
different perspectives on the same mechanism.

12.1.2 I. The vorticity budget

Suppose that the absolute vorticity normal to the surface (i.e., � C 2˝ sin#/ increases
monotonically poleward. (A sufficient condition for this is that the fluid is at rest.) By
Stokes’ theorem, the circulation around a line of latitude circumscribing the polar cap
is equal to the integral of the absolute vorticity over the cap. That is,

I1 D

Z
cap
!ia � dA D

I
C

uia dl D

I
C

.ui C 2˝a cos#/ dl (12.1)
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Fig. 12.1 The time-averaged zonal wind at 150° W (in the mid Pacific) in
December-January February (DFJ, left), March-April-May (MAM, right). The
contour interval is 5 m s�1. There is a double jet in each hemisphere,
one in the subtropics and one in midlatitudes, especially apparent in the
right panel. The subtropical jets are in thermal wind balance with a strong
meridional temperature gradient at the subtropical edge of the Hadley Cell,
whereas the midlatitude jets have a stronger barotropic component, and
are associated with eddy momentum flux convergence and westerly winds
at the surface.

where !ia and uia are the initial absolute vorticity and velocity, ui is the initial zonal
velocity in the earth’s frame of reference, and the line integrals are around the line of
latitude. For simplicity let us take ui D 0 and suppose there is a disturbance equator-
wards of the polar cap, and that this results in a distortion of the material line around
the latitude circle C (Fig. 12.2). Since we are supposing the source of the disturbance
is distant from the latitude of interest, then if we neglect viscosity the circulation along

Fig. 12.2 The effects of midlatitude disturbance. If initially the absolute
vorticity increases monotonically polewards, then the disturbance will bring
fluid with lower absolute vorticity into the cap region. Then, using Stokes
theorem, the velocity around the latitude line C will become more westward.
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the material line is conserved, by Kelvin’s circulation theorem. Thus, vorticity with a
lower value is brought into the region of the polar cap, and (using Stokes theorem again)
the circulation around the latitude circle C must fall. That is, denoting values after the
disturbance with a subscript f ,

If D

Z
cap
!fa � dA < Ii (12.2)

so that I
C

.uf C 2˝a cos#/ dl <

I
C

.ui C 2˝a cos#/ dl (12.3)

and
uf < ui (12.4)

with the overbar indicating a zonal average. Thus, there is a tendency to produce west-
ward flow polewards of the disturbance. By a similar argument westward flow is also
produced equatorward of the disturbance — to see this apply Kelvin’s theorem over all
of the globe south of the source of the disturbance (taking care to take the dot-product
correctly between the direction of the vorticity vector and the direction of normal to the
surface). Finally, note that the overall situation is the same in the Southern Hemisphere.
Thus, on the surface of a rotating sphere, external stirring will produce westward flow
away from the region of the stirring.

Now suppose furthermore that the disturbance imparts no net angular momentum to
the fluid. Then the integral of ua cos# over the entire hemisphere must be constant. But
the fluid is accelerating westward away from the disturbance. Therefore, the fluid in the
region of the disturbance must accelerate eastward. That, is, angular momentum must
converge into the stirred region, producing an eastward flow. This simple mechanism
is the essence of the production of eastward eddy-driven jets in the atmosphere, and of
the eastward surface winds in mid-latitudes. The stirring that here we have externally
imposed comes, of course, from baroclinic instability.

If the stirring subsides then the flow may reversibly go back to its initial condition,
with a concomitant reversal of the momentum convergence that caused the zonal flow.
Thus, we must have some form of dissipation and irreversibility in order to produce
permanent changes, and in particular we need to irreversibly mix vorticity. If the fluid
is continuously mixed, then of course we also need a source that restores the absolute
vorticity gradient, else we will completely homogenize the vorticity over the hemi-
sphere, and in the next section we set up a simple model that shows how a permanent
jet structure can be maintained.

12.1.3 II. The pseudo-momentum budget

The kinematic relation between vorticity flux and momentum flux for non-divergent
two-dimensional flow is

v� D
1

2

@

@x

�
v2

� u2/
�

�
@

@y
.uv/: (12.5)
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After zonal averaging this gives

v0�0 D �
@u0v0

@y
: (12.6)

noting that v D 0. In spherical coordinates we have

v0�0 cos# D �
1

a cos#
@

@#
.cos2 #u0v0/: (12.7)

If (12.6) (or (12.7)) is integrated with respect to y between two quiescent latitudes then
the right-hand-side vanishes. That is the zonally-averaged meridional vorticity flux
vanishes when integrated over latitude.

Now, the barotropic zonal momentum equation is (for horizontally non-divergent
flow)

@u

@t
C
@u2

@x
C
@uv

@y
� f v D �

@�

@x
C Fu � Du (12.8)

where Fu and Du represent the effects of any forcing and dissipation. Zonal averaging,
with v D 0, gives

@u

@t
D �

@uv

@y
C Fu � Du; (12.9)

or, using (12.6),
@u

@t
D v0�0 C Fu � Du: (12.10)

Thus, the zonally averaged wind is maintained by the zonally averaged vorticity flux.
There is little direct forcing of the momentum, and most of the dissipation comes from
the bottom Ekman layer and if this is parameterized by a linear drag (12.10) becomes

@u

@t
D v0�0 � ru (12.11)

where the constant r is an inverse frictional timescale.
Now consider what maintains this vorticity flux. The barotropic vorticity equation

is
@�

@t
C u � r� C vˇ D F� � D� : (12.12)

where F� and D� are forcing and dissipation. Linearize about a mean zonal flow to give

@�0

@t
C u

@�0

@x
C v0

D F 0
� D0 (12.13)

where

 D ˇ �
@2u

@y2
(12.14)

is the meridional gradient of absolute vorticity. Multiply (12.13) by �0= and zonally
average to form the pseudo-momentum equation,

@P

@t
C v0�0 D

1


.�0F 0

�
� �0D0

�
/ (12.15)
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where
P D

1

2
�02 (12.16)

is the pseudomomentum for this problem (see also chapter 7). The parameter  is
positive if the average absolute vorticity increases monotonically northwards, and this
is usually the case in both Northern and Southern hemispheres.

In the absence of forcing and dissipation, (12.11) and (12.15) imply an important
relationship between the change of the mean flow and the pseudomomentum, namely

@u

@t
C
@P

@t
D 0: (12.17)

Now, P is a measure of the wave activity; if for some reason this increases, perhaps
because a wave enters an initially quiescent region, then P increases and the mean
flow must decrease. However, because the vorticity flux integrates to zero, the zonal
flow cannot decrease everywhere. Thus, the zonal flow must increase in the region
of the stirring and decrease elsewhere. In the presence of forcing and dissipation this
mechanism can lead to the production of a statistically steady jet in the region of the
forcing. Equations (12.11) and (12.15) combine to give

@u

@t
C
@P

@t
D �ru C

1


.�0F 0

�
� �0D0

�
/; (12.18)

and in a statistically steady state

ru D
1


.�0F 0

�
� �0D0

�
/ : (12.19)

The terms on the right-hand-side simply represent the stirring and dissipation of vortic-
ity, and integrated over latitude their sum will vanish, or otherwise the pseudomomen-
tum budget cannot be in a steady state. However, let us suppose that forcing is confined
to midlatitudes. In that region, the first term on the right-hand side of (12.19) will be
larger than the second, and eastward mean flow will be generated. Away from the direct
influence of the forcing, the dissipation term will dominate and westward mean flows
will be generated, as sketched in Fig. 12.3 On a ˇ-plane or on the surface of a rotating
sphere an eastward mean zonal flow can be maintained by a vorticity stirring that im-
parts no net momentum to the fluid. More generally, stirring in the presence of vorticity
gradient gives rise to a mean flow, and on a spherical planet that vorticity gradient is
provided by rotation.

In above arguments, the vorticity equation (12.12) was linearized about a mean flow
whereas the zonal momentum equation (12.10) was not. Is this consistent? If the eddy
amplitude is small, then linearization is certainly appropriate in the vorticity equation.
However, even in this case we cannot linearize the zonally averaged zonal momentum
equation because there is nothing to linearize it about: there is no large term associated
with the mean flow that dominates the other terms if the eddy amplitude is small. The
reader may also object that we have not proven that the forcing and dissipation terms
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Figure 12.3 Pseudomomentum
stirring, which in reality occurs
via baroclinic instability, is con-
fined to midlatitudes. Because of
Rossyby wave propagation away
from the source region, the distri-
bution of pseudomomentum dissi-
pation is broader, and the sum of
the two leads to the zonal wind
distribution shown, with positive
(eastward) values in the region of
the stirring. See also Fig. 12.8.

will not locally balance in the region of the forcing, producing no net winds. That can
only occur if the dissipation is confined to the region of the forcing, but this is highly
unlikely because Rossby waves are generated in the forcing region, and these propagate
meridionally before dissipating, as we now discuss.

12.1.4 III. Rossby waves and momentum flux

We have seen that the presence of a mean gradient of vorticity is an essential ingredient
in the mechanism whereby a mean flow is generated by stirring. Given such, we expect
Rossby waves to be excited, and we now show how Rossby waves are intimately related
to the momentum flux maintaining the mean flow.

If a stirring is present in midlatitudes then we expect that Rossby waves will be
generated there. To the extent that the waves are quasi-linear and do not interact then

Fig. 12.4 Generation of zonal flow on a ˇ-plane or on a rotating sphere.
Stirring in midlatitudes (by baroclinic eddies) generates Rossby waves that
propagate away from the disturbance. Momentum converges in the region
of stirring, producing eastward flow there and weaker westward flow on its
flanks.
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away from the immediate source region each wave has the form

 D Re Cei.kxCly�!t/
D Re Cei.kxCly�kct/; (12.20)

where C is a constant, with dispersion relation

! D ck D uk �
ˇk

k2 C l2
� !R; (12.21)

provided that there is no meridional shear in the zonal flow. The meridional component
of the group velocity is given by

cy
g D

@!

@l
D

2ˇkl

.k2 C l2/2
: (12.22)

Now, the direction of the group velocity must be away from the source region; this is a
radiation condition (discussed more in the next subsection), demanded by the require-
ment that Rossby waves transport energy away from the disturbance. Thus, northwards
of the source kl is positive and southwards of the source kl is negative. That the prod-
uct kl can be positive or negative arises because for each k there are two possible values
of l that satisfy the dispersion relation (12.21), namely

l D ˙

�
ˇ

u � c
� k2

�1=2

; (12.23)

assuming that the quantity in brackets is positive.
The velocity variations associated with the Rossby waves are

u0
D �Re C ilei.kxCly�!t/ (12.24a)

v0
D Re C ikei.kxCly�!t/ (12.24b)

and the associated momentum flux is

u0v0 D �
1

2
C 2kl: (12.25)

Thus, given that the sign of kl is determined by the group velocity, northwards of the
source the momentum flux associated with the Rossby waves is southward (i.e., u0v0

is negative), and southwards of the source the momentum flux is northwards (i.e., u0v0

is positive). That is, the momentum flux associated with the Rossby waves is toward
the source region. Momentum converges in the region of the stirring, producing net
eastward flow there and westward flow to either side.

Another way of seeing this is to note that if kl is positive then lines of constant
phase (kx C ly D constant) are tilted north-west/south-east, and the momentum flux
associated with such a disturbance is negative (u0v0 < 0). Similarly, if kl is negative
then the constant-phase lines are tilted north-east/south-west and the associated mo-
mentum flux is positive (u0v0 > 0). The net result is a convergence of momentum
flux into the source region. In physical space this is reflected by having eddies that are
‘bow-shaped’, as in Fig. 12.5.
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Figure 12.5 The momen-
tum transport in physical space,
caused by the propagation of
Rossby waves away from a source
in midlatitudes. The ensuing bow-
shaped eddies are responsible for
a convergence of momentum, as
indicated in the idealization pic-
tured.

* The radiation condition and Rayleigh friction

A common trick in fluid dynamics, especially in problems of wave propagation, is to
add a small amount of friction to the inviscid problem.3 The solution of the ensuing
problem in the limit of small friction will often make clear which solution is physi-
cally meaningful in the inviscid problem, and therefore which solution nature chooses.
Consider the linear barotropic vorticity equation with linear friction,

@�

@t
C ˇ

@ 

@x
D �r� (12.26)

where r is a small friction coefficient. The dispersion relation is

! D �
ˇk

K2
� i r D !R.k; l/ � i r; (12.27)

where !R is defined by (12.21), and the wave decays with time. Now suppose a wave is
generated in some region, and that it propagates meridionally away, decaying as moves
away. Then, instead of an imaginary frequency, we may suppose that the frequency is
real and the y-wavenumber is imaginary. Specifically, we take l D l0 C l 0 where l0 D

˙Œˇ=.u � c/� k2�1=2 for some zonal wavenumber k, as in (12.23), and ! D !R.k; l0/.
For small friction, we obtain l 0 by Taylor-expanding the dispersion relation around its
inviscid value, !R.k; l0/, giving

! C i r D !R.k; l/ � !R.k; l0/C
@!R.k; l0/

@l
l 0; (12.28)

and therefore
l 0

D
i r

c
y
g

(12.29)

where c
y
g D @

l
!R.k; l0/ is the y-component of the group velocity. The wavenumber is

imaginary, so that the wave either grows or decays in the y-direction. The wave solution
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then obeys
 � C expŒi.kx � !Rt/� exp.i l0y � ry=cy

g /: (12.30)

We can now demand that the solution decay away from the source, because any other
choice is manifestly unphysical, even as we let r be as small as we please. Thus, with
the source at y D 0, c

y
g must be positive for positive y and negative for negative y.

In other words, the group velocity must be directed away from the source region, and
therefore momentum flux converges on the source region.

12.1.5 IV. The Eliassen-Palm flux

The Eliassen-Palm (EP) flux provides a useful framework for determining how waves
affect the mean flow, and the barotropic case is a particularly simple and instructive ex-
ample. The zonally averaged momentum equation may be written, for either a stratified
or barotropic model, as

@u

@t
� f0v

�
D rx �F � ru (12.31)

where v� is the residual meridional velocity and F is the Eliassen-Palm (EP) flux, and
rx � is the divergence in the meridional plane. In the barotropic case v�

D 0 and

F D �j u0v0 : (12.32)

Now, if the momentum flux is primarily the result of interacting nearly-plane Rossby
waves, then the EP flux obeys the group velocity property (chapter 7), namely that the
flux of wave activity is equal to the group velocity times the wave activity density. Thus,

Fy � j �F � cy
gA (12.33)

where A is the wave activity density, or pseudomomentum,

A D
�02

qy

D
�02


�
�02

ˇ
; (12.34)

and, if  > 0,A is a positive definite quantity. Now, the group velocity is directed away
from the region of disturbance, and furthermore if the vorticity gradient is everywhere
positive then the EP flux takes the sign of the group velocity (12.22). Thus, as sketched
in Fig. 12.5 and Fig. 12.6, momentum converges in the region of the disturbance and an
eastward jet is generated. This argument is equivalent to that given in section 12.1.4,
and the result of (12.25) essentially illustrates the group velocity property of the EP
flux for batoropic Rossby waves in an argument from first principles. (Using (12.22),
(12.33) and (12.34) we can explicitly recover (12.25).)

12.1.6 A numerical example
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Fig. 12.6 If a region of fluid on the ˇ-plane or on a rotating sphere is
stirred, then Rossby waves will propagate westwards and away from the
disturbance, and this is the direction of propagation of wave activity den-
sity. Thus, there is positive divergence of wave activity in the stirred region,
and using (12.33) and (12.31) this produces a westward acceleration.

We conclude from above arguments that momentum will converge into a rapidly ro-
tating flow that is stirred in a meridionally localized region. To illustrate this, we nu-
merically integrate the barotropic vorticity equation on the sphere, with a meridionally
localized stirring term; explicitly, the equation that is integrated is

@�

@t
C J. ; �/C ˇ

@ 

@x
D �r� C �r

4� C F: (12.35)

The first term on the right-hand-side is a linear drag, parameterizing momentum loss
in an Ekman layer. The second term removes enstrophy that has cascaded to small
scales; it has a negligible impact at large scales. The forcing term F is a ‘wavemaker’
confined to a zonal strip of about 15° meridional extent, centered at about 45° N, that
is statistically zonally uniform and that spatially integrates to zero. Within that region
it is a random stirring with a temporal decorrelation scale of a few days and a spa-
tial decorrelation scale corresponding to about wavenumber 8, so mimicking weather
scales. Thus, it provides no net source of vorticity or momentum, but it is a source of
pseudo-momentum because F� > 0.

The results of a numerical integration of (12.35) are illustrated in Fig. 12.7 and Fig.
12.8. An eastward jet forms in the vicinity of the forcing, with westward flow on either
side. The pseudo-momentum stirring and dissipation that produces this flow is shown
in Fig. 12.8. As expected, the dissipation has a broader distribution than the forcing,
and their sum (the dot-dashed line in the figure) has the same meridional distribution as
the zonal flow itself.



520 Chapter 12. Mid-Latitude Atmospheric Circulation

−10 −5 0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

la
tit

ud
e

m/s

mean zonal wind
eddy velocity

Fig. 12.7 The time- and zonally-averaged wind (solid line) obtained by an
integration of the barotropic vorticity equation (12.35) on the sphere. The
fluid is stirred in midlatitudes by a random wavemaker that is statistically
zonally uniform, acting around zonal wavenumber 8, and that supplies no
net momentum. Momentum converges in the stirring region leading to an
eastward jet with a westward flow to either side, and zero area-weighted
spatially integrated velocity. The dashed line shows the r.m.s. (eddy) veloc-
ity created by the stirring.

12.2 LAYERED MODELS OF THE MID-LATITUDE CIRCULATION

Let us now extend our barotropic model in the direction of increasing realism, and
we approach this by way of layered models of the circulation, of the type discussed
in chapter 3. Our arguments in this section are very phenomenological and, although
quite plausible they are not wholly axiomatic. Our approach is similar to the one we
use to construct a model of the oceanic ventilated thermocline (section 16.4), in that
we simplify a complicated situation by constructing a model with a small number of
vertical layers and make use of geostrophic dynamics. However, it differs in that in
the oceanic case one can make a small number of reasonable assumptions ab initio and
the solution follows by direct calculation, whereas in the atmospheric case issues of
turbulence immediately arises. In section 12.4 we try turn our model into a systematic
calculation; however, here we must make explicit closure assumptions that relate the
eddy fluxes to the mean fields and these assumptions are heuristic.

12.2.1 A single layer

We first consider a single layer obeying the shallow water equations. We further re-
strict the flow by supposing that it is constrained by two rigid surfaces: an upper flat
lid and a lower, wavy (but stationary) surface (Fig. 12.9). We may imagine the fluid
layer to crudely represent the upper troposphere, with the (given) lower wavy surface
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Fig. 12.8 The pseudomentum stirring (solid line, F 0
�
�0), dissipation

(dashed line, D0
�
�0) and their sum (dot-dashed), for the same integration

as Fig. 12.7. Because Rossby waves propagate away from the stirred region
before breaking, the distribution of dissipation is broader than the forcing,
resulting in an eastward jet where the stirring is centered, with westward
flow on either side.

corresponding to the undulating mid-atmosphere interface of a two-layer model. (This
section is in some ways an exercise, and too much realism should not be ascribed to
the model.) Thus frictional effects are small in the momentum equation, and in partic-
ular there is no Ekman layer and no drag on the velocity field. However, there may be
some dissipative effects in the vorticity equation, arising from the cascade of enstro-
phy to small scales. We also suppose the flow satisfies quasi-geostrophic scaling: that
is, the Rossby number is small, the variations in layer thickness are small compared
to the mean layer thickness, and variations in Coriolis parameter are small. Let the
initial flow be a uniform zonal current, passing over the wavy lower boundary. The
boundary is waviest in mid-latitudes, creating a disturbance from which Rossby waves
emanate. Our questions are: (i) How does this affect the mean zonal flow? (ii) What if
any meridional circulation is induced?

Equations of motion

The zonal momentum equation for the layer may be written as as

@u

@t
� .f C �/v D �

@B

@x
(12.36)

where B D � C u2=2 is the Bernoulli function and � the pressure in the layer. The
zonal average of this is

@u

@t
� f v D �v C �0v0 : (12.37)
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Figure 12.9 An atmosphere with
a single homogeneous layer of
mean thickness H , local thickness
h, and a variable lower surface of
height �.

Note that v is wholly ageostrophic (vg D @x D 0). Now, using @u=@x C @v=@y D 0,
the vorticity flux is related to the momentum flux by

v� D �
@uv

@y
C

1

2

@

@x
.v2

� u2/; (12.38)

so that, under quasi-geostrophic scaling, (12.37) simplifies to

@u

@t
� f0v D �0v0 D �

@

@y
u0v0 : (12.39)

Note that although v is small mass conservation does not demand that it be zero, because
the thickness of the layer is not constant. Thus, because it is being multiplied by the
large term f0 it should be retained. If the flow is statistically steady and there are no
sources or sinks of momentum we have

f0v D
@

@y
u0v0 : (12.40)

The zonally averaged mass conservation equation is

@h

@t
C

@

@y
vh D 0: (12.41)

In the situation here @h=@t D 0 because the flow is confined between two rigid surfaces,
and so @vh=@y D 0. If the mass flux vanishes somewhere, for example at a meridional
boundary, it therefore vanishes everywhere and we have

vh C v0h0 D 0: (12.42)

Using (12.40) and (12.42) gives

1

f0

@

@y
u0v0 C

1

h
v0h0 D 0 (12.43)



12.2 Layered Models of the Mid-latitude Circulation 523

or

v0�0 � f0

1

h
v0h0 D 0 (12.44)

in a steady state. Because thickness variations are small in quasi-geostrophic flow we
can write this as

v0�0 � f0

1

H
v0h0 D 0 (12.45)

where H is the reference thickness of the layer, which may be taken as its mean thick-
ness. [This is just the potential vorticity flux for this problem — look ahead to (12.51).]

The potential vorticity equation for this system is

DQ

Dt
D

D
Dt

�
� C f

h

�
D 0 (12.46)

where h is the fluid layer thickness. Under quasi-geostrophic scaling this becomes

Dq

Dt
D
@q

@t
C u

@q

@x
C v

@q

@y
D 0; (12.47a)

q D � C ˇy C f0

�

H
: (12.47b)

where � D H �h is the height of the lower interface (Fig. 12.9) and this is a function of
x and y but not, in this model, time. Using the horizontal non-divergence of the flow,
the zonally averaged potential vorticity equation is

@q

@t
D �

@v q

@y
�
@v0q0

@y
; (12.48)

and, using this and (12.47a), the perturbation potential vorticity equation, linearized
about a zonally symmetric state, is

@q0

@t
C u

@q0

@x
C v

@q0

@y
C v0 @q

@y
D �DŒq� (12.49)

where we now include a term, DŒq�, to represent dissipative processes. Multiplying by
q0=.@q=@y/, zonally averaging and neglecting the term in v we obtain the pseudomo-
mentum equation for this system, namely

@P

@t
D

@

@t

 
q02

2

!
D �v0q0 �

D0q0


: (12.50)

where  D @q=@y . This equation is the equivalent for the layered system of (12.15). In
a turbulent fluid we cannot, in general, demand that D D 0, even as the viscosity goes to
zero, because of the presence of an enstrophy flux to smaller scales, and a concomitant
dissipation. But in regions where it is zero (where there is no wave breaking) then the
potential vorticity flux must also be zero in a steady state.
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Using (12.47b), the eddy potential vorticity flux is

v0q0 D v0�0 C
f0

H
v0�0 D v0�0 �

f0

H
v0h0 (12.51)

where �0 is the topography and h0 is the layer thickness perturbation. Using this in the
zonal momentum equation (12.39) gives

@u

@t
D v0q0 C

f0

H
v0h0 C f0v: (12.52)

But the last two terms on the right hand side constitute the total mass flux so we finally
write

@u

@t
D v0q0 C f0v

� ; (12.53)

where

v�
D v C

v0h0

h
(12.54)

is the residual circulation for this problem. Now, v� is proportional to the total merid-
ional mass flux and therefore, because the flow is confined between rigid lids then with
no sources or sinks of mass, v�

D 0 everywhere [see (12.42)]. The zonally averaged
Eulerian velocity, v, although small and ageostrophic, is in general nonzero.

Dynamics

When the flow passes over the wavy boundary, Rossby waves will, as in the barotropic
case, cause momentum flux to converge in the generation region. If the flow is steady
and dissipation-free then from the momentum equation

f0v D
@u0v0

@y
; (12.55)

and, in regions of momentum flux convergence (i.e., where @u0v0=@y < 0) the mean
meridional velocity is equatorward. Thus, whereas frictional forces balance the vortic-
ity flux in a constant-thickness barotropic model (because in that case v D 0) in the free
atmosphere a meridional circulation may be generated, and this is basis of the equato-
rial flow in the upward branch of the Ferrel cell. However, this does not imply that the
total mass flux is equatorward; in fact, for this single layer model it must be zero and
therefore

v0h0 D �hv > 0 (12.56)

That is, the eddy mass flux is poleward, balancing the equatorward mean flow.
Another way to arrive at this result is to utilize potential vorticity fluxes directly.

For steady, dissipation-free flow the pseudo-momentum equation (12.50) reveals that
the potential vorticity flux vanishes. Then using (12.53) and noting that v�

D 0 we have
@u=@t D 0 — an example of the non-acceleration theorem that steady non-dissipative
waves do not induce a change in the zonal momentum. Then, using (12.51) we find

v0�0 D
f0

H
v0h0 (12.57)

and using (12.42) we recover (12.55).
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Form drag

We may think of the momentum flux convergence as being balanced by the form drag
caused by the flow over the wavy boundary. We write the zonal momentum equation as

@u

@t
D f0v C v0�0 D f0v

�
�
f0

H
v0h0 C v0�0 (12.58)

where here v� (but not v) is zero. The term �.f0=H /v0h0 is force on the fluid layer
coming from the wavy boundary — the interface provides a form drag, as described
in chapter 3. In particular, the average force per unit area exerted on the layer by the
sloping surface is given by

F D �f0�0v0�0 D f0�ov0h0 : (12.59)

and dividing by �0H provides the acceleration on the active fluid layer. The atmosphere
also exerts an equal an opposite force on the fluid layer, an effect we consider in the next
section. A steady state is achieved, without dissipation, when the form drag is balanced
by the eddy momentum flux convergence. From (12.51) or (12.53), this is the same
condition that the potential vorticity flux vanishes.

A few remarks

An informal summmary of the single-layer arguments is given in the shaded box on
the next page. In the single-layer model, as in the barotropic model, the zonal flow
is proximately driven by eddy fluxes of potential vorticity, and in the model the eddy
fluxes must be zero if a steady state is to be achieved. As regards the real atmosphere
is a little unrealistic, because from the pseudo-momentum equation (12.50) we expect
these fluxes to be negative, and there is then nothing to balance them in the momentum
equation (12.53), if v�

D 0. In the real atmosphere, there are effectively sources sinks in
the mass conservation equation that arise from the thermodynamics that allow v� to be
non-zero. In this case we expect v� > 0, but to explore this requires a two-layer model.
In such a model the upper level may be thought of as being forced by an undulating
interface between the lower and upper layers, a crude representation of stratification,
and we now explore this model.

12.2.2 A two-layer model

Now we extend our model to have two active layers, constructing what is probably the
simplest model that can capture the dynamics of the mid-latitude tropospheric general
circulation without undue approximation. Indeed virtually all of the phenomenology
that we associate with the circulation — mid-latitude surface westerly winds, the Fer-
rel cell, breaking Rossby waves — is present. A three layer model introduces no new
physics, although a continuously stratified model does lead to some differences of in-
terpretation.

The physical model we have in mind is one of two isentropic layers of a compress-
ible ideal gas, but as discussed in chapter 3 this is virtually equivalent to a two-layer
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Informal Summary of the Single-Layer Arguments

The zonally averaged momentum equation is

@u

@t
� f0v D v0�0 D �

@u0v0

@y
: (SL.1)

A region that is the source of Rossby waves will generally be a region where there is
momentum flux convergence, where @u0v0=@y < 0. In this region v will be directed
equatorward if u is steady, and this flow is the upper branch of the Ferrel Cell. To think
about this in terms of potential vorticity, first define the residual meridional velocity by

v�
D
v0h0

h
C v: (SL.2)

This is proportional to the total meridional mass flux, zero in this one-layer model. The
momentum equation is then

@u

@t
D f0v

�
�
f0

h
v0h0 C v0�0 (SL.3a)

D v0q0 C f0v
�: (SL.3b)

using v0q0 D v0�0 � .f0=h/v0h0 where q is potential vorticity. The second term on the
r.h.s. of (SL.3a) is the form drag exerted by the topography on the flow, and in a steady
state this balances the momentum flux convergence of the Rossby waves.

We expect the potential vorticity fluxes to be generally negative, smaller in the region
of the source. This follows from the pseudomomentum equation

@P

@t
D

@

@t

 
q02

2

!
D �v0q0 �

D0q0


: (SL.4)

If dissipation is identically zero, then the potential vorticity flux is zero if the flow is
steady. Then, using (SL.3b), there is no acceleration of the zonal flow — an example of
the non-acceleration theorem. However, in general, there will be some dissipation away
from the source region, for example in critical layers (u D c) where Rossby waves can
break, giving (for  > 0) a negative potential vorticity flux, v0q0 < 0. In these regions
balance in the momentum equation can be achieved either by balancing the PV flux with
a friction term, as in the barotropic model, or by a Coriolis force on a polewards residual
meridional velocity. That is, f0v

�
� �v0q0 > 0, generating a polewards residual flow.
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shallow-water model. The notation of the latter is a little simpler and so our presenta-
tion will be in those terms. We will continue to assume that quasi-geostrophic scaling
holds; that is, the flow is in near geostrophic balance, variations in layer thickness are
small compared to their mean thickness, and variations in Coriolis parameter are small.
We also assume that the two fluid layers are held between two flat rigid lids — topog-
raphy is an unnecessary complication at this stage.

Equations of motion

The equations of motion are those of a two-layer Boussinesq shallow water model con-
fined between two rigid flat surfaces, and readers who are comfortable with these dy-
namics may quickly skip through this section, merely glancing at the boxed equations
as they pass. The momentum equations of each layer are

Du1

Dt
C f � u1 � r�1 (12.60a)

Du2

Dt
C f � u2 � r�2 � ru2: (12.60b)

where �1 D pT =�0 and �2 D pT =� � g0r�, pT is the pressure at the lid at the
top, and g0 D g.�1 � �2/=�0 is the reduced gravity. We have also included a simple
representation of surface drag, �ru2, in the lowest layer, and r is a constant. Zonally
averaging gives

@u1

@t
� f0v1 D v0

1
�0

1
(12.61a)

@u2

@t
� f0v2 D v0

2
�0

2
� ru2 (12.61b)

Geostrophic balance in each layer implies

f0ug1 D k � r�T ; (12.62a)

f0ug2 D k � r�T � g0k � r�; (12.62b)

where use a constant value of the Coriolis parameter consistent with quasi-geostrophic
scaling, and we henceforth we drop the subscript g on geostrophic velocities. We there-
fore obtain

f0.u1 � u2/ D g0k � r� : (12.63)

and this is thermal wind balance for this system. A temperature gradient thus cor-
responds to a slope of the interface height (i.e., the isentropic surface), the interface
sloping upwards toward lower temperatures.

The quasi-geostrophic potential vorticity for each layer is

qi D �i C f � f0

hi

Hi

(12.64)
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where Hi is the reference thickness of each layer, which we take to be its mean thick-
ness. The potential vorticity flux in each layer is then

v0
iq

0
i D v0

i�
0
i �

f0

Hi

v0
ih

0
i : (12.65)

Using this in (12.61) gives

@u1

@t
D v0

1
q0

1
C f0v

�
1

@u2

@t
D v0

2
q0

2
C f0v

�
2 � ru2

(12.66)

where

v�
i D v C

v0
ih

0
i

Hi

(12.67)

is the meridional component of the residual velocity in each layer, proportional to the
total meridional mass flux in each layer.

In the barotropic model of section 12.1 the mean meridional velocity vanished at
every latitude, a consequence of mass conservation in a single layer between two rigid
flat surfaces. In a single-layer model of section 12.2.1 the mean meridional velocity
may be non zero, but the total meridional mass flux (i.e., the meridional component
of the residual velocity) is zero if the domain is bounded laterally by soild walls. In
the two layer model we will allow a transformation of mass from one layer to another,
which is the equivalent of heating: a conversion of mass from the lower layer to the
upper layer is heating, and conversely. Thus, heating at low latitudes and cooling at
high latitudes leads to the interface sloping upward toward the pole. In the two-layer
model the constraint that mass conservation supplies is that, assuming a statistically
steady state, the total polewards mass flux summed over both layers must vanish.

The mass conservation equation for each layer is

@hi

@t
C r � .hiui/ D Si (12.68)

where Si is the mass source term and we may suppose that S1 C S2 D 0 everywhere.
A zonal average gives

@hi

@t
C
@hivi

@y
D Si (12.69)

or, setting hi D Hi and using (12.67),

@hi

@t
C Hi

@v�
i

@y
D Si : (12.70)

Suppose the diabatic source term is such as to provide heating at low latitudes and
cooling in high. This is equivalent to a conversion upper layer mass to lower layer mass
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Fig. 12.10 Sketch of the zonally-averaged thermodynamics of a two-layer
model. Cooling at high latitudes and heating at low leads steepens the
interface (and so the isentropes) upward toward the pole (thicker arrows).
Associated with this there is a net mass flux — the residial flow, or the
meridional overturning circulation, (lighter arrows). In the tropics this cir-
culation is accounted for by the Hadley Cell, and is nearly all in the mean
flow. In midlatitudes the circulation is largely due to baroclinic eddies, and
the smaller Eulerian mean flow is actually in the opposite sense.

at high latitudes, and conversely at low latitudes, and this can only be balanced by a
poleward mass flux in the upper layer and an equatorward mass flux in the lower layer
(Fig. 12.10). That is to say, an earthlike radiative forcing between equator and pole
implies that the total mass flux in the upper layer will be poleward. This is the opposite
of the mean meridional circulation of the Ferrel cell! What’s going on?

Manipulating the equations

Because the total depth of the fluid is fixed, the mass conservation equations in each
layer (12.69) may each be written as an equation for the interface displacement, namely

@�

@t
C r � .�u1/ D S1; or

@�

@t
C r � .�u2/ D �S2 (12.71)

Because of the thermal wind equation (12.63) these equations are identical: u1 � r� D

u2 � r� and S1 D �S2. (If S1 ¤ �S2 the flow would not remain balanced and the
thermal wind equation could not be satisfied.) The zonally averaged interface equation
may be written as

@�

@t
� H1

@v�
1

@y
D S; or

@�

@t
C H2

@v�
2

@y
D S (12.72)

where S D �S1 D CS2, consistent with the mass conservation statement

H1v
�
1 C H2v

�
2 D 0: (12.73)
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Now, whereas (12.73) is a kinematic statement about the total mass flux, the dy-
namics provides a constraint on the eddy mass flux in each layer. Using the thermal
wind relationship we have

.v0
1

� v0
2
/�0 D g0 @�

0

@x
�0 D 0 (12.74)

Hence, if the upper and lower surfaces are both flat, we have that

v0
1
h0

1
D �v0

2
h0

2
(12.75)

and the eddy meridional mass fluxes in each layer are equal and opposite. If the bound-
ing surfaces are not flat, we have

v0
1
�0

T
� v0

1
h0

1
D v0

1
�0

B
C v2h0

2
(12.76)

instead, where �T and �B are the topographies at top and bottom. This is a dynamical
and not just a kinematic result, for it is equivalent to noting that the form drag on one
layer due to the interface displacement is equal and opposite to that on the other, namely

v0
1
�0 D �Œ�v0

2
�0 � (12.77)

where the minus sign inside the square brackets arises because the interface displace-
ment is into layer one but out of layer two.

Using (12.65) (12.76) the eddy potential vorticity fluxes in the two layers are related
by
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1
q0

1
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0
2
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D H1v

0
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�0

1
C H2v

0
2
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2
� f0v

0
1
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t C f0v
0
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�0

b
(12.78)

which is the layered version of the continuous resultZ T

B

v0q0 dz D

Z T

B

v0�0 dz C f0

�
v0b0

�T
B

(12.79)

that arose in chapter 5. For flat upper and lower surfaces we have
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C H2v

0
2
q0

2
D H1v

0
1
�0

1
C H2v
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(12.80)

and, using vi�i D �@uivi=@y and integrating with respect to y givesZ h
H1v

0
1
q0

1
C H2v

0
2
q0

2

i
dy D 0 : (12.81)

That is, the total meridional flux of potential vorticity must vanish. This is a conse-
quence of the fact that the potential vorticity flux is the divergence of a vector field; in
the continuous case

v0q0 D
@u0v0

@y
� f0

@

@z

v0T 0

N 2
(12.82)

which similarly vanishes when integrated over a volume if there are no boundary con-
tributions.
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12.2.3 Dynamics of the two-layer model

We now consider the climate, or the time-averaged statistics, of our two layer model.
The equations of motion are (12.61) or (12.66), and (12.69) or (12.70). These equations
are not closed because of the presence of eddy fluxes, and in this section we make some
phenomenological and rather general arguments about how these behave in order to get
a sense of the general circulation. In the next section we use a specific closure to address
the same problem.

The physical situation is simple. The two layers of our model are confined in the
vertical between two flat, rigid surfaces, and they are meridionally confined between
slippery walls at high and low latitudes (the ‘pole’ and ‘equator’). The circulation is
driven thermodynamically, by a heating at low latitudes and cooling at high. In the
shallow water model, this translates to a conversion of layer 1 fluid to layer 2 fluid
at high latitudes, and the converse at low latitudes (see Fig. 12.10). This sets up a
sloping interface (sloping upwards toward the pole) and, by thermal wind, a shear. This
situation is baroclinically unstable, and this sets up a field of eddies, most vigorous
in mid-latitudes where the temperature gradient (or interface slope) is largest. Three
fields encapsulate the dynamics — the surface wind field, the meridional circulation,
and the meridional temperature gradient, and our goal is to understand their qualitative
structure. We note from the outset that the residual circulation is polewards in the
upper layer, equatorwards in the lower layer, and that this is a thermodynamic result, a
consequence of heating at low latitudes and cooling at high latitudes.

From (12.66) the steady state surface wind is given by

rH2u2 D H1v
0
1
q0

1
C H2v

0
2
q0

2
D H1v

0
1
�0

1
C H2v

0
2
�0

2
(12.83)

using (12.80). That is, the surface wind is determined by the vertical integral of either
the vorticity flux or the potential vorticity flux.

Neglecting contributions due to the mean horizontal shear (which are small if the
ˇ-Rossby number U=ˇL2 is small) the potential vorticity gradient in each layer is given
by

@q1

@y
D ˇ �

f0

H1

@h1

@y
> 0 (12.84)

and
@q2

@y
D ˇ �

f0

H2

@h2

@y
. 0: (12.85)

In upper layer @h1=@y is negative so that the total potential vorticity gradient is posi-
tive and larger than ˇ itself. In the lower layer @h2=@y is positive and indeed if there
is to be baroclinic instability it must be as large as ˇ in order that @q=@y change sign
somewhere. Thus, although negative the potential vorticity gradient is much weaker
in the lower layer. Thus, Rossby waves (meaning waves that exist because of a back-
ground gradient in potential vorticity) will propagate further in the upper layer, and this
asymmetry is the key to the production of surface winds.

Now, the potential vorticity flux must be negative (and downgradient) in the upper
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Figure 12.11 Sketch
of the potential vortic-
ity fluxes in a two layer
model. The surface wind
is proportional to their
vertical integral. The
fluxes are negative (posi-
tive) in the upper (lower)
layer, but are more uni-
formly distributed at up-
per levels, leading to east-
ward surface winds at
midlatitudes.

Equator Latitude Pole

Surface Wind

V. High PVPV FluxV. Low PV

High PV PV Flux Low PV

layer, and there are various ways to see this. One is from the upper layer momentum
equation (12.66a) which in a steady state gives

v0
1
q0

1
D �f0v

�
1 : (12.86)

Because v�
1 is polewards (positive in the Northern hemisphere), the potential vorticity

flux is negative. (The negativity holds in both Northern and Southern Hemispheres.)
Equivalently, in the upper layer the radiative forcing is increasing the potential vorticity
gradient between equator and pole, so there must be an equatorward potential vorticity
flux to compensate. Finally, the perturbation enstrophy or pseudomomentum equations
tell us that in a steady state the potential vorticity flux is downgradient (also see sec-
tion 12.3). This is not an independent argument, since it merely says that the enstrophy
budget may be balanced through a balance between production proportional to the po-
tential vorticity gradient and the dissipation. For similar reasons we expect the potential
vorticity flux to be positive (poleward) in the lower layer.

If the potential vorticity flux in the lower layer were everywhere equal and opposite
to that in the upper layer there would be no surface wind, in contrast to the observations.
Thus we must somehow deduce the latitudinal distribution of the potential vorticity flux
or the vorticity flux, and we can give a couple of perspectives on what is essentially the
same argument.

I. Rossby waves and the vorticity flux
In the upper layer the potential vorticity gradient is stronger and better able to
support linear waves than the lower layer. Thus, the vorticity flux in the region
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of Rossby wave genesis in midlatitudes will be large and positive in the upper
layer, and small and negative in the lower layer. The upshot of this is that the
vertical integral of the vorticity flux largely follows the flux of the upper layer, and
is positive in midlatitudes and, to ensure that its latitudinal integral is zero, negative
on either side. Then, using (12.83), a surface wind of similar pattern ensues (Fig.
12.12).

II. Potential vorticity flux
It is reasonable to infer that the dynamics of the upper layer is more linear than that
of the lower because its potential vorticity gradient is larger. With a non-zero ˇ,
the steering level (the height where u D c where c is the Rossby wave speed) is
moved to lower elevations and thus the critical latitude where u D c and Rossby
waves break and dissipate will tend to be further from the source region than in
the lower layer. The result of this is that the potential vorticity breaking, where the
potential vorticity flux will be most negative, is far from the source region in the
upper layer. In the lower layer the flux will be more concentrated near the source
region and, because the integral of the potential vorticity flux sums to zero over the
two layers, the flux will be large and positive in the lower layer, as illustrated in
Fig. 12.12. Coupled with the mass flux distribution this gives a vorticity flux that
is large and positive in the upper layer and weak and negative in the lower layer.
The surface winds, being the vertical integral of the potential vorticity fluxes, are
westerly in the baroclinic region and easterly to either side. The mean balance of
forces in the lower layer is between the Coriolis force on the meridional wind and
the frictional force on the zonal wind, with the vorticity fluxes being smaller than
either.
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Fig. 12.12 Schema of the eddy fluxes in a two-layer model of an atmo-
sphere with a single mid-latitude baroclinic zone. The upper layer fluxes
are solid lines, the lower layer fluxes are dashed. The lowest panel shows
the sum of the lower and upper layer vorticity fluxes (or, the same thing,
the sum of the potential vorticity fluxes), which is proportional (when the
surface friction is a linear drag) to the surface wind. The fluxes satisfy
the various relationships and integral constraints of section 12.2.2 but are
otherwise idealized.
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Phenomenology of a Two-layer Mid-latitude Atmosphere: a
Summary

A radiative forcing that heats low latitudes and cools high latitudes will lead to a inter-
face that slopes upward with increasing latitude, and a poleward total mass flux in the
upper layer and an equatorward flux in the lower layer. The interface implies a thermal
wind shear between the two layers. Neglecting relative vorticity, the potential vorticity
gradients in each layer are given by

@q1

@y
D ˇ �

f0

H1

@h1

@y
> 0 and

@q2
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D ˇ �

f0

H2

@h2

@y
. 0: (TL.1)

The gradient is large and positive in upper layer and small and negative in the lower
layer — the gradient must change sign if there is to be baroclinic instability which we
assume to be the case. This baroclinic instability generates eddy fluxes that largely
determine the surface winds and the meridional overturning circulation. The zonal mo-
mentum equation in each layer is
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In steady state the potential vorticity flux will be equatorward in the upper layer and
poleward in the lower layer. Because the mass flux in each layer is equal and opposite,
the surface wind is given by the vertical integral of the vorticity or potential vorticity
fluxes, namely

rh1u1 D h1v
0
1
q0

1
C h2v

0
2
q0

2
D h1v

0
1
�0

1
C h2v

0
2
�0

2
(TL.3)

Because the potential vorticity gradient in the upper layer is large, this layer is more
linear than the lower layer and Rossby waves are better able to transport momentum.
The vorticity flux is thus stronger in the upper layer than the lower and, using (TL.3),
the surface winds are positive (eastward) in the mid-latitude baroclinic zone (see Fig.
12.12). To balance the upper level midlatitude momentum flux convergence a merid-
ional overturning circulation (a Ferrel cell) is generated. In a steady state f0v1 D �v0

1
�0

1

so that the zonally averaged upper level flow is equatorward. However, the total mass
flux in the upper level is poleward; thus, the equatorward meridional velocity in the
upper branch of the Ferrel cell is an product of an Eulerian zonal average and does not
correspond to a net equatorward mass transport.
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Overturning circulation

The residual circulation is ‘direct’, meaning that warm fluid rises in low latitudes, moves
poleward aloft, and returns near the surface. In low latitudes, the zonally averaged Eule-
rian circulation circulates in the same way, for this is the Hadley Cell. In midlatitudes,
in the upper layer where friction is small the zonal momentum equation is, in steady
state,

� f0v1 � v0
1
�0

1
(12.87)

and because the right-hand side is positive the mean flow is equatorward, giving rise
to the upper branch of the Ferrel cell. Because the total mass flux in the upper layer is
poleward, the eddy mass flux must be poleward, and larger than that of the mean flow.

In the lower layer the balance in the zonal momentum equation is

� f0v2 � v0
2
�0

2
� ru2 (12.88)

and using (12.83) we obtain

f0v2 �
H1

H2

v0
1
�0

1
D �

H1

H2

f0v1: (12.89)

Thus, in the poloewards return flow of the Ferrel Cell there is a balance between the
Coriolis force, friction, and eddy momentum fluxes. In the real atmosphere much of
this return flow is confined to the planetary boundary layer.

12.3 * EDDY FLUXES AND NECESSARY CONDITIONS FOR INSTABILITY

In linear baroclinic instability problems, a necessary condition for instability (the Charney-
Stern-Pedlosky, or CSP, condition) is that the potential vorticity change sign in the in-
terior of the fluid, or that the potential vorticity gradient in the interior has a particular
sign with respect to the buoyancy gradient at horizontal bounding surfaces, as discussed
in chapters 6 and 7. These conditions don’t apply in the statistical steady state of the
forced-dissipative problem, but we may derive related conditions that do, although they
are not completely general. We will focus on the interior condition and not the bound-
ary conditions, as is appropriate in a layered model, but the argument may be extended
to cover boundary issues explicitly.

The linear perturbation potential vorticity equation is

@q0

@t
D �u

@q0

@x
� v0 @q

@y
� D0 (12.90)

where D0 represents dissipative processes. From this we form the enstrophy equation

1

2

@q02

@t
C D0q0 D �v0q0

@q

@y
: (12.91)

In the standard linear problem we take D D 0 and then for growing waves the right-
hand side is positive. But the integral of v0q0 over latitude and height is zero, and thus
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v0q0 takes both positive and negative signs. Hence, @q=@y must also take both positive
and negative signs, and we recover the CSP condition that @q=@y must change sign for
an instability.

In a statistically steady state the production of variance by the terms on the right-
hand-side is balanced a cascade of variance and dissipation at small scales. Just as in
the linear instability problem the left-hand side is positive, now because D0q0 > 0, and
therefore, once more, we see that @q=@y must change sign somewhere. Furthermore,
the eddy flux must be downgradient everywhere, i.e., v0q0@q=@y < 0, because the left-
hand-side is positive everywhere.

If we now include nonlinear terms the zonally-averaged perturbation enstrophy
equation becomes

1
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v0q02 � D0q0 : (12.92)

On integrating in y the third-order term vanishes and we obtain
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and so, if left-hand side is positive, the flux must still be downgradient in the integrated
sense that Z

v0q0
@q

@y
dy < 0: (12.94)

If the flux is locally downgradient, and in the nonlinear case this is an additional phys-
ical assumption, then because v0q0 has both positive and negative values (because its
integral is zero) the mean potential vorticity gradient must also change sign. That is,
when dissipation is present and if the potential vorticity fluxes are downgradient, a sta-
tistically steady state can only be maintained if the potential vorticity gradient changes
sign somewhere. In the continuously stratified case, this condition is replaced by ones
involving a combination of the interior potential vorticty gradient and the buoyancy
gradient at the boundary, the conditions being the same as necessary conditions for
instability.

12.4 † TOWARD A CLOSED MODEL

12.4.1 Equations of motion

In this section we construct a closed, two-layer model of the midlatitude circulation.
Specifically, we invoke a potential vorticity closure, and then explicitly calculate the
zonal winds and meridional circulation. With quasi-geostrophic scaling, the equations
of motion are the momentum equations
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538 Chapter 12. Mid-Latitude Atmospheric Circulation

and the mass conservation equation for each layer which may be written as an equation
for the interface height,

@�

@t
� H1

@v�
1

@y
D S; (12.96)

where � D h1 � H1 D H2 � h2, with the notation of the previous sections. This can be
written in terms of v�

2 because

H1v
�
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The velocities and thickness of the layers are related by the thermal wind relation
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Eliminating time derivatives between (12.95) and (12.96) reveals that the residual cir-
culation satisfies
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Thus, the residual circulation is driven by the potential vorticity fluxes, plus the diabatic
terms. We may derive a similar expression for the Eulerian mean meridional flow,
namely
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However, the right-hand-side now involves both the eddy vorticity fluxes and the eddy
mass fluxes. The above equations illustrate the natural way in which the potential vor-
ticity fluxes proximately ‘drive’ the extratropical atmosphere (see box on page 548).

Potential vorticity equation

A single prognostic equation for each layer is obtained by eliminating the residual cir-
culation from (12.95) and (12.96), giving
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where the qi are the quasi-geostrophic potential vorticities of each layer given by
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12.4.2 Closure

If the potential vorticity fluxes can be expressed in terms of the mean fields then (12.101)
is closed, and we solve for the potential vorticity in each layer and then, using (12.99),
the residual circulation. One simple and rational closure is to assume that potential
vorticity flux is transferred downgradient so that

v0
iq

0
i D �Ki

@qi

@y
(12.103)

where Ki is an eddy diffusivity, or transfer coefficient, which here is just a scalar quan-
tity.4 Note that the model demands a closure of the potential vorticity flux — not mo-
mentum, vorticity or the mass flux — and potential vorticity, being a materially con-
served variable, is also that field for which a diffusive closure is most applicable.

Such a closure has all of the features and problems associated with diffusive clo-
sures discussed in chapter 10, plus some of its own. One such is that a diffusive closure
will not automatically respect the kinematic constraint that the volume integral of the
potential vorticity flux must vanish, which for the two-layer model is expressed by
(12.81). We may choose the vertical structure of the diffusivity in such a way that this
constraint is satisfied, and in that case the model produces the results illustrated in Fig.
12.13. The diffusive closure does indeed then produce potential vorticity fluxes similar
to the observed westward-eastward-westward surface wind pattern, and a residual cir-
culation of the same sense as in Fig. 12.10, and constitutes perhaps the simplest closed
model of the zonally-averaged atmospheric circulation. Note that the surface wind is
produced by the integral of the potential vorticity flux and, because the fluxes are quite
different in the two layers, two layers are needed to produce a realistic pattern of sur-
face wind without oversimplification, as well as to represent the meridional overturning
and residual circulations. However, the model should not be regarded as being quan-
titatively valid, and the results depend on the structure of the transfer coefficients and
the boundary conditions chosen. Some of these difficulties will become apparent for
readers who attempt problem 12.1.

12.5 A STRATIFIED MODEL AND THE REAL ATMOSPHERE

We now discuss, rather qualitatively, the dynamics of a stratified model and the real
atmosphere. These dynamics are generally similar to that of the two-layer model, al-
though a number of differences in interpretation arise. In particular, rather than the
potential vorticity flux in the two layers, it is the potential vorticity flux in the interior
and the buoyancy flux near the boundary that are key aspects in producing the mean
circulation.

12.5.1 Potential vorticity and its fluxes

The observed zonally-averaged potential vorticity field is show in Fig. 12.14. Of
import to us here is the fact that over most of the atmosphere, over most of the year,
the potential vorticity gradient is monotonic, decreasing polewards. How, then, can the
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Figure 12.13 Results from a
diffusive closure in a two-layer
zonally-averaged model. Upper
layer quantities are solid lines,
lower layer quantities are dashed.
The specified zonally averaged
zonal velocity (top panel) is large
in the upper layer and zero in the
lower layer. This produces the
potential vorticity structure illus-
trated in the middle panel, in units
in which ˇ D 1, with a large
positive PV gradient in the upper
layer, and small negative one in
the lower layer. A diffusive closure
of the form (12.103) then produces
the potential vorticity fluxes illus-
trated at bottom, where the sum of
the fluxes in the two layers (which
produces the tendency in the sur-
face wind) is the dot-dashed line.
The residual circulation is propor-
tional to the negative of the PV
flux, and so is poleward in the up-
per layer and equatorward in the
lower layer. The vertical structure
of the diffusivity is chosen such
that (12.81) is satisfied.
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atmosphere be baroclinically unstable? It is because the surface buoyancy (or tempera-
ture) gradient also decreases polewards, and thus the atmosphere becomes unstable via
the interaction of a surface edge wave with an interior Rossby wave (chapter 6). Thus, in
a stratified atmosphere mid-latitude baroclinic instability excites Rossby waves which
propagate meridionally, producing a momentum convergence and westward flow, much
as described in section 12.1.

Surface winds

Consider the zonally-averaged, continuously stratified momentum equations with quasi-
geostrophic scaling,
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D v0�0 C f0v C F D v0q0 C f0v

�
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where F D ˛@�=@z represents frictional effects and at the surface � � ru, and the
residual velocity v� is given by
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(a)

(b)

Figure 12.14 The ob-
served zonally-averaged
potential vorticity dis-
tribution (thicker, solid
and dashed lines, peak-
ing up at the equator)
and the potential tem-
perature (lighter lines)
for (a) annual mean,
(b) December-January-
February. Also shown
is the position of the
WMO thermal tropopause
(dot-dashed line). The
potential vorticity is
in ‘PV units’: 1 PVU �

1:0�10�6 m2 K s�1 kg�1.
Note the uneven contour
interval for potential
vorticity.

Vertically integrating (12.104) from the surface (where the stress is proportional to the
wind) to the top of the atmosphere (where frictional stresses and the buoyancy flux both
vanish) we find, in steady state,

ru.0/ D

D
v0�0

E
D
˝
v0q0

˛
C
f0

N 2
v0b0.0/ (12.106)

where the angle brackets denote a vertical integral and .0/ denotes the surface value.
Thus, the surface winds are determined, analogously to (12.83), by the vertically inte-
grated relative vorticity fluxes, or equivalently by the integral of the interior potential
vorticity fluxes and the buoyancy fluxes at the surface. The advantage of the latter
representation is that both potential vorticity and buoyancy are materially conserved
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variables and it may be easier to say something about their fluxes than it is about the
fluxes of relative vorticity. Compared to the two-layer formulation, the interior fluxes
are analogous to those of the upper layer whereas the surface fluxes are analogous to
those of the lower layer, especially as that lower layer becomes thin.

Potential vorticity and Eliassen-Palm fluxes

The potential vorticity flux may be written as the divergence of the Eliassen-Palm vec-
tor,

v0q0 D rx �F (12.107)

where rx � � j @=@y C k @=@z and

F � �u0v0 j C
f0

N 2
v0b0 k: (12.108)

In spherical and pressure coordinates we have
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where r�� is the divergence in the meridional plane. (See also the appendix to this
chapter.) The quasi-geostrophic expression retains a constant value of f , although a
varying value is often used in observational analyses. The EP vector as obtained from
an idealized GCM integration is illustrated in Fig. 12.15, and from observations in Fig.
12.16, and both show qualitatively similar properties — a generally upwards-pointing
vector in midlatitude, veering equatorwards aloft.

The upwards component represents the meridional transfer of heat, and this occurs
during the growth phase of the baroclinic life-cycle and is qualitatively captured by lin-
ear models — for example, in the Eady problem the EP flux is directed purely vertically
(Fig. 7.2), and resembles the vertical components of Fig. 12.15 and Fig. 12.16. But why
should the average over a complete baroclinic lifecycle (which the latter two figures rep-
resent) resemble that of the growing phase of the baroclinic lifecyle? It is because the
eddies do not decay baroclinically, and their lifecycle is not reversible. Rather, there is
an irreversible transfer to barotropic modes (as described in chapter 9) followed by a
barotropic decay. Thus, there is no downwards heat transfer in the cycle, and on average
the heat transfer balances the net atmospheric heating.

The lateral EP flux is a consequence of Rossby wave propagation, as described in
section 12.1. Baroclinic instability plays the role of the midlatitude wavemaker, and the
EP flux emanates laterally. The propagation is an irreversible process, with the Rossby
waves breaking some distance from their source, and it is this that breaks the non-
acceleration conditions and provides the mean flow acceleration and, consequentially,
the observed zonal wind.

The two components of the EP flux have rather different effects on the mean flow
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Fig. 12.15 The Eliassen-Palm flux in an idealized primitive equation of
the atmosphere. (a) The EP flux (arrows) and its divergence (contours, with
intervals of 2 m s�1/day). (b) The EP flux (arrows) and the time- and zonally-
averaged zonal wind (contours).
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Fig. 12.16 The observed (i.e., re-analysed) Eliassen-Palm flux (arrows)
and its divergence (contours, with intervals of 2 m s�1/day, zero contour
omitted) in the Northern hemisphere. Solid contours denote divergence, a
positive torque on the flow, and dashed contours denote convergence, a
negative torque. (a) Annual mean, (b) DJF (December-January-February).

(a) (b)

Fig. 12.17 The observed zonally-averaged zonal wind (thicker contours, in-
terval 5 m s�1) superimposed on the Eliassen-Palm flux divergence (contour
interval 2 m s�1/day, zero contour omitted). Regions of positive E-P flux
divergence are lightly shaded; regions less than �2 m s�1/day are more
darkly shaded. (a) Annual mean, (b) DJF (December-January-February). The
vertical coordinate is log pressure, Z D �7:5 log.p=p00/ km.
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(a) (b)

Fig. 12.18 The divergence of the two components of the EP flux for DJF: (a)
The horizontal divergence (@=@y ) of (the negative of) the eddy momentum
fluxes; contour interval is 1 m s�1=day�1, light shaded for positive values
> 1, dark shaded for negative values < �1. (b) Vertical divergence (@=@z )
of the buoyancy component, with contour interval and shading convention
as in Fig. 12.17. Thicker contours are the zonally averaged zonal wind. The
vertical coordinate is log pressure, Z D �7:5 log.p=p00/ km.

(Fig. 12.18). The horizontal component acts to extract momentum from the subtropics
and deposit it, and so accelerate the flow, in mid-latitudes, producing a fairly barotropic
eastward jet. The vertical component of the EP flux acts to reduce the intensity of the
mid-latitude westerlies aloft, transferring momentum to the surface it may be balanced
by friction, and producing the surface westerlies.

Two questions spring to mind:
(i) Why is the meridional wave-activity propagation predominantly in the upper at-

mosphere?
(ii) Why is the propagation predominantly equatorward?

It is in the upper atmosphere because it is here that the potential vorticity gradient is
strongest, as can be seen from Fig. 12.14, and which can be understood on the basis
of the two layer model (for example, Fig. 12.13). Thus, wave propogation is more
efficient in the upper troposphere, whereas the lower troposphere is more nonlinear and
so here the enstrophy cascade, and wavebreaking, occur locally and closer to the region
of baroclinic instability itself. Regarding item (ii), the proximate reason is that waves
predominantly break on the equatorial side of the instability, and this in turn is for two
possible reasons. One is that ˇ increases toward the equator, so that linear propagation
is more efficient. The other is that there is often a critical layer in the subtropics, where
the speed of the waves equals that of the flow itself (u D c), and here breaking can
efficiently occur. However, we do not explore this problem further here.
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12.5.2 Overturning circulation

The Eulerian overturning circulation (meaning the circulation from a conventional zonal
average at constant height) in midlatitudes is a single indirect cell, the Ferrel Cell, with
rising motion at high latitudes and sinking in the subtropics (Fig. 12.19). The residual
circulation is direct and, consistent with the theory of section 7.3.3, resembles closely
the thickness weighted circulation. Qualitatively these features are captured by the two-
layer dynamics of section 12.2.2, but the continuously stratified case differs in some
important respects.

One difference is that the return flows — both the lower branch of the Ferrel Cell
and the equatorial branch of the residual circulation — is not distributed over the lower
troposphere, but is confined to a relatively thin layer. In the lower branch of the Ferrel
Cell the dynamical balance is between friction and the Coriolis force on the meridional
flow, so that its thickness is that of a turbulent Ekman layer and about a kilometre.

To understand the residual circulation, consider it first from a quasi-geostrophic
perspective. The mean potential vorticity gradient in the free atmosphere is nearly ev-
erywhere polewards and the potential vorticity flux is largely downgradient and equa-
torward. This means that the residual circulation is largely polewards, satisfying the
balance

f v�
� �v0q0 (12.111)

In a multi-layer quasi-geostrophic model, the circulation is closed by return flow in the
lowest model layer, as as the number of layers increases the return flow is carried in
an ever-thinner layer, a delta-function in the conntinuous limit, just as in the example
of residual flow in the Eady problem (section 7.5). In the real atmosphere, the return
flow cannot be confined to a delta-function, but this argument suggest that it will occur
close to the surface, regardless of frictional effects and this expectation is borne out in
the lower panels of Fig. 12.19. In fact, the much of the equatorial return flow occurs at
between isentropic surfaces that are, on average, below the level of the surface.

12.6 THE TROPOPAUSE AND THE STRATIFICATION OF THE ATMOSPHERE

As You Like It.

William Shakespeare, c. 1599.

The atmosphere may be divided by stratification into certain distinct regions, indicated
in Fig. 12.20. The figure shows the so-called ‘U.S. standard atmosphere’, a rough av-
erage temperature profile and a sometimes-useful standard, as well as actual observed
values in the lower atmosphere. In the lower 10 km or so of the atmosphere we have the
troposphere, a dynamically active region wherein most of the weather and the vast pre-
dominace of heat transport occurs. The troposphere is capped by the tropopause, above
which lies the stratosphere, a region of stable stratification extending upwards to about
50 km. (Troposphere means ‘turning sphere’, appropriately so as within it dynamical
overturning is prevalent. Stratosphere means ‘layered sphere’, and here there is much
less vertical motion.) The stratosphere is capped by the stratopause, above which are
the mesosphere, thermosphere, and exosphere, regions of the upper atmosphere that do
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Fig. 12.19 Top: The observed zonally averaged, Eulerian-mean, streamfunction in
Northern Hemisphere winter (DJF, 1994–1997). Negative contours are dashed, and val-
ues greater or less than 1010 kg s�1 (10 Sv) are shaded, darker for negative values. The
circulation is clockwise around the ligher shading, anticlockwise around dark shading.
The three thick solid lines indicate various measures of the tropopause: the two that
peak at the equator are isolines of potential vorticity, Q D ˙1:5;˙4 PV units, and
the flatter one is the WMO thermal tropopause (section 12.6) Middle: The thickness-
weighted, or isentropic-mean, meridional mass streamfunction. After calculation in isen-
tropic coordinates, the streamfunction is projected back onto log-pressure coordinates
(Z D �7:5 log.p=p00/ km) for display. Bottom: the residual, or transformed Eulerian
mean, streamfunction calculated from the Eulerian circulation and the eddy fluxes.5
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Potential Vorticity Fluxes and the Extra-Tropical Atmosphere

The extra-tropical circulation of the atmosphere is driven by the differential heating
between equator and pole, mediated by fluxes of potential vorticity. Thus, in a layered
model:

(i) Zonal Winds: At each level the acceleration of the zonal winds is governed by the
potential vorticity fluxes:

@ui
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@y
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�
i C friction (PV.1)

(ii) Surface Winds: In steady state, the surface winds are produced by the vertically
integrated potential vorticity fluxes:
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where us is the surface wind, Hs the thickness of the lowest layer, and r is a
frictional coefficient.

(iii) Meridional Transport: The total (or residual) meridional transport is, proximately,
forced by the potential vorticity fluxes. For example, in a two-layer model
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where S is proportional to the diabatic forcing, and this equation holds at all times.
In steady state the momentum equation gives simply

f0v
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1
q0

1
C friction: (PV.4)

Above the surface layer friction is negligible and the meridional transport responds
almost solely to the potential vorticity fluxes.

not concern us here. Our focus will be on the processes that determine the stratification
of the lower atmosphere and the height of the tropopause.6

In the troposphere temperature generally falls with height, whereas in the strato-
sphere it increases with height, and this gives rise to a thermal definition of the tropopause:7

The tropopause is the lowest level at which the lapse rate decreases to 2 K km�1 or less,
provided also that the average lapse rate between this level and all higher levels within
2 km does not exceed 2 K km�1. At any particular time there might also be a second
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Figure 12.20 (a) The
temperature profile of the
‘U.S. Standard Atmosphere’,
marking the standard re-
gions of the atmosphere be-
low 80 km. In addition to
the regions shown, the top
of the mesosphere is marked
by the mesopause, at about
80 km, above which lies
the ‘thermosphere’, in which
temperatures rise again into
the ‘exosphere’, extending a
few thousand kilometers and
where the atmospheric tem-
perature ceases to have use-
ful meaning. (b) Observed,
annually averaged profiles of
temperature in the atmo-
sphere, where the ordinate
is log-pressure. ‘Tropics’ is
the average from 30° S to
30° N, and the extratropics is
the average over the rest of
the globe. The observations
are a from re-analysis over
1958–2003 that extends up-
ward to about 35 km. See
text for the meaning of
‘tropopause-based average’.

tropopause: if above the first tropopause the average lapse rate between any level and
all higher levels within 1 km exceed 3 K km�1, then a second (higher) tropopause is
defined by that same criterion. Finally, such definitions are presumed not to apply if
they are satisfied below 500 mb. As so defined, the thermal tropopause typically varies
in height from about 16 km in low latitudes to about 8 km near the poles.

One may wonder whether such statements reflect a robust property of the atmo-
sphere, or are merely a practical definition of the tropopause, and certainly we should
not expect these quantitative definitions to hold in a changed climate, but regardless of
that the tropopause is a distinct boundary separating two differently-stratified regions,
the troposphere and stratosphere. The thermal tropopause is marked in Fig. 12.19 and,
as we see there and in Fig. 12.14, in the extra-tropics it is almost parallel to isolines of
potential vorticity, and sometimes an isoline of potential vorticity (say Q D 3 or 4 PV
units) is used as an ad hoc definition of the extra-tropical tropopause.

Finally, and interestingly, we note that the tropopause appears as a very sharp fea-
ture when viewed instantaneously, although this sharpness is often blurred when time or
spatial averages are taken. The solid line in Fig. 12.20, denoted ‘tropopause-based aver-
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Figure 12.21 Schema of
the radiative equilibrium profile
(solid), and two profiles of a
radiative-dynamical equilibrium
in which the lower atmosphere
is adjusted to some specified
lapse rate N1 or N2. Here, N2 >

N1 and H.N2/ > H.N1/.
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age’, shows the profile obtained when the tropopause height itself is taken as a common
reference level, using data from individual radiosonde ascents over the United States.8

12.6.1 A radiative-convective model

The radiative-equilibrium temperature is that temperature which arises from a pure ra-
diative balance. Thus, a black body subject to a net incoming radiation of S (Watts per
square meter) has a radiative-equilibrium temperature Trad given by �T 4

rad D S where
� D 5:67 � 10�8 W m�2 K�4. For partially absorbing media like the earth’s atmo-
sphere the radiative equations are correspondingly more complicated, but nevertheless
the vertical structure of the radiative equilibrium temperature may be calculated and
its qualitative features are easy to understand. The atmosphere is largely transparent
to solar radiation and thus it is largely heated from below by the ground, both through
the latter’s emission of infra-red radiation and by latent and sensible heat transfer. The
atmosphere absorbs and re-emits infra-red radiation, and the upshot is that the radiative-
equilibrium temperature falls rapidly in the lowest several kilometers of the atmosphere
before rising again, this being in part as a consequence of a layer of ozone in the strato-
sphere, concentrated between 25 and 30 kilometers altitude, that absorbs solar radiation.
A radiative-equilibrium profile is sketched in Fig. 12.21 and, although schematic, it il-
lustrates an important point — the radiative equilibrium temperature falls so rapidly
in the lower atmosphere that it would be convectively unstable. Detailed calculations
show that �@Trad=@z is often greater than 10 K km�1, so exceeding even the dry adi-
abatic lapse rate and far exceeding the moist adiabatic lapse rate of about 6 K km�1

(depending on temperature).
This observation suggests a simple radiative-convective model of the structure of

the stratification, as follows. Starting with a radiative-equilibrium profile, the temper-
ature in the lower atmosphere is modified by convective overturning until it becomes
statically neutral, when the lapse rate is equal to the dry or, if saturated, the moist adi-
abatic lapse rate. Such an adjustment will occur to such a height as is needed, above
which the radiative-equilibrium temperature is maintained, and consequently there will
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typically be a sharp transition between the two regimes which may be identified with
the tropopause. As we see in Fig. 12.21 the height of the tropopause will depend on the
lapse rate in the troposphere, a larger lapse rate (i.e., a more negative @T=@z) leading
to a lower tropopause. This result does not depend on the adjustment mechanism being
convective, meaning being due to small-scale essentially vertical motion. Any dynam-
ical process that adjusts the lapse rate in the troposphere may produce a similar effect,
and the consequent lapse-rate is called a radiative-dynamical profile.

The height of the tropopause can be calculated if we know how to calculate the
radiative equilibrium temperature and if we are given the tropospheric lapse rate. The
simplest calculation assumes that the radiative equilibrium temperature of the strato-
sphere is unaltered by the adjustment process. Then, suppose that the initial temperature
profile is given as a function of height by

Ti.z/ D

(
Tsi � Az z � z1

.Tsi � Az1/C B.z � z1/ z � z1

(12.112)

where the parameters A, B and Tsi are given, z1 is the height at which the radiative equi-
librium temperature starts to increase, and below z1 the profile is convectively unstable.
If convection adjusts this profile to become

Tf.z/ D Tsf � C z z < H (12.113)

until it intersects the stable profile at some height H > z1, then we require

Tsf � CH D .Tsi � Az1/C B.H � z1/; (12.114)

whence

H D
Tsf � Tsi C .A C B/z1

B C C
: (12.115)

The final surface temperature is given by an energetic argument, that assuming there is
no significant conversion to kinetic energy the internal energy plus the potential energy
is conserved, or

RH

0
�.cvT Cgz/ dz is fixed. (If condensation occurs there is an increase

in energy equal to the latent heat released.)
The argument above is oversimplified in assuming that the radiative equilibrium

temperature above the adjusted region is not altered by the adjustment process, but
nevertheless there are a couple of robust conclusions:

(i) The mechanism produces a relatively sharp tropopause, the existence of which
does not depend on the stratospheric temperature actually increasing with height.
The tropopause is simply the boundary between radiative equilibrium temperatures
aloft, and dynamically influenced temperatures below.

(ii) The smaller the lapse rate (i.e., the lower the value of �@T=@z , or equivalently the
larger the stratification N 2) to which the lower atmosphere is adjusted, the higher
and the warmer the tropopause.
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12.6.2 Radiative and dynamical constraints

We assumed in our simple calculation that the radiative equilibrium temperature pro-
file of the stratosphere was given, independently of the troposphere. This is not quite
right, but if we can calculate the radiative equilibrium profile as a function of temper-
ature then we can calculate the height of the tropopause if we are given the lapse rate
in the troposphere and the surface (or average) temperature. The tropopause height
is then the height at which the tropospheric temperature profile matches the radiative
equilibrium temperature. The calculation can, at least in principle, be inverted: if the
tropopause height is given (perhaps via purely dynamical reasoning), and the surface or
average tropospheric temperature is also given, and one assumes a stratosphere in radia-
tive equilibrium, then the tropospheric lapse rate follows. To illustrate this without the
complication of a full radiative model, consider the heat balance at a particular latitude.
The outgoing infra-red radiation, I , is in balance with the incoming solar radiation, S ,
the convergence of horizontal energy flux C and the flux from the surface, F . The tem-
perature profile must adjust itself so that I D S C F C C , so that we may think of I as
being effectively given — a radiative constraint. Suppose that the temperature profile
has a constant lapse rate below some height Ht (the tropopause) and that above this
radiative equilibrium holds. Given this, we may parameterize the outgoing infra-red ra-
diation by a specification of the tropopause height Ht , the surface temperature Ts , and
the temperature at the tropopause, Tt . If dynamical processes serve to specify the lapse
rate and the surface temperature, then the tropospheric height is determined from the
radiative constraint. Alternatively, if the tropospheric height and surface temperature
are specified, the lapse rate follows.

It is clear from the above arguments that we don’t need convection per se to produce
a tropopause — a boundary will in general occur separating a dynamically influenced
troposphere and a stratosphere in near radiative equilibrium. We may more generally
think of the troposphere as that region of the atmosphere in which a redistribution of
heat occurs, much of which may be lateral. This picture suggests itself naturally from
the lower two panels of Fig. 12.19 where we see the height of the tropopause roughly
co-inciding with the height attained by the overturning circulation, and the troposphere
is then a kind of boundary layer to the atmosphere above (Fig. 12.22). The top of the
boundary layer is the tropopause but, unlike purely dynamical boundary layers (includ-
ing the oceanic thermocline) it is not marked by a discontinuity in potential temper-
ature; this is not because potential temperature is not necessarily being mixed in the
troposphere, but because radiation keeps the profile continuous. However, the vertical
temperature gradient is (approximately) discontinuous.

If this large-scale overturning circulation and associated horizontal transport of heat
is also able to transfer sufficient heat vertically so that a statically stable lapse rate can
be maintained, then small-scale convective events and convective adjustment need play
no role in determining the lapse rate of the troposphere and the height of the tropopause.
In fact, it is generally believed that within the tropics moist convection is the dominant
process determining the stratification and the height of the tropopause.9 In contrast, the
processes determining the extra-tropical stratification are still a matter of some debate,
and in the next two sections we outline some of the dynamics relevant to this problem.
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Troposphere

Isentropes

Surface Layer

Fig. 12.22 A sketch of the stratification and overturning circulation in
the lower atmosphere. The thick line marks the tropopause, the closed
contour marks the residual overturning circulation and the dashed lines are
isentropes. The overturning circulation has two distinct parts, a tropical
Hadley Cell where most of the mass is carried by mean motions, and a
shallower extra-tropical cell in which most of the mass transfer occurs via
eddy motion. The equatorwards return flow is mostly confined to a shal-
low surface layer. The ‘lower stratosphere’ is ventilated by the troposphere
along isentropic surfaces, whereas in the ‘upper stratosphere’ isentropes
do not intersect the tropopause. The tropopause is the boundary between
the partially-mixed troposphere and the near-radiative equilibrium strato-
sphere.

The theories fall into two general camps, one related to the redistribution of potential
vorticity by baroclinic eddies, and the second related to convection, and we deal with
them in turn.

12.7 † BAROCLINIC EDDIES AND POTENTIAL VORTICITY MIXING

The fundamental idea behind the arguments in this section is that the troposphere is that
region in which a dynamical distribution of energy takes place, that that redistribution
is effected by baroclinic eddies, and that potential vorticity dynamics then provides a
natural height for these eddies and so of the tropopause.

In mid-latitudes baroclinic eddies transfer heat upwards, and if they do this effi-
ciently enough there is no need for convection (meaning predominantly vertical convec-
tion occuring on small scales) to maintain a statically stable lapse rate (see Fig. 12.22).
Nonetheless, the baroclinic eddies do not extend infinitely upwards, and so we expect a
boundary (a tropopause) between a dynamical troposphere and a radiative stratosphere.
How high is this tropopause, and what is its nature?
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12.7.1 A linear argument

On the ˇ-plane, linear baroclinic instability produces a height scale that is different
from the height of any pre-existing ‘lid’ or from the density scale height. This height
scale is (section 6.10.1)

h D
�f 2

ˇN 2
(12.116)

where � D @u=@z . That is to say, if h < H , where H is the scale height (or the height
of some lid in a Boussinesq model), then the baroclinic eddies will extend upwards a
height h. Thus (one may argue), below h the thermal structure is determined by the dy-
namical effects of baroclinic instability, whereas above h the atmosphere is more nearly
in radiative equilibrium. Using � D .15 m s�1/=.10 km/, ˇ D 1:6 � 10�11 s�1 m�1,
f D 1�10�4 s�1, and N D 10�2 s�1 gives h � 10 km, which approximates the height
of the tropopause in mid-latitudes, but this can only be a rough estimate, especially as
our value of � is a little low.

Allowing the parameters f and ˇ to vary with latitude, and using the thermal wind
relation, (12.116) may be written in the form

h D s
f

ˇ
D sa tan# (12.117)

where s is the isentropic slope, �.@y�/=.@z�/. This equation. especially when written
as s D h=.a tan#/, suggests that the isentropic slope is (roughly) such that isentropes
extend from the surface at low latitudes to the tropopause at the poles, and this is roughly
true in the present atmosphere (Fig. 12.14). This is still insufficient information to
determine the lapse rate itself, for (12.116) or (12.117) provide only a single relationship
between h and N 2, and a radiative or diabatic constraint is also needed, just as with the
simple convective adjustment argument. However, a linear argument is incomplete for
two reasons:

(i) The amplitude of meridional heat transfer, which determines the meridional tem-
perature gradient, is determined by nonlinear effects.

(ii) The radiative equilibrium calculations typically indicate a radiative tropopause
whose height is typically less than that calculated using (12.116), especially so if
one uses in (12.116) the (rather small) value of N 2 that comes from the radiative
equilibrium calculation. The radiative tropopause would then provide a lid on
linear baroclinic waves, and above this their amplitude would fall rapidly (Fig.
6.21). In that case, h plays no significant role.

12.7.2 Mixing potential vorticity

Let us suppose that baroclinic eddies mix potential vorticity (a longer discussion of po-
tential vorticity mixing is given in section 10.5). Such mixing will try to homogenize
potential vorticity, or equivalently to expell potential vorticity gradients to the bound-
ary, and the (extra-tropical) tropopause would then occur at an isoline of potential vor-
ticity and be marked a near-discontinuity in the potential vorticity distribution. Because
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Q � .f=�/@�=@z , the tropopause would also correspond to a discontinuity in stratifi-
cation. Supporting this notion is the fact that potential distribution in the troposphere
is indeed significantly more homogeneous than in the stratosphere (Fig. 12.14, noting
the unequal contour intervals of PV). The correspondence is perhaps not so marked as
to convince the skeptic, and the lower stratosphere is often locally charactererized by
a more homogeneous potential vorticity that such Eulerian averages imply.10 Putting
such objections aside, let us conside to what height such potential vorticity mixing
might occur.

Potential vorticity mixing will occur only so far as needed in order that the mean
flow is stabilized. (We know that the meridional surface temperature gradient remains
negative, so that if the flow is stabilized it must involve changes in the interior poten-
tial vorticity distribution.) Neglecting the contribution of relative vorticity, the quasi-
geostrophic potential vorticity is given by

q D ˇy C
@

@z

 
f 2

0

N 2

@ 

@z

!
: (12.118)

so that
@q

@y
D ˇ �

@

@z

 
f 2

0

N 2
�

!
: (12.119)

We might hypothesize that this vertical extent is just sufficient to make the two terms
on the right-hand side a similar size in order that potential vorticity can become homo-
geneous, or that it can change sign and be just unstable; that is

ˇ �
f 2

0
�

N 2Ht

(12.120)

where Ht is the vertical extent of the instability, giving

Ht �
f 2

0
�

N 2ˇ
(12.121)

as in (12.116). Put another way, the troposphere extends vertically as far as baroclinic
waves can alter the potential vorticity from its planetary value. (A similar depth scale
occurs when evaluating the depth of the wind’s influence in a ocean circulation model,
section 14.8.1.) This height determines the tropopause, and the radiative constraint then
determines the lapse rate within the tropopause. The shear itself is proportional to the
horizontal temperature gradient, and the height of the tropopause and the meridional
temperature gradient may adjust together to ensure the satisfaction of (12.121).

This kind of equilibration is closely related to a process known as baroclinic ad-
justment, by analogy with convective adjustment.11 The essential idea is that baroclinic
eddies seek to stabilize the mean flow by transferring heat polewards and upwards un-
til the necessary condition for instability (the Charney-Stern-Pedlosky condition) is no
longer satisfied, or that potential vorticity is homogenized. It is, however, unlikely
that the atmosphere is able to completely homogenize potential vorticity, because in
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a forced-dissipative, geostrophically turbulent fluid statistical equilibration can occur
at supercritical values of the shear and so baroclinic adjustment in this ‘strong’ sense
seems unlikely to occur.12 Nevertheless, a weaker version may hold in which potential
vorticity is imperfectly homogenized and (12.121) provides a plausible scaling, but not
a precise prediction, for the height of the tropopause.

Diffusive potential vorticity mixing

A slightly different approach to the problem, albeit one with a similar basis, is to assume
that potential vorticity is transported diffusively rather than being homogenized. Let us
return to our two-layer model of the troposphere discussed in section 12.2.2, with a
slight re-interpretation of the meaning of the layers: we let the upper layer be such as
to carry all the polewards flow of the residual circulation and the lower layer carry all
the equatorwards return flow, and consequently the upper layer is much thicker than the
lower layer. We also noted previously the result that the eddy mass flux in each layer is
equal and opposite, so that,

v0
1
h0

1
D �v0

2
h0

2
: (12.122)

Further, using (12.65), in each layer the mass flux is related to the potential vorticity
flux by

viqi � �
f0

Hi

vih
0
i (12.123)

if we neglect the fluxes of relative vorticity. Let us now assume that potential vorticity
is diffused downgradient, and that the height of the tropopause is adjusted so that the
constraint (12.122) is satisfied. Given these assumptions we have
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and similarly
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(12.124b)

where Di is diffusivity of each layer. Applying (12.122) to (12.124) leads to

.D1H1 C D2H2/ˇ D f0.D2 � D1/@�=@y : (12.125)

where @�=@y D @h2=@y D �@h1=@y . Thus, assuming that D2 � D1 � D1, and that
H1 � H2 gives

H1 �
f0@�=@y

ˇ
: (12.126)

Use of the thermal wind relation gives

H1 �
f 2

0
.u1 � u2/

g0ˇ
; (12.127)

which is essentially the same as (12.121).
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12.7.3 A few remarks

The essence of the PV mixing argument is that the troposphere is that part of the at-
mosphere within which energy is redistributed by dynamical mechanisms, and that the
depth of the tropopause is determined by the constraints arising from the potential vor-
ticity dynamics that effect that redistribution. We obtain a prediction of tropopause
height (for a given meridional temperature gradient) if we assume either that:

(i) Potential vorticity is homogenized, or
(ii) The potential vorticity is redistributed diffusively, and the height of the tropopause

adjusts to satisfy certain kinematic constraints.
The assumptions within item (ii) are particular to the derivation given above, and they
are not self-evident. For example, one might suppose that the vertical distribution of
diffusivity adjusts so that the constraints are satisfied, as in section 12.4.13 We have
also neglected relative vorticity which, although a reasonable assumption for the time-
averaged state of the earth’s atmosphere, may not generally hold. Nevertheless, given
potential vorticity dynamics, the virtually equivalent scales (12.121) and (12.127) nat-
urally and unavoidably arise.

12.8 † EXTRA-TROPICAL CONVECTION AND THE VENTILATED TROPOSPHERE

A contrasting point of view is to suppose that the mid-latitude tropospheric lapse rate
is maintained by convection, the convection occurring predominantly in the warm sec-
tor of mature baroclinic waves.14 First consider a dry atmosphere. In a given baro-
clinic zone the minimum potential temperature difference between the surface and the
tropopause, �z� D �t � �g is approximately zero. If the tropopause were colder than
this the column would be convectively unstable, and the difference would become zero.
The essential assumption is that within a baroclinic zone there generally does exist a
region that is convectively unstable, and that convection then ensues with sufficient
efficiency to partially fill the troposphere with air with that surface value of potential
temperature. The process differs from that in the tropics because it is organized by baro-
clinic waves and, if we imagine a succesion of baroclinic waves around a latitude band
the mean value of �z� will be, approximately, its minimum (zero) plus half its vari-
ance. The variance in turn is a consequence of the pre-existing meridional temperature
gradient and meridional advection across that gradient, and therefore

Variance.�z�/ / �y� (12.128)

where the term on the right-hand side is the meridional temperature difference at the
surface across the baroclinic zone. The mean potential temperature difference between
the surface and tropopause is then proportional simply to the meridional temperature
gradient at that latitude, with an undetermined constant of propotionality and so

�z� / �y�: (12.129)

Finally, if moisture is present (as it is!) the vertical potential temperature difference
should be replaced by the ‘equivalent potential temperature’ difference — the equivalent
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The Stratification of the Troposphere and Stratosphere

? The troposphere is that region of the atmosphere where dynamics plays an important
role in stratification, whereas the stratosphere is more nearly radiative equilibrium
(although in winter in the lower stratosphere radiative equilibrium is not a very good
approximation). The tropopause is the sharp change in stratification between the two
regions.

? The tropospheric lapse rate and the height of the tropopause are determined by a
combination of dynamics and radiation. If a dynamical process predicts the height of
the tropopause then, if the surface temperature is also given, the stratification follows
via radiative considerations. Similarly, if the lapse rate is given, the tropopause height
follows.

? There are two general classes of theory for tropospheric stratification:

(i) Potential vorticity mixing and its variants, including baroclinic adjustment.
Baroclinic activity seeks to homogenize potential vorticity, although the ho-
mogenization may not be complete, and the depth to which the mixing occurs
determines the position of the tropopause. This is related to the idea that baro-
clinic eddies are sufficiently efficient in transferring potential vorticity and heat
that the atmosphere will be marginally critical to baroclinic instability.

(ii) Moist convection, possibly organized by baroclinic activity. It is generally
thought that moist convection does play the dominant role in determining trop-
ical lapse rates, but in the extratropics the situation is less clear-cut.

In both of these, the troposphere is the region in which a dynamical redistribution of
heat occurs.

? In (i), the constraints arising from potential vorticity dynamics suggest the importance
of the height scale Ht � .f 2�/=.N 2ˇ/, or equivalently that s � ˇHt=f , where s

is the isentropic slope, at least to the extent that relative vorticity gradients are much
smaller than planetary vorticity gradients.

? In (ii), the lapse rate is bounded from below by the moist adiabatic lapse rate and, on
average, the (equivalent) potential temperature difference between surface and tropo-
sphere is proportional to the meridional temperature difference across the baroclinic
zone.

potential temperature being essentially the potential temperature achieved when all the
water vapour in a parcel of air condenses and the latent heat of condensation is used to
heat the parcel (section 2.9.3).

Put another way, the hypothesis is that within a baroclinic wave the advection of
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warm air into a cold region necessarily leads to convection, and that this convection
then efficiently fills the available volume, to the extent possible, with the warmest pos-
sible fluid. Oceanographers will find this a comfortable concept, for they are used to the
notion of convection filling the domain with the densest available fluid (densest in the
oceanic case because oceanic convection usually occurs from the top, with cold, dense
water sinking). However, unlike the ocean in which the bottom of the container limits
the volume of dense water that can be made, here it is tropopause that provides the
upper lid; the height of this is determined by the dynamics itself, in conjunction with
the radiative constraint discussed previously. Thus, the baroclinic zone becomes, in
oceanographic parlance, ventilated by the warmest air at the surface. However, the en-
tire baroclinic zone does not completely fill with this warm air because the convection
is maintained by a meridional temperature gradient and it is necessarily intermittent:
baroclinic instability would shut off if the entire baroclinic zone were filled with ho-
mogeneous warm fluid, and the zone would then meridionally restratify, and it is this
maintenance of variance that leads to (12.129). The ultimate consequence then, is that
the moist isentropic slope is proportional to that slope which would take an isentrope at
the surface to the tropopause across a baroclinic zone. This contrasts with the potential
vorticity mixing ideas, which suggest (at least in so far as relative vorticity fluxes are
neglected) that the dry isentropic slope is proportional to the slope that goes from the
ground to tropopause over a horizontal scale f=ˇ, the equator-to-pole scale.

12.8.1 † Open questions, numerical and observational results

Details aside, the two general classes of theory for extra-tropical stratification are: (i)
Potential vorticity mixing and its variants; (ii) Convection, and in particular moist con-
vection organized by baroclinic activity. These are summarized in the shaded box on the
facing page, and a number of numerical experiments and observational tests have been
carried out to explore these.15 Simulations with fairly complete atmospheric GCMs
that include a realistic treatment of radiation do indicate that the tropopause height and
stratification can be usefully considered to be set by a combination of a radiative and
dynamical constraint. Furthermore, simulations with a dry atmospheric GCM do indi-
cate that a realistic looking troposphere structure, and tropopause, can be maintained
largely by the stirring effects of baroclinic eddies. Within the model troposphere poten-
tial vorticity is relatively well mixed, with the tropopause serving as a transport barrier.
Given the potential vorticity distribution, the distribution of the velocity and potential
temperature fields, including the lapse rate, follow by way of geostrophic invertibility.
However, more detailed numerical tests do not unambiguously lend quantitative sup-
port to the predictions embodied in (12.121) or (12.126). The truth may well lie in
some combination of our hypotheses, or elsewhere.

APPENDIX: ELIASSEN-PALM FLUX IN SPHERICAL COORDINATES

To obtain the plots of the Eliassen-Palm flux in figures 12.15, 12.16, 12.17 and 12.18
we make use of the following.16 The zonal acceleration due to the EP flux, F, is
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approximately given by
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where f D 2˝ sin# , @p� takes its mean value, and
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From these we obtain
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In the figures that show the EP vectors, the arrows have a horizontal and vertical
components proportional to F# and Fp.a=1000/ respectively, where the scaling factor
on Fp makes it possible to see the divergence by eye. In the figures that show the EP
flux divergence, we plot the right-hand side of (12A.5), namely the EP flux divergence
divided by cos# , this being the quantity that is equal to the acceleration of the zonal
flow.

Notes

1 The modern view of the mid-latitude general circulation — the largely zonally asym-
metric motion that provides the bulk of the meridional transport of heat and mo-
mentum in the extratropics — began to take form in the 1920s in papers by Defant
(1921) and Jeffreys (1926). Defant regarded the mid-latitude circulation as turbu-
lence on a large scale (geostrophic turbulence we might call it now) and actually
calculated the horizontal eddy-diffusivities using Prandtl-like mixing length argu-
ments. Soon after, Jeffreys presciently wrote of ‘the dynamical necessity for a
continual exchange of air between high and low latitude’ and that ‘no general cir-
culation of the atmosphere without cyclones is dynamically possible when friction
is taken into account.’ This point of view slowly gained ground, with, for example,
Starr (1948) advocating the point of view that large-scale eddies were responsi-
ble for the bulk of the meriodional transport of momentum in mid-latitudes, and
Rossby (1949) eventually noting in a review article that ‘One is forced to conclude
that there no longer exists a compelling reason to build the theory of the mainte-
nance of the general circulation exclusively on meridional solenoidal circulations’.
Soon after this came a series of discussion papers by Eady (Eady 1950, Eady and
Sawyer 1951, Eady 1954), that, setting the stage for the modern viewpoint, really
struggle with the turbulent transport of mid-latitude eddies and the maintenance



Notes and Problems 561

of the surface currents — the importance of the enstrophy budget is discussed,
for example, and Eady comes close to deriving wave activity conservation (p126
of Eady 1954). Another landmark is the influential monograph by Lorenz (1967)
that summarized, clarified and added to progress to that date, noting (in his last
paragraph) that the cause of the poleward eddy transport across mid-latitudes (and
hence the cause of the surface eastward winds) had not at that time been properly
explained. That explanation has come since then, by way of potential vorticity dy-
namics and the momentum transport in Rossby waves and with contributions from
many scientists, as described in this chapter and in chapter 7.

2 Held (2000), Rhines and Holland (1979).

3 This technique is discussed in Lighthill (1965, 1978).

4 Models of the general circulation of this ilk were introduced by Green (1970).

5 Adapted from Juckes (2001).

6 Early evidence that the temperature increases above about 11 km came from the
balloon measurements of Tesserenc De Bort (1902), who also suggested the names
tropopause and stratosphere. More recently, radiative and dynamical issues rele-
vant to this topic are discussed by, among others, Stone (1972), Held (1982),
Juckes (2000) and Shepherd (2002).

7 Paraphrasing World Meteorological Organization (1957); also Lewis (1991).

8 I thank Thomas Birnir for the tropopause-based averages. See also Birner (2005).

9 However, it is often said that the height of the tropical tropopause is rather higher
than the depth to which deep convection penetrates, and if true this is in need of
explanation. Both convective overshooting and the influence of the Brewer-Dobson
circulation may play a role.

10 Birner et al. (2002). Birnir (2005)

11 Stone (1978).

12 Salmon (1980), Vallis (1988).

13 As in Green (1970) and its immediate descendants, and Smith and Vallis (2002).
See also Schneider (2004) for a related argument but one that is fundamentally
non-quasigeostrophic.

14 Following Juckes (2000).

15 For example Thuburn and Craig (1997) and Haynes et al. (2001).

16 I am very grateful to E. Gerber for constructing these figures.

Further Reading

Green, J. S. A., 1999. Atmospheric Dynamics.
A rather unique view of atmospheric dynamics, with a number of personal perspec-
tives on how the atmosphere works.

Held, I., 2000. The General Circulation of the Atmosphere.
These lecture notes, from a summer school in Woods Hole, present an informal
synthesis of many modern ideas in atmospheric general circulation theory.

James, I., 1994. An Introduction to Circulating Atmospheres.
An introductory book on the global circulation of the atmosphere, with discussions
of theory, observations and models.
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Problems

12.1 � Construct a numerical model (e.g., in Fortran, C, or Matlab) that steps (12.101)
forward in time, using a diffusive closure for the potential vorticity fluxes, a fric-
tional term equivalent to a linear drag on velocity in the lower layer, and thermody-
namic source term equivalent to a relaxation back to a temperature that monoton-
ically decreases with latitude. Explore the effects of different lateral boundary con-
ditions on the potential vorticity flux, the effects of satisfying or not the kinematic
constraint (12.81), and the effects of various horizontal structures and amplitudes
of the transfer coefficients. Discuss whether this is a useful model of the zonally
averaged circulation.



Divide and conquer.

CHAPTER 13

Zonally Asymmetries, Planetary Waves
and the Stratosphere

I
N TRYING TO BUILD A THEORY of the general circulation of the extra-tropical atmosphere
it is useful to divide that task into two. The first task (chapters 11 and 12) is to un-
derstand the zonally averaged circulation and we suppose that, to a first approxima-

tion, this circulation is qualitatively the same as it would be if the boundary conditions
were zonally symmetric, with no mountains or land-sea contrasts. Given the statistically
zonally symmetric circulation, the second task is to understand the zonally asymmetric
circulation by supposing that the latter is a perturbation on the former, and using a the-
ory linearized about the zonally symmetric state. In practice, this involves calculating
the forced, stationary Rossby waves that are generated by the interaction of surface to-
pography and zonally asymmetric thermal forcing with that zonally averaged flow —
that is, we compute the forced stationary waves of the system. Properly including the
effects of transient eddies — equilibrated, finite amplitude baroclinic systems — is the
most difficult aspect of such a calculation, although their effects may be included diag-
nostically by evaluating their associated heat and momentum fluxes from observations
and adding them to the right-hand sides of the equations. However, we will find the cal-
culations are quite revealing even if the effects of transient eddies are omitted entirely.
We will focus first response to orography at the lower boundary and then consider ther-
modynamic forcing arising, for example, from a surface temperature field.1 Because
these waves propagate upwards as well as laterally, this will lead us into the second
topic of this chapter, a brief discussion of stratospheric dynamics.

563
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13.1 FORCED AND STATIONARY ROSSBY WAVES

13.1.1 A simple one-layer case

Many of the essential ideas can be illustrated by a one-layer quasi-geostrophic model,
with potential vorticity equation

Dq

Dt
D 0; q D � C ˇy �

f0

H
.� � hb/; (13.1)

where H is the mean thickness of the layer, � is the height of free surface, hb is the
bottom topography, and the velocity and vorticity are given by u D .g=f0/r

?� and
� D .@v=@x � @u=@y/ D .g=f0/r

2�. Linearizing (13.1) about a flat-bottomed state
with zonal flow u.y/ D �.g=f0/@�=@y gives

@q0

@t
C u

@q0

@x
C v0 @q

@y
D 0; (13.2)

where q0 D �0 � .f0=H /.�0 � hb/ and @q=@y D ˇ C u=L2
d

with Ld D
p

gH=f0,
the radius of deformation. Eq. (13.2) may be written, after the cancellation of a term
proportional to u@�0=@x ,

@

@t

 
�0

�
 0

L2
d

!
C u

@�0

@x
C ˇv0

D �u
@yh

@x
: (13.3)

where  0 D .g=f0/�
0 and yh D .g=L2

d
f0/hb .

The solution of this equation consists of the solution to the homogeneous problem
(with the right-hand-side equal to zero, as considered in section 5.7) and the particular
solution. We proceed by decomposing the variables into their zonal Fourier components

.�0;  0; yhb/ D Re .z�; z ; zhb/ sin ly eikx : (13.4)

where such decomposition is appropriate for a channel, periodic in the x-direction and
with no variation at its meridional boundaries at y D .0;L/. The full solution will be a
superposition of such Fourier modes but, because the problem is linear, these modes do
not interact. The free Rossby waves, the solution to the homogeneous problem, evolve
according to

 D Re z sin ly ei.kx�!t/; (13.5)

where ! is given by the dispersion relation [c.f., (5.187)]

! D ku �
@yq

K2 C k2
d

D
uK2 � ˇ

K2 C k2
d

: (13.6a,b)

where K2 D k2 C l2 and kd D 1=Ld . Stationary waves occur at the wavenumbers
where Ks D

p
ˇ=u.

To the free waves we add the solution to the steady problem,

u
@�0

@x
C ˇv D �u

@yh

@x
; (13.7)
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which gives, using the notation of (13.4)

z D

zhb

.K2 � K2
s /
: (13.8)

Now, zhb is a complex amplitude; thus, for K > Ks the streamfunction response is in
phase with the topography. For K2 � K2

s the steady equation of motion is

u
@�0

@x
� �u

@yh

@x
; (13.9)

and the topographic vorticity source is balanced by zonal advection of relative vorticity.
For K2 < k2

s the streamfunction response is out of phase with the topography, and the
dominant balance for very large scales is between the meridional advection of planetary
advection, v@f=@y or ˇv, and the topographic source. For K D Ks the response is
infinite, the stationary wave resonating with the topography. Now, any realistic topog-
raphy can be expected to have contributions from all Fourier components. Thus, for
any given zonal wind there will be a resonant wavenumber and an infinite response.
This, of course, is not observed, and one reason is that the real system contains friction.
The simplest way to include this is by adding a linear damping to the right-hand side of
(13.3), giving

@

@t

 
�0

�
 0

L2
d

!
C u

@�0

@x
C ˇv D �r�0

� u
@yh

@x
: (13.10)

The free Rossby waves all decay monotonically to zero (problem 13.12). However, the
steady problem,

u
@�0

@x
C ˇv0

D �r�0
� u

@yh

@x
; (13.11)

now has solutions

z D

zhb

.K2 � K2
s � iR/

(13.12)

where R D .rK2=uk/, and the singularity has been removed. The amplitude of the
response is still a maximum for the stationary wave, and for this wave the phase of the
response is shifted by  =2 with respect to the topography (Fig. 13.1).2 The upshot is
that for a mountain range whose Fourier composition contains all wavenumbers, there
is a minimum in the streamfunction a little downstream of the mountain ridge.

13.1.2 Application to Earth’s atmosphere

Rather surprisingly, given the complexity of the real system and the simplicity of the
model, when used with realistic topography a one-layer model gives reasonably realis-
tic answers for the Earth’s atmosphere. Thus, we calculate the stationary response to
the earth’s topography using (13.11), using a reasonably realistic representation of the
earth’s topography and, with qualification, the zonal wind. The zonal wind on the left-
hand-side of (13.11) is interpreted as the wind in mid-troposphere, whereas the wind on



566 Chapter 13. Zonally Asymmetries, Planetary Waves, Stratosphere

−1

0

1
H

ei
gh

t

Longitude
−1

0

1

H
ei

gh
t

Longitude

Longitude

La
tit

ud
e

Longitude

La
tit

ud
e

h
ψ

h
ψ

Fig. 13.1 The response to topographic forcing, i.e., the solution to (13.11),
for topography consisting of an isolated Gaussian ridge (left panels) and a
pure sinusoid (right panels). The wavenumber of the stationary wave is
about 4, and r=.uk/ D 1. The upper panels show the amplitude of the
topography (dashed curve) and the perturbation streamfunction response
(solid curve). The lower panels are contour plots of the streamfunction,
including the mean flow. With the ridge, the response is dominated by
the resonant wave and there is a streamfunction minimum, a ‘trough’, just
downstream of the ridge. In the case on the right, the flow cannot res-
onate with the topography, which consists only of wavenumber 2, and the
response is exactly out of phase with the topography.

the right-hand-side is better interpreted as the surface wind, and so perhaps about 0.4
times the mid-troposphere wind. Since the problem is linear, this simply amounts to
tuning the amplitude of the response. The results, obtained using a rather crude repre-
sentation of the earth’s topography, are plotted in Fig. 13.2. Also plotted is the observed
time-averaged response of the real atmosphere (the 500 mb height field at 45° N). The
agreement between model and observation is quite good, but this must be regarded as
somewhat fortuitous if only because the other main source of the stationary wave field
— thermal forcing — has been completely omitted from the calculation. Nevertheless,
the calculation does suggest that the stationary, zonally asymmetric, features of the
earth’s atmosphere arise via the interaction of the zonally symmetric wind field and the



13.1 Forced and Stationary Rossby Waves 567

0 90 180 270 360

0

H
ei

gh
t

Model: k1,R1

0 90 180 270 360

0

Model: k1,R2

0 90 180 270 360

0

H
ei

gh
t

Longitude

Model: k2,R1

0 90 180 270 360

0

Longitude

Model: k2,R2

Fig. 13.2 Solutions of the Charney-Eliassen model. The solid lines are
solution of (13.11) using the earth’s topography at 45° N with two values
of friction (R1 � 6 days, R2 � 3 days) and two values of resonant zonal
wavenumber (2.5 for k1, 3.5 for k2), corresponding to zonal winds of ap-
proximately 17 m s�1 and 13 m s�1. The dashed line in each panel is the
observed average height field at 500 mb at 45° N in January, and the dotted
line is the topography used in the calculations.

zonally asymmetric lower boundary, and that these may be calculated to a reasonable
approximation with a linear model.

13.1.3 * One-dimensional Rossby wave trains

Although the Fourier analysis above gives exact results, it is not particularly revealing
of the underlying dynamics. We see from Fig. 13.1 response to the Gaussian ridge is
largely downstream of the ridge, and this suggests that it will be useful to consider the
Rossby as being due to Rossby wavetrains being excited by local features. This is also
suggested by Fig. 13.3, which shows that the response to realistic topography is rela-
tively local, and may be considered to arise from two relatively well-defined wavetrains
each of finite extent one coming from the Rockies and the other from the Himalayas.

One way to analyse these wavetrains, and one which also brings up the concept of
group velocity in a natural way, is to exploit (as in section 12.1.4) a connection between
changes in wavenumber and changes in frequency. Consider the linear barotropic vor-
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Figure 13.3 The solution of the upper
left panel Fig. 13.2 (solid line), and the
solution divided into two contributions
(dashed lines), one due to the topography
only of the western hemisphere (i.e., with
the topography in the east set to zero)
the other due to the topography only of
the eastern hemisphere.
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ticity equation in the form

@

@t
.� � k2

d /C u
@�

@x
C ˇ

@ 

@x
D �r�; (13.13)

where r is a frictional coefficient, which we presume small. Setting kd D 0 for sim-
plicity, the linear dispersion relation is

! D uk �
ˇk

K2
� i r � !R.k; l/ � i r; (13.14)

where K2 D k2 C l2 and !R.k; l/ is the inviscid dispersion relation. Now, if there is
a local source of the waves, for example an isolated mountain, we may expect to see a
spatial attenuation of the wave as it moves away from the source. We thus regard the
system as having a fixed, real frequency, but a changing, possibly complex, wavenum-
ber. To determine this wavenumber for stationary waves (and so with ! D 0), for small
friction we expand the dispersion relation in a Taylor series about the inviscid value of
!R at the stationary wavenumber ks , where ks D .K2

s � l2/1=2 and Ks D
p
ˇ=u. This

gives

! C i r D !R.k; l/ � !R.ks; l/C
@!R

@k

ˇ̌̌̌
kDks

k 0
C � � � : (13.15)

Thus, k 0 � i r=cx
g where cx

g is the zonal component of the group velocity evaluated at a
fixed position and at the stationary wavenumber; using (5.185b) this is given by

cx
g D

@!R

@k

ˇ̌̌̌
kDks

D
2uk2

s

k2
s C l2

: (13.16)

The solution then decays away from a source at x D 0 according to

 � exp.ikx/ � exp.iksx � rx=cx
g / (13.17)

and, because cx
g > 0, the response is east of the source. The approximate solution for

the streamfunction (denoted  ı) of (13.11) in an infinite channel, with the topography
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Figure 13.4 A one-dimensional
Rossby wave train excited by a
delta-function mountain ridge (h,
dotted lines) in the center of
the domain and a uniform east-
ward flow. The upper curve,
G, shows the Green’s function
(13.18), whereas the lower curve
shows the exact (linear) response,
 , in a re-entrant channel numer-
ically calculated using the Fourier
method. The two solutions are
both centered around zero and off-
set for clarity; the only notice-
able difference is upstream of the
ridge, where there is a finite re-
sponse in the Fourier case because
of the progression of the wavetrain
around the channel. The station-
ary wavenumber is 7.5.

being a ı-function mountain ridge at x D x0 (and with all fields varying meridionally
like sin ly) is thus

 ı.x � x0;y/ �

8<:0 x � x0

�
1

ks

sin ly sinŒks.x � x0/� expŒ�r.x � x0/=cx
g � x � x0:

(13.18)
In the more general problem in which the topography is a general function of space, ev-
ery location constitutes a separate source of wavetrains, and the complete (approximate)
solution is given by the integral

 0.x;y/ D
1

ks

Z 1

�1

yh.x/ ı.x � x0/ dx0: (13.19)

The field  ı.x � x0;y/, is the ‘Greens function’ for the problem, and often denoted
G.x � x0;y/.

An example solution calculated using both the Fourier and Greens-function meth-
ods are illustrated in Fig. 13.4. As in Fig. 13.1 there is a trough immediately down-
stream of the mountain, a result that holds for a broad range of parameters. Here, the
solution decays almost completely in one circumnavigation of the channel, and thus,
downstream of the mountain, both methods give virtually identical results. Such a cor-
respondence will not hold if the wave can circumnavigate the globe with little attenua-
tion, for then resonance will occur and the Greens-function method will be inaccurate;
thus, whether the resonant picture or the wavetrain picture is more appropriate depends
largely on the frictional parameter. A frictional timescale of about 10 days is often
considered to approximately represent the earth’s atmosphere, in which case waves are
only slightly damped on a global circumnavigation, and the Fourier picture is natural
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with the possibility of resonance. However, the smaller (more frictional) value of 5
days seems to give quantitatively better results in the barotropic problem, and the solu-
tion is more evocative of wavetrains. The larger friction may perform better because it
is crudely parameterizing the meridional propagation and dispersion of Rossby waves
that is neglected in the one-dimensional model.3

13.2 * MERIDIONAL PROPAGATION AND DISPERSION

Rossby waves, of course, propagate meridionally as well as zonally. Furthermore, one
of the major mountain ranges on the earth — the Himalayas — is fairly localized in
the meridional direction, and even though the Rockies and Andes do form a convenient
meridional ridge the Rossby waves they generate will still propagate both zonally and
meridionally. Furthermore, the coefficients of the linear equations of motion vary with
space: on the sphere ˇ is a function of latitude and in general topography is a function
of both latitude and longitude. Given this complexity, we cannot solve the full problem
except numerically, but a few ideas from wave tracing illustrate many of features of the
response, and indeed of the stationary wave pattern in the earth’s atmosphere.4

13.2.1 Ray tracing

We will first, informally and without proof, go over some results about rays and ray trac-
ing.5 Roughly speaking, a ray is the trajectory in space along which certain properties
of a wave propagate. The ray is perpendicular to the wave front, and in a homogeneous
medium a wave propagates in a straight line. In a dispersive system, energy propagates
at the group velocity, cg D rk!, and rays are lines that are parallel to the group veloc-
ity. In non-homogeneous media the group velocity so defined will vary with position;
however, if the medium varies only slowly, on a scale much larger than that that of
the wavelength of the waves, the energy propagates along rays and, locally, the energy
propagation velocity is still given by the group velocity. Let us represent a wave by

 .xi ; t/ D 	.xi ; t/e
i�.xi ;t/ (13.20)

where the amplitude, 	 , varies more slowly than the phase, � . (We use subscripts to
denote Cartesian axes, repeated subscripts are to be summed over, and .xi ; t/ means
.x;y; z; t/ etc.) Locally, the phase is given by � � kixi � !t , and the local frequency,
!, and wavenumber, ki satisfy

ki D
@�

@xi

; ! D �
@�

@t
; (13.21a,b)

and these imply
@ki

@t
D �

@!

@xi

(13.22)

The frequency is, in general, a function of wavenumber and position, and a relation of
the form ! D !.ki ;xi/ constitutes the dispersion relation. The local group velocity is
then given by cgi � @!=@ki .
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Now, using (13.21) we can write the frequency as

! D !.ki ;xi/ D !.@�=@xi ;xi/: (13.23)

Then, using (13.23), (13.22) becomes
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; (13.24)

or, using the definition of the group velocity,

@ki

@t
C cgj
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@xj

D �

�
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@xi

�
ki

: (13.25)

The left-hand side is the change in wavenumber along a ray. If the frequency is constant,
the wavenumber is simply propagated at the group velocity. If the frequency is indepen-
dent of a particular coordinate then the corresponding wavenumber is constant along the
ray. If the frequency changes with position (as in general it will), then the wavenumber
will change along a ray, and thus so will the direction of propagation — the wave is
refracted. Note that we can write (13.25), and the definition of group velocity, in the
compact forms:

Dcg
ki

Dt
D �

@!

@xi

;
Dcg

xi

Dt
D
@!

@ki

: (13.26a,b)

where Dcg
=Dt � @=@t C .cg � r/. One other consequence of these manipulations is

that the frequency is constant along a ray. This follows by noting that frequency is a
function both a space and wavenumber so that

Dcg
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Dt
D
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�
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�
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xi

Dt
D 0; (13.27)

where the second equality follows by use of (13.26). One practical result of all this that
in problems of the form

@

@t
r

2 C ˇ.y/
@ 

@x
D 0; (13.28)

the frequency and x-wavenumber are constant along a ray.

13.2.2 Rossby waves and Rossby rays

If the topography is localized, then ray theory provides a useful way of calculating and
interpreting the response to a flow over that topography. On the ˇ-plane and away from
the orographic source the steady linear response to a zonally uniform but meridionally
varying zonal wind will obey

u.y/
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@x

�
@2

@x2
C
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@y2

�
 0
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@ 0

@x
D 0 (13.29)
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In fact, an equation of this form applies on the sphere. To see this, we transform the
spherical coordinates .�; #/ into Mercator coordinates with the mapping6

x D a�;
1

a

@

@�
D

@

@x
; y D

a

2
ln
�

1 C sin#
1 � sin#

�
;

1

a
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@#
D

1

cos#
@

@y
:

(13.30)
The spherical coordinate vorticity equation then becomes
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where uM D u= cos# and
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; (13.32)

where ˇs D 2a�1˝ cos# . Thus, ˇM is the meridional gradient of the absolute vor-
ticity, multiplied by the cosine of latitude. An advantage of Mercator coordinates over
their spherical counterparts is that (13.31) has a Cartesian flavour to it, in that the met-
ric coefficients are absorbed into the parameters uM and ˇM . Of course, unlike the
case on the true ˇ-plane, the parameter ˇM is not a constant, but this is not a particular
disadvantage if u is varying with y.

Having noted the spherical relevance we revert to the ˇ-plane and seek solutions of
(13.29) with the form  0 D z .y/ exp.ikx/, whence

d2 z 

dy2
D

�
k2

�
ˇ

u

�
z D

�
k2

� k2
s

�
z : (13.33)

where ks D .ˇ=u/1=2. From this equation it is apparent that if k < ks the solution is
harmonic in y and Rossby waves may propagate away from their source. On the other
hand, wavenumbers k > ks are trapped near their source, and so waves are trapped by
westward flow.

Without solving (13.33), we can expect an isolated mountain to produce two wave-
trains, one for each meridional wavenumber l D ˙.k2

s � k2/1=2. These wavetrains will
then propagate along a ray, and given the dispersion relation this trajectory can be cal-
culated (usually numerically) using the expressions of the previous section. The local
dispersion relation of Rossby waves is

! D uk �
ˇk

k2 C l2
; (13.34)

so that their group velocity is

cx
g D

@!

@k
D u �

l2 � k2

.k2 C l2/2
D
!

k
C

2ˇk2

.k2 C l2/2
; (13.35a)

cy
g D

@!

@l
D

2ˇkl

.k2 C l2/2
: (13.35b)
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Figure 13.5 The rays emanating from
a point source at 30° N and 180°, (nine
o’clock), calculated using the observed
value of the wind at 300 mb.7 The crosses
mark every 180° of phase, and mark the po-
sitions of successive positive and negative
extrema. The numbers indicate the zonal
wavenumber of the ray. The ray paths may
be compared with the full linear calculation
shown in Fig. 13.6.

The sign of the meridional wavenumber thus determines whether the waves propagate
poleward (positive l) or equatorward (negative l). Also, because the dispersion relation
(13.35) is independent of x and t , the zonal wavenumber and frequency in the wave
group are constant along the ray, and the meridional wavenumber then adjusts to satisfy
the local dispersion relation (13.34). Thus, from (13.33), the meridional scale becomes
larger as ks approaches k from above and an incident wavetrain wavetrain is reflected,
its meridional wavenumber changes sign, and it continues to propagate eastward.

Stationary waves have ! D 0, and the trajectory of a ray is parameterized by

dy

dx
D

c
y
g

cx
g

D
l

k
: (13.36)

For a given zonal wavenumber the trajectory is then fully determined by this condition
and that for the local meridional wavenumber which from (13.34) is

l2
D k2

s � k2: (13.37)

Finally, from (13.35) the magnitude of the group velocity is

jcgj D Œ.cx
g /

2
C .cy

g /
2�1=2 D 2

k

ks

u; (13.38)

which is double the speed of the projection of the basic flow, u, onto the wave direction.
An example of rays are shown in Fig. 13.5.

* A JWKB solution

Information about the wave amplitudes along a ray can be obtained using a JWKB
approach.8 Let us write (13.33) as

d2 z 

dy2
C l2 z D 0 (13.39)
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where
l2.y/ D k2

s � k2: (13.40)

If l.y/ is sufficiently slowly varying in y (i.e., if jdl�1=dyj < 1) then we may seek a
solution of the form

z D Aeig.y/: (13.41)

This leads to an approximate solution for g.y/, namely

g.y/ D

Z y

l.y/ dy C
1

2
i ln l.y/; (13.42)

and the approximate solution for the stationary streamfunction is then

 .x;y/ D Al�1=2 exp
��

kx C

Z y

l.y/ dy

��
; (13.43)

where A is a constant. Consider, for example, the disturbance excited by an isolated
low-latitude peak, with u increasing, and so ks decreasing, polewards of the source. As-
suming that initially that there exists a zonal wavenumber k less than ks then two east-
ward propagating wavetrains are excited. The meridional wavenumber of the polewards
wavetrain diminishes according to (13.40), so that, using (13.36), the ray becomes more
zonal. The latitude where k D ks , the ‘turning latitude’ the wave is reflected but con-
tinues propagating eastward. The southward propagating wavetrain is propagating into
a medium with smaller u and larger ks . At the ‘critical latitude’, where u D 0, l ! 1

but cx
g and c

y
g both tend to zero, but [using (13.35)] in such a way that cx

g =c
y
g ! 0. That

is, the rays become meridionally oriented and their speed tends to zero. At this latitude
the waves may be absorbed, but the analysis is specialized and beyond our scope.9 Fi-
nally, we mention without proof that for zonal flows with constant angular velocity the
trajectories are great circles.

13.2.3 Application to an idealized atmosphere

We should best think of the remarks above as helping us interpret more complete nu-
merical, but still linear, calculations of stationary Rossby waves — that is, solutions of
the stationary barotropic vorticity equation,

u

a cos#
@�0

@�
C v0

 
1

a

@�

@#
C ˇ

!
D �

uf0

a cos#
@hb

@�
� r�0; (13.44)

written in spherical coordinates, with Œu; v� D a�1Œ�@ =@# ; .@ =@�/= cos#�, ˇ D

2˝a�1 cos# and � D r2 . The last term in (13.44) crudely represents, as before, the
effects of friction and generally reduces the sensitivity of the solutions to resonances.
Such linear calculations, in turn, help us interpret the stationary wave pattern in the
earth’s atmosphere. Solutions to (13.44) may be obtained first by discretizing and then
numerically inverting a matrix, and although the actual procedure is quite involved it is
analogous to the Fourier methods used earlier for the simpler one-dimensional problem.
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Fig. 13.6 The linear stationary response induced by circular mountain at
30° N and at 180° longitude (nine o’clock). The figure on the left uses a
barotropic model, whereas the figure on the right uses a multi-layer baro-
clinic model.10 In both cases the mountain excites a low wavenumber polar
wavetrain and a higher wavenumber subtropical train.

Fig. 13.6 shows the stationary solution to the problem with a realistic Northern
hemisphere zonal flow and an isolated, circular mountain at 30° N. The topography
excites two wavetrains, both of which slowly decay downstream because of frictional
effects, rather like the one dimensional wavetrain in Fig. 13.4. The polewards prop-
agating wavetrain develops a more meridional orientation, corresponding to a smaller
meridional wavenumber l , before moving southward again, developing a much more
zonal orientation eventually to decay completely as it meets the equatorial westward
flow. The equatorially propagating train decays a little more rapidly than its polewards
moving counterpart because of its proximity to the critical latitude. More complicated
patterns naturally result if a realistic distribution of topography is used, as we see later



576 Chapter 13. Zonally Asymmetries, Planetary Waves, Stratosphere

Fig. ??. We can see wavetrains emanating from both the Rockies and the Himalayas,
but distinct polewards and equatorwards wavetrains are hard to discern.

13.3 * BAROCLINIC ROSSBY WAVES AND THEIR VERTICAL PROPAGATION

13.3.1 Forced and stationary waves in the atmosphere

Now consider the vertical propagation of Rossby waves in a stratified atmosphere. We
will continue to use the stratified quasi-geostrophic equations, but we now allow the
model to be compressible and semi-infinite, extending from z D 0 to 1. The potential
vorticity equation again describes motion in the fluid interior, with a surface boundary
condition of vertical velocity being determined by the thermodynamic equation, and
the upper boundary condition being determined by a radiation condition. Guided by
the barotropic problem, we will allow for the possibility of Ekman friction and topog-
raphy at the surface, but otherwise the flow is presumed inviscid and adiabatic. We will
proceed using standard height coordinates.11 The potential vorticity equation is

@q

@t
C J. ; q/ D 0; q D r

2 C f C
f 2

0

�R

@

@z

�
�R

N 2

@ 

@z

�
; (13.45)

where we take �R D �0e�z=H where H is a specified density scale height, typically
RT .0/=g. We linearize this equation about a zonal wind that depends only on z; that
is, we let

 D �u.z/y C  0; (13.46)

and obtain
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: (13.47)

or equivalently, in terms of streamfunction,�
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(13.48)

The lower boundary is obtained using the thermodynamic equation,
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@t
C J

�
 ;
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@z

�
C

N 2

f0

w D 0; (13.49)

along with an equation for the vertical velocity, w, at the lower boundary. This is

w D u � rhb C r� (13.50)

where two terms represent the kinematic contribution to vertical velocity due to flow
over topography and the contribution from Ekman pumping, with r a constant, and
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the effects are taken to be additive. Linearizing the thermodynamic equation about the
zonal flow and using (13.50) gives

@
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� v0 @u

@z
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N 2

f0

�
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2 0

�
; at z D 0: (13.51)

Solution

We look for solutions of (13.47) and (13.51) in the form

 0
D Re z .z/ sin lyeik.x�ct/; (13.52)

Solutions must then satisfy"
f 2
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(13.53)

in the interior, and the boundary condition

.u � c/
@ z 

@z
� z 

@u

@z
C

i˛N 2

kf0

	 D �
N 2uhb

f0

; at z D 0; (13.54)

as well as a radiation condition at plus infinity (and we must have that �0	
2 be finite).

Let us simplify by considering the case of constant u and N 2 and setting r D 0. We
then let

˚.z/ D z .z/

�
�R

�R.0/

�1=2

D z .z/e�z=2H (13.55)

and obtain the interior equation

d2˚

dz2
C m2˚ D 0; where m2

D
N 2

f 2
0

�
ˇ
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� K2

�  2

�
; (13.56a,b)

and where  2 D f 2
0
=.4N 2H 2/ D 1=.2Ld /

2 where Ld is the deformation radius. The
surface boundary condition is

.u � c/

�
d˚
dz

C
˚

2H

�
D �

N 2uhb

f0

at z D 0: (13.57)

Oscillating Waves

From (13.56b) we obtain the dispersion relation for Rossby waves, namely

! D uk �
ˇk

K2 C  2 C m2f 2
0
=N 2

: (13.58)

The three components of the group velocity for these waves are:

cx
g D u �

ˇŒk2 � .l2 C m2f 2
0
=N 2 C  2/�

.K2 C m2f 2
0
=N 2 C  2/2

; (13.59a)
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Figure 13.7 The boundary
between propagating waves
and evanescent waves as a
function of zonal wind and
wavenumber, using (13.61),
for a couple of values of  .
With N D 2 � 10�2 s�1,
 D 1:6 ( D 2) corre-
sponds to a scale height of
7:0 km (5:5 km) and a deforma-
tion radius NH=f of 1400 km
(1100 km).
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.K2 C m2f 2
0
=N 2 C  2/2

; (13.59b)

cz
g D

2ˇkmf 2
0
=N 2

.K2 C m2f 2
0
=N 2 C  2/2

: (13.59c)

The propagation in the horizontal is analogous to the propagation in a shallow water
model, although note that higher baroclinic modes (bigger m) will have a more west-
ward group velocity. The vertical group velocity is proportional to m, and therefore for
waves that are excited at the surface we must choose m to be positive, for positive k.

Stationary waves

Stationary waves have! D ck D 0. In this case (13.56) has a solution˚ D ˚0 exp.imz/

provided m2 is positive where

m D ˙
N

f0

�
ˇ

u
� K2

�  2

�1=2

: (13.60)

Furthermore, m itself must be positive. As we noted, for non-steady waves we must
choose the sign of m to ensure that the group velocity, and hence the wave activity, is
directed away from the energy source. This must still hold as m ! 0, and therefore the
positive sign in (13.60) corresponds to the physically realizable solution.12

The condition m2 > 0 holds if

0 < u <
ˇ

K2 C  2
: (13.61)

and this is illustrated in Fig. 13.7. Stationary, vertically oscillatory modes can exist
only for zonal flows that are eastward and that are less than the critical velocity Uc D

ˇ=.K2 C  2/. To interpret this condition, note that in a resting medium the Rossby
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wave frequency has a minimum value (and maximum absolute value) when m D 0 of

! D �
ˇk

K2 C  2
: (13.62)

Note too that in a frame moving with the speed u our Rossby waves (stationary in
the Earth’s frame) have the frequency �uk, and this is the forcing frequency arising
from the now-moving bottom topography. Thus, (13.61) is equivalent to saying that for
oscillatory waves to exist the forcing frequency must lie within the frequency range of
vertically propagating Rossby waves.

For westward flow, or for sufficiently strong eastward flow, the waves decay expo-
nentially as ˚ D ˚0 exp.�˛z/ where

˛ D
N

f0

�
K2

C  2
�
ˇ

u

�1=2

: (13.63)

Note that the critical velocity Uc is a function of wavenumber, and that it increases
with horizontal wavelength. Thus, for a given eastward flow long waves may penetrate
vertically when short waves are trapped.13 One important consequence of this is that
the stratospheric motion is typically of longer wavelength than that of the troposphere,
because waves tend to be excited first in the troposphere (by baroclinic instability and
by flow over topography, among other things), but the shorter waves are trapped and
only the longer ones reach the stratosphere. In the summer, the stratospheric winds are
often westward and all waves are trapped in the troposphere; the eastward stratospheric
winds that favour vertical penetration occur in the other thee seasons, although very
strong eastward winds can suppress penetration in mid-winter.

Finally, the surface boundary condition, (13.57) gives

˚0 D
N 2hb=f0

.˛; im/ � .2H /�1
(13.64)

where .˛;�im/ refers to the (trapped, oscillatory) case. Equation (13.64) indicates
that resonance is possible when ˛ D 1=.2H /, and from (13.63) this occurs when
K2 D ˇ=u, that is when barotropic Rossby waves are stationary. This wave res-
onates because the wave is a solution of the unforced (and inviscid) equations and,
because 	 D ˚ expŒz=.2H /�, it has uniform vertical structure. If K > KS then
˛ > 1=.2H / and the forced wave (i.e., the amplitude of 	 ) decays with height with
no phase variation. If ˛ < 1=.2H / then 	 increases with height, and this occurs when
.K2

s �  2/1=2 < K < KS . If .K2
s �  2/1=2 > K then the amplitude of 	 is again in-

dependent of height; their vertical structure is oscillatory, like exp.imz/. The complete
solutions are collected for convenience in the box on page 580.

13.3.2 Properties of the solution

The various dynamical fields associated with the solution can all be easily constructed
from (T.1), and a few simple properties of the solution are worth noting explicitly. In
some cases the explicit calculation is left as a problem to the reader — see problems
13.6 and 13.7.
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Stationary, Topographically Forced Solutions

Collecting the results in section 13.3.1, the stationary solutions of (13.47) and (13.51)
are:

 0.x;y; z/ D Re eimzez=2H eikx sin ly
f0hb

�
im � .2H /�1

�
K2

s � K2
; m2 > 0 (T.1a)

 0.x;y; z/ D Re eŒ.2H /�1�˛�zeikx sin ly
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and

˛ D C
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�
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C  2
�
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u

�1=2

: (T.3)

and  D f0=.2NH /. If m2 > 0 the solutions are propagating, or radiating, waves in
the vertical. If m2 < 0 the energy of the solution, j�R 

02j, is vertically evanescent. The
condition m2 > 0 is equivalent to

0 < u <
ˇ

K2 C .f0=2NH /2
; (T.4)

so that vertical penetration is favoured when the winds are weakly eastward, and the
range of u values that allows this is larger for longer waves.

Amplitudes and phases: The decaying solutions have no vertical phase variations
(they are ‘equivalent barotropic’) and the streamfunction is exactly in phase or
out of phase with the topography according as K > Ks and ˛ > .2H /�1,
or K < Ks and ˛ < .2H /�1. In the latter case case the amplitude of the
streamfunction actually increases with height, but the energy, proportional to
�Rj 02j falls. The oscillatory solutions have constant energy with height but a
shifting phase. The phase of the streamfunction at the surface may be in or out
of phase with the topography, depending on m, but the potential temperature,
@ =@z is always out of phase with the topography. That is, positive values of
hb are associated with cool fluid parcels.

Vertical energy propagation: As noted, the energy propagates upward for the oscil-
latory waves. This may be verified by calculating p0w0 where p0 is the pressure
perturbation, proportional to  0 and w0 is the vertical velocity perturbation. To
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this end, linearize the thermodynamic equation (13.49) to give
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N 2
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D 0: (13.65)

Then, multiplying by  0 and integrating by parts gives a balance between the
second and fourth terms,

N 2 0w0 D ub0v0; (13.66)

where b0 D f0@ 
0=@z and v0 D @ 0=@x . Thus, the upwards transfer of energy

is proportional to the poleward heat flux.

Meridional heat transport: The meridional heat transport associated with a wave is

�Rv0b0 D �Rf0

@ 0

@x

@ 0

@z
(13.67)

For an oscillatory wave this can readily be shown to be positive. In particular,
it is proportional to km=.K2

s �K2/, and this is positive because km > 0 is the
condition that energy is directed upwards, and K2

s > K2 for oscillatory solu-
tions. The meridional transport associated with a trapped solution is identically
zero.

Form Drag: If the waves propagate energy upward, there must be a surface interaction
to supply that energy. There is a force due to form drag associated with this
interaction, given by

Form drag D p0
@hb

@x
(13.68)

(see chapter 3). In the trapped case, the streamfunction is either exactly in or
out of phase with the topography, so this interaction is zero. In the oscillatory
case

 0
@hb

@x
D

f0h2
b
km

4.K2
s � K2/

(13.69)

where the factor of 4 arises from the x and y averages of the squares of sines
and cosines. The rate of doing work is u times this.

13.4 * EFFECTS OF THERMAL FORCING

How does thermal forcing influence the stationary eddies? To give an accurate answer
for the real atmosphere is a little more difficult than for the orographic case where the
forcing can be included reasonably accurately in a quasi-geostrophic model with a term
u � rhb at the lower boundary. Anomalous (i.e., variations from a zonal or tempo-
ral mean) thermodynamic forcing typically also arises initially at the lower boundary
through, for example, variations in the surface temperature. However, such anomalies
may be felt throughout the lower troposphere on a relatively short time-scale by way
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of such non-geostrophic phenomena as convection, so that the effective thermodynamic
source that should be applied in a quasi-geostrophic calculation has a finite vertical ex-
tent. However, an accurate parameterization of this may depend on the structure of the
atmospheric boundary layer and this cannot always be represented in a simple way.14

Because of such uncertainties our treatment concentrates on the fundamental and qual-
itative aspects of thermal forcing.

The quasi-geostrophic potential vorticity equation, linearized around a uniform
zonal flow, is [c.f., (13.48)]�
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where Q is the source term in the (linear) thermodynamic equation,
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A particular solution to (13.70) may be constructed if u and N 2 are constant, and if Q

has a simple vertical structure. If we again write  0 D Re z .z/ sin ly exp.ikx/ and let
˚.z/ D z .z/ exp.�z=2H / we obtain
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: (13.72)

If we let T D T0 exp.�z=HQ/, so that the heating decays exponentially away from the
earth’s surface, then the particular solution to the stationary problem is found to be

z D Re
i OT e�z=HQ

ku
h
.N=f0/2.Ks � K2/C H �2

Q
.1 C HQ=H /

i (13.73)

where OT is proportional to T . This solution does not satisfy the boundary condition at
z D 0, which in the absence of topography and friction is
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D
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: (13.74)

A homogeneous solution must therefore be added, and just as in the topographic case
this leads to a vertically radiating or a surface trapped response, depending on the sign
of m2. One way to calculate the homogeneous solution is to first use the linearized
thermodynamic equation (13.71), or the linearized vorticity equation (13.76), to calcu-
late the vertical velocity at the surface implied by (13.73), wp.0/ say. We then notice
that the homogeneous solution is effectively forced by an equivalent topography given
by he D �wp.0/=.iku.0//, and so proceed as in the topographic case. The complete
solution is rather hard to interpret, and is in any case available only in special cases, so
it is useful to take a more qualitative approach.
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13.4.1 Thermodynamic balances

It is the properties of the particular solution that distinguish the response to thermody-
namic forcing from that due to topography, because the homogeneous solutions of the
two case are similar. And far from the source region, the homogeneous solution will
dominate, giving rise to wavetrains as discussed previously.

We can determine many of the properties of the response to thermodynamic forcing
by considering the balance of terms in the steady linear thermodynamic equation, which
we write as
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or
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The vorticity equation is
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: (13.76)

Assuming that the diabatic forcing is significant, we may imagine three possible
simple balances in the thermodynamic equation:

(i) Zonal advection dominates, and v0 D @ 0=@x � QHQ=.f0u/

(ii) Meridional advection dominates, and v0 � QHu=.f0u/.

(iii) Vertical advection dominates, andw0 � Q=N 2. Then, for large enough horizontal
scales the balance in the vorticity equation is ˇv � f wz and v0 � fQ=.ˇN 2HQ/.
For smaller horizontal scales advection of relative vorticity may dominate that of
planetary vorticity, and ˇ replaced by uK2.

Here, HQ is the vertical scale of the source (so that @Q=@z � Q=HQ) and Hu is the
vertical scale of the zonal flow (so that @u=@z � u=Hu). We also assume that the
vertical scale of the solution is is HQ, so that @v0=@z � v0=HQ. Which of the above
three balances is likely to hold? Heuristically, we might suppose that the balance with
the smallest v0 will dominate, if only because meridional motion is suppressed on the
ˇ-plane. Then, zonal advection dominates meridional advection if Hu > HQ, and vice
versa. Defining OH D min.Hu;HQ/ then horizontal advection will dominate vertical
advection if

�1 D
ˇN 2HQ
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uf 2
0

� 1: (13.77)

More systematically, we can proceed in reductio ad absurdum fashion by first ne-
glecting the vertical advection term in (13.75), and seeing if we can construct a self-
consistent solution. If  0 D Re	p.z/e

ikx , and noting that u@	p=@z � 	p@u=@z D

u2.@=@z/.	p=u/ we obtain
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where QQ denotes the Fourier amplitude of Q. Then, from the vorticity equation (13.76),
we obtain the (Fourier amplitude of the) vertical velocity

Wp D
�ik

f0�R

Z 1

z

�Ru.K2
s � K2/	p dz: (13.79)

Using this one may, at least in principle, check whether the vertical advection in (13.75)
is indeed negligible. If u is uniform (and so Hu � HQ) then we find

	 /
iQHQ

kf0u
; and Wp /

QH 2
Q
.K2

s � K2/

f 2
0

: (13.80a,b)

Using this, vertical advection indeed makes a small contribution to the thermodynamic
equation provided that

�2 D
N 2H 2

Q
jK2

s � K2j

f 2
0

� 1 (13.81)

If K2
s � K2 and H D HQ then (13.81) is equivalent to (13.77). If u is not constant and

if Hu � HQ then Hu replaces HQ and the criterion for the dominance of horizontal
advection becomes

� D
N 2 OHHQjK2

s � K2j

f 2
0

� 1: (13.82)

This is the condition that the first term in the denominator of (13.73) is negligible com-
pared the second. For a typical tropospheric value of N 2 D 10�4 s�1 and for K > KS

we find that � � .HQ=7 km/2, and so we can expect � < 1 in extra-equatorial regions
where the heating is shallow. In low latitudes f0 is smaller and ˇ is bigger and the
� � .HQ=1 km/2 and we can expect � > 1. However, there is both uncertainty and
variation in these values.

Equivalent topography

In the case in which zonal advection dominates, the equivalent topography is given by

he D
�Wp.0/

iku.0/
D

1

u.0/f0�R.0/

Z 1

0

�Ru.K2
s � K2/	p dz (13.83)

where 	p is given by (13.78). The point to notice here is that if K < Ks the equivalent
topography is in phase with  p .

13.4.2 Properties of the solution

In the tropics �may be large for HQ greater than a kilometer or so. Heating close to the
surface cannot produce a large vertical velocity and will therefore produce a meridional
velocity. However, away from the surface the heat source will be balanced by vertical
advection. For scales such that K < KS , a criterion that might apply at low latitudes
for wavelengths longer than a few thousand kilometers, the associated vortex stretching
f @w=@z > 0 is balanced by ˇv and a polewards meridional motion occurs. This
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implies a trough west of the heating and/or a ridge east of the heating, although the use
of quasi-geostrophic theory to draw tropical inferences may be a little suspect.

In midlatitudes � is typically small and horizontal advection locally balances dia-
batic heating. In this case there is a trough a quarter-wavelength downstream from the
heating, and equatorward motion at the longitude of the source. (To see this, note that
if the heating has a structure like cos kx then from either (13.73) or (13.78) the solution
goes like  p / � sin kx.) The trough may be warm or cold, but is often warm. If
HQ � Hu, as is assumed in obtaining (13.73), then � is positive and warm. This is
because zonal advection dominates and so the effect of the heating is advected down-
stream. If HQ � Hu and meridional advection is dominant, then the trough is still
warm provided Q decreases with height. The vertical velocity can be inferred from the
vorticity balance. If f0@w=@z � ˇv and if w D 0 at the surface (in so the absence
of Ekman pumping and any topographic effects) there is descent in the neighbourhood
of a heat source. This counter-intuitive result arises because it is the horizontal ad-
vection that is balancing the diabatic heating. (Note that this result cannot be inferred
from the particular solution alone.) If the advection of relative vorticity balances vortex
stretching, the opposite may hold.

The homogeneous solution can be inferred from (13.83) and (T.1). Consider, for
example, waves that are trapped (m2 < 0) but still have K < KS ; that is K2 <

K2
S
< K2 C  2. The homogeneous solution forced by the equivalent topography is

out of phase with that topography, and so out of phase with  p , using (13.83). For
still shorter waves, K > Ks , the homogeneous solution is in phase with the equivalent
topography, and so again out of phase with  p . Thermal sources produced by large-
scale continental land masses may have K2 < K2

s and, if K2 C  2 < K2
S

they will
produce waves that penetrate up into the stratosphere and typically these solutions will
dominate far from the source. Evidently though, the precise relationship between the
particular and homogeneous solution is best dealt with on a case-by-case basis. A few
more general points are summarized in the box on page 587.

13.4.3 Numerical Solutions

The response to an isolated heat source is illustrated in Fig. 13.8 and Fig. 13.9. The first
figure shows the response to a ‘deep’ heating at 15° N. As the reasoning above would
suggest, the vertical velocity field (not shown) is upward in the vicinity of the source.
Away from the source, the solution is dominated by the homogeneous solutions in the
form of wavetrains, as described in section 13.1.3, with a simple vertical structure. (In
fact the pattern is quite similar to that obtained with a barotropic model.)

Fig. 13.9 shows the response to a perturbation at 45° N, and again the solutions are
qualitatively in agreement with the reasoning above. The local heating is balanced by
an equatorward wind, and there is a surface trough about 20° east of the source, and
an upper level pressure maximum, or ridge, about 60° east. The scale height of the
wind field, Hu is about 8 km, greater than that of the source, and the balance in the
thermodynamic equation is between the zonal advection of the temperature anomaly
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Fig. 13.8 Numerical solution of a baroclinic primitive equation model with
a deep heat source at 15° N and a zonal flow similar to that of northern
hemisphere winter. (a) height field in a longitude height at 18° N (vertical
tick marks at 100, 300, 500, 700 and 900 mb); (b) 300 mb vorticity field; (c)
300 mb height field. The cross in (a) and the hatched region in (c) indicate
the location of the heating. From Hoskins and Karoly (1981).

Fig. 13.9 As for Fig. 13.8, but now solution of a baroclinic primitive equa-
tion model with a deep heat source at 45° N. (a) height field in a longitude
height at 18° N; (b) 300 mb vorticity field; (c) 300 mb height field. The cross
in (a) and the hatched region in (c) indicate the location of the heating.15
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Thermal Forcing of Stationary Eddies: Salient Points

(i) The solution is comprised of particular solution and a homogeneous solution.

(ii) The homogeneous solution may be thought of as being forced by an ‘equiva-
lent topography’, chosen so that the complete solution satisfies the boundary
condition on vertical velocity at the surface.

(iii) For a localized source, the far field is dominated by the homogeneous so-
lution. This solution has the same properties as a solution forced by real
topography. Thus, it may comprise waves that penetrate vertically into the
stratosphere, and wavetrains propagating around the globe with an equivalent
barotropic structure.

(iv) In the extratropics, a diabatic heating is typically balanced by horizontal ad-
vection, producing a trough a quarter wavelength east (downstream) of a lo-
calized heat source. The heat source is balanced by advection of cooler air
from higher latitudes, and there may be sinking air over the heat source. This
can occur when � � 1 [see (13.82)].

(v) In the tropics, a heat source may be locally balanced by vertical advection,
that is adiabatic cooling as air ascends. This can occur when � � 1.

(vi) In the real atmosphere, the stationary solutions must co-exist with the chaos of
time-dependent, nonlinear flows. Thus, they are likely to manifest themselves
only in time-averaged fields and in a modified form.

u� 0
x and the heat source, so producing a temperature maximum downstream. Again,

the far field is dominated by the wavetrain of the homoegeneous solution.

Finally, we show a calculation (Fig. 13.10) using realistic forcing from topogra-
phy, heat sources and transient eddy flux convergences, and a realistic zonally averaged
zonal flow, and a generally good agreement with the observed fields is found.16 It is
hard now to see the wavetrains emerging from isolated features like the Rockies or
Himalayas, because they are combined with the responses from all the other sources in-
cluded in the calculation. Indeed, on breaking up the forcing into separate contributions
from orographic forcing, heating, and the time-averaged momentum and heat fluxes
from transient eddies reveals that all of these forcings play a role. Nevertheless, the
agreement does reveal the extent to which we might understand the zonally asymmetric
circulation of the real atmosphere as the response due to the interaction of a zonally
uniform zonal wind with the asymmetric features of the earth’s geography.
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Fig. 13.10 Left: the observed stationary (i.e., time averaged) stream-
function at 300 mb (about 7 km altitude) in Northern Hemisphere winter.
Right: the steady, linear response to forcing by orography, heat sources
and transient eddy flux convergences, calculated using a linear model with
the observed height-varying zonally averaged zonal wind. Note the gener-
ally good agreement, and also the much weaker zonal asymmetries in the
southern hemisphere.17

13.5 STRATOSPHERIC DYNAMICS

In our final topic of this chapter we look, all too briefly, at the circulation in the strato-
sphere. (We draw on results from earlier starred sections but the less technically-
inclined reader who may have skipped them can simply refer back as needed.) Its
convenenient to divide this circulation into two components: (i) the meridional over-
turning circulation; (ii) the quasi-horizontal circulation. There is also a region of the
lower stratosphere that interacts directly with the troposphere and where fluid proper-
ties are exchanged; however, the dynamics of this region are complex and we shall not
explore them here.

13.5.1 A descriptive overview

The radiative forcing of the stratosphere is effectively illustrated in Fig. 13.11, and
the observed zonally-averaged temperature and zonal-wind structure are plotted in Fig.
13.12. From these we note:

? The stratosphere is very stably stratified, with a lapse rate corresponding to N �

2 � 10�2 s, about twice that of the troposphere on average. This is in part due to
the absorption of solar radiation by ozone between 20 km and 50 km.

? In the summer the solar absorption at high latitudes leads to a reversed temperature
gradient (warmer pole than equator) and a negative shear. The temperature distri-
bution is, in fact, not far from the radiative equilibrium distribution. Consistently,
by thermal wind balance, over much of the summer stratosphere the mean winds
are negative (westward).
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Fig. 13.11 The zonally-averaged radiative-equilibrium temperature in in
January. The downwards solar radiation at the top of the atmosphere is
given, and the upwards radiative flux into the stratosphere is based on
observed properties, including temperature, of the troposphere.18

Fig. 13.12 The zonally averaged temperature and zonal wind in Jan-
uary. Temperature countour interval is 10 K, and values less than 220 K
are shaded. Zonal wind contours are 10 m s�1and negative (westward)
values are shaded.19
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Fig. 13.13 The observed mass-weighted streamfunction in the strato-
sphere, in Sverdrups (109 kg s�1). The circulation is clockwise where the
contours are solid. Note the stronger circulation in the winter hemi-
spheres, whereas the equinoctal circulation (September) is more inter-
hemispherically symmetric.21

? In winter high latitudes receive very little solar radiation and there is a stong merid-
ional temperature gradient and consequently a strong vertical shear in the zonal
wind. Nevertheless, this temperature gradient is significantly weaker than the ra-
diative equilibrium temperature gradient, implying a poleward heat transfer by the
fluid motions.

There must be, then, a circulation that keeps the stratosphere from radiative equi-
librium, and one that is weakest in summer. In fact, a stratospheric meridional over-
turning circulation was inferred by A. Brewer and G. Dobson based on observations of
water vapour and chemical transport, and is often called the Brewer-Dobson circula-
tion.20 It is depicted in Fig. 13.13; this shows the observed mass-weighted circulation,
almost equivalent to the residual circulation, and so represents both the Eulerian mean
and eddy-contributed components. It comprises a single, equator-to-pole cell in each
hemisphere, stronger in the winter hemisphere where it goes high into the stratosphere.
There is also a distinct lower branch to the circulation, present in all seasons although
strongest in winter, that is confined to the lower stratosphere and is in some ways a ver-
tical extension of (the residual circulation of) the tropospheric Ferrel Cell. Not all the
upper circulation is ventilated by the troposphere — some of it recirculates within the
stratosphere. This circulation and some of the associated dynamics is schematically il-
lustrated in Fig. 13.14, and three three regions may usefully be delineated: (i) A tropical
region; (ii) a mid-latitude region; (iii) the polar vortex. The tropical region is relatively
quiescent, an area of generally upward motion where air is drawn up from the tropo-
sphere. In midlatitudes the residual flow is generally polewards before sinking at high
latitudes. In winter the extreme cold leads to the formation of polar vortex, a strong
cyclonic vortex that appears quite isolated from mid-latitudes although, especially in
the Northern Hemisphere, it is not always centered over the pole.

13.5.2 Dynamics
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Fig. 13.14 A schema of the residual mean meridional circulation of the at-
mosphere. The solid arrows indicate the residual circulation (B-D for Brewer
Dobson) and the shaded areas the main regions of wave breaking (i.e., en-
strophy dissipation) associated with the circulation. In the surf zone the
breaking is mainly that of planetary Rossby waves, and in the troposphere
and lower stratosphere the breaking is that of baroclinic eddies. The surf
zone and residual flow are much weaker in the summer hemisphere. Only in
the Hadley Cell is the residual circulation comprised mainly of the Eulerian
mean; elsewhere the eddy component dominates.22

Wave breaking and the residual circulation

Based on our discussion in the previous chapter of the wave-mean flow interaction
and the (residual) Ferrel Cell, we might expect the Brewer-Dobson circulation to be a
consequence of wave-breaking and enstrophy dissipation in the stratosphere. We ask:

(i) What is the source of such waves?
(ii) Does such wavebreaking give rise to a circulation of the right sense?
(iii) Why is the circulation weakest in summmer?
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The equations of motion governing the mean fields are the zonally averaged mo-
mentum and thermodynamic equations, which in residual form may be written as

@u

@t
� f0v

�
D r �F C F ; (13.84a)

@�
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C
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@z
w�

D J (13.84b)

where F represents frictional effects (for example, due to small scale turbulence) and J

represents heating, and on the ˇ-plane the residual velocities are related to the Eulerian
means by
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The vector F is the Eliassen-Palm flux, and this is related to the meridional flux of
potential vorticity by r � F D v0q0 . The wave activity itself obeys the Eliassen-Palm
relation

@A
@t

C r �F D D; (13.86)

where A is the wave activity, F its flux and D its dissipation.
Now, in the stratosphere baroclinic instability is relatively weak, certainly compared

to the troposphere (e.g., Fig. 6.21), and the main source of wave activity is upward prop-
agation from the turbulent troposphere. From the autumn to the spring, the zonal wind
in the stratosphere is generally receptive to planetary-scale Rossby waves propagating
up from the troposphere (Fig. 13.7), although in at high latitudes in winter there may
be a period when the eastward zonal winds are too strong for waves to propagate. If
these waves break in the stratosphere then there will be an enstrophy flux to small scales
and dissipation. In a quasi-statistically-steady state and with small frictional effects the
dominant balance in the zonal momentum equation (13.84a) is

� f0v
�

� v0q0 ; (13.87)

where v� is the residual velocity and the potential vorticity flux on the right-hand side is
induced by the Rossby wave breaking. In dissipative regions the zonally-averaged po-
tential vorticity flux will tend to be down its mean gradient and, if the potential vorticity
gradient is polewards (largely because of the ˇ-effect), the residual velocity will be pos-
itive if f0 is positive. That is, the residual flow will be polewards, in both hemispheres,
and the mechanism giving rise to this is called the ‘Rossby wave pump.’ Put another
way, Rossby waves propagating up from the troposphere break and deposit westward
momentum in the stratosphere, and this ‘wave drag’ is largely balanced by the Coriolis
force on the residual meridional circulation.

This meridional circulation is weakest in summer mainly because linear Rossby
waves cannot propagate upwards through the westward mean winds, as illustrated in
Fig. 13.15. It is quite striking how the EP vectors avoid the region of westward winds in
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Fig. 13.15 The EP flux vectors (arrows), the EP flux divergence (shaded
and light contours) and the zonally averaged zonal wind (heavy contours)
for (a) Northern hemisphere winter; (b) Southern Hemisphere winter. Note
the almost zero EP values in the summer hemispheres, and strong con-
vergence at high latitudes in the winter hemispheres,leading to polewards
residual flow and/or zonal flow acceleration. The EP divergence is shaded
for values greater than C1 m s�1/day, light solid contours) and for values
less than �1 m s�1/day (light dashed contours). The vertical coordinate is
log pressure, extending between about 260 mb and 10 mb.
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the summer hemisphere, even though the level of wave activity at low elevations is rel-
atively similar in the summer and winter hemispheres (look between 10 km and 15 km
in the figure). We can interpret this by noting that for nearly plane waves the EP flux
obeys the group velocity property, meaning that F D cg; however, as discussed in sec-
tion 13.3, if the mean winds are westward the waves evanesce instead of propagating,
and thus almost the entire summer hemisphere is shielded from upwardly propagating
waves, leaving it in a near-radiative equilibrium state. In the other seasons, the EP flux
is able to propagate into the stratosphere and a circulation is generated. This acts to
weaken the pole-equator temperature gradient, as we see by inspection of the thermo-
dynamic equation: if the heating is represented by a simple relaxation to a radiative
equilibrium state, �E , then in a steady state we have

N 2w�
D
�E � �

�
: (13.88)

Polewards flow in midlatitudes must be supplied by rising air at low latitudes, and sink-
ing air at high. Thus, from autumn to spring, at low latitudes we have � < �E and at
high latitudes � > �E .

Although cause and effect can be very difficult to disentangle in fluid dynamical
problems, and the ultimate cause of nearly all fluid motions in the atmosphere is the
differential heating from the sun, it is important to realize that the meridional overturn-
ing in the stratosphere is not a direct response to differential heating. We see this simply
by noting that the most intense heating is over the summer pole, yet here there is little
or no ascent. Rather, the circulation is more directly a response to potential vorticity
fluxes which in turn are determined by the upward propagation of Rossby waves from
the troposphere and polewards gradient of potential vorticity in the stratosphere.

The polar vortex and the quasi-horizontal circulation

Let us now shift our perspective and consider the quasi-horizontal circulation in the
stratosphere. Stratospheric dynamics are, in fact, rather more two-dimensional than
those in the troposphere because the high stratification inhibits vertical motion, and the
vortex stretching term in the quasi-geostrophic potential vorticity equation is relatively
small. In any case, because diabatic effects occur on a somewhat longer timescale
than advective processes, the flow may be characterized by the advection of potential
vorticity on more slowly evolving isentropic surfaces. In midlatitudes this flow is forced
by wave propagagation from below, and the upshot is that the midlatitude stratospheric
circulation is a good example of geostrophic turbulence, as illustrated in Fig. 13.16 and
Fig. 13.17. Both the potential vorticity and tracer are evocative the flows in chapters 8
and 9. We see Rossby waves breaking and vortices stretched into filaments and tendrils
— in short, a region of an enstrophy cascade. We also perceive some idea of the spectral
nonlocality of the enstrophy transfer — a single large vortex overturns and breaks and
there is little sense of an orderly cascade of enstrophy to dissipative scales. For this
reason, the mid-latitude region is known as the surf zone. It is precisely this wave
breaking that gives rise to the enstrophy flux to small scales and it dissipation, and
which in turn gives rise to the residual flow that is the Brewer-Dobson circulation.
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Figure 13.16 The tracer distribution
in the Northern Hemisphere lower strato-
sphere on 28 January 1992. The tracer
was initialized on January 16 by setting it
equal to the potential vorticity field cal-
culated from an observational analysis,
and then advected for 12 days by the ob-
served observed wind fields.23

This surf-zone does usually does not extend to the pole, and in winter dense cold
air over the pole forms itself into a cyclonic vortex, the polar vortex (Fig. 13.17, Fig.
13.18). Although the vortex is diabatically forced, and has a preferred location, it is the
tendency of quasi-two-dimensional flow to organize itself into vortices (as we see in
Fig. 6.6 and Fig. 8.9) that undoubtedly contributes to its coherence and isolation from
the rest of the hemisphere. The boundary of the vortex, as measure by potential vorticity

Fig. 13.17 The potential vorticity on two isentropic surfaces, the 310 K
surface (left) and the 475 K surface (right), on January 19, 2005. The color
bar is in PV units. The 310 K surface is mainly in the troposphere (see
Fig. 12.14) where baroclinic instability is abundant. The 475 K surface is
at about 20 km altitude, and on it we see a polar stratospheric vortex with
a fairly sharp boundary where the PV gradient is high, and a mid-latitude
region of smaller-scale features and wave breaking.24
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Figure 13.18 The edge of the
stratospheric polar vortex in 1984.
Plotted is the 35 PVU isosurface
of Q� D Q.�=�0/

4:1, where Q

is Ertel PV. The vertical coordinate
is potential temperature. Like Q,
Q� is materially conserved in adia-
batic flow. It is approximately con-
stant at the vortex edge, roughly
compensating for the change in
density with height that affects the
Ertel PV. The left panel shows the
vortex in a fairly usual state, and
the right panel shows a split vor-
tex following a stratospheric sud-
den warming.25

   14 Dec                                                              30 Dec
1600 K

400 K

or tracer, is quite sharp with the value of PV often jumping by a factor of two or so, and
the vortex is quite persistent — it is a near-permanent feature of the winter hemisphere.
Within the vortex potential vorticity tends to homogenize, and once formed the main
communication that the vortex has with the surf zone is via occasional wave breaking at
its boundary. It is interesting that, although potential vorticity gradient is strong at the
edge of the vortex, the exchange of properties is weak, implying a failure of notions of
diffusion.

Stable as it is, the polar vortex is nevertheless sometimes disrupted by wave activity
from below; this tends to occur when the wave activity itself is quite strong, and when
the mean conditions are such as to steer that wave activity polewards. Occasionally, this
activity is sufficiently strong so as to cause the vortex to break down, or to split into two
smaller vortices, and so allow warm mid-latitude air to reach polar latitudes — an event
known as a ‘stratospheric sudden warming’.

Notes

1 Much of our basic understanding in this area stems from conceptual and numerical
work on forced Rossby waves by Charney and Eliassen (1949), who looked at the
response to orography using a barotropic model. This was followed by a study by
Smagorinsky (1953) on the response to thermodynamic forcing using a baroclinic,
quasi-geostrophic, model. Seeking more realism later studies have employed the
primitive equations and spherical coordinates in studies that are at least partly nu-
merical (e.g., Egger 1976, and a host of others) although most theoretical studies
perforce still use the quasi-geostrophic equations. The description of the response
in terms of wavetrains comes from Hoskins and Karoly (1981), with some earlier
theoretical results having been derived by Longuet-Higgins (1964). There have
been number of synthesis and review articles, among them Smith (1979), Dickin-
son (1980), Held (1983), Wallace (1983) and a collection in the Journal of Climate,
(Volume 15, no. 16, 2002).
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2 To obtain the figure, the topography is first specified in physical space. Its Fourier
transform is taken and the streamfunction in wavenumber space is calculated using
(13.12). The inverse Fourier transform of this gives the streamfunction in physical
space.

3 Regarding the truly stationary (i.e., time-averaged) patterns of zonal asymmetry
it may seem a little academic to try to differentiate between wavetrains emanat-
ing from an isolated topographic feature and a global resonant response, but
the difference is relevant for intra-seasonal variability, which might considered
a quasi-stationary response to slowly changing boundary conditions like the sea-
surface temperature. If resonance is important, we might expect to see global-
scale anomalies, whereas the viewpoint of damped wave-trains is more local. This
whole area is one of continuing, active, research with deep roots going back to
Namias (1959) and Bjerknes (1959) and beyond.

A different point of view, one that we do not explore in this book, is that the
zonally asymmetric features of the earth’s atmosphere are predominantly due to
nonlinear effects. One possibility is that eddies might significantly modify (and
perhaps amplify and sustain) stationary patterns through their large-scale turbu-
lent transfers (see for example Green 1977, Shutts 1983). Different again is the
notion, inspired by models of low-order dynamical systems, that the atmosphere
might have have regimes of behaviour, and that the zonally asymmetric patterns
are manifestations of the time spent in a particular regime before transiting to
another. See for example Kimoto and Ghil (1993) and Palmer (1997).

4 Hoskins and Karoly (1981).

5 Following Lighthill (1978).

6 Steers (1962), Phillips (1973).

7 From Hoskins and Karoly (1981).

8 A description of JWKB methods can be found in Bender and Orszag (1978) and a
number of other textbooks on approximate mathematical methods. ‘JWKB’ stands
for Jeffreys, Wentzel, Kramers and Brillouin. The last three presented the technique
in 1926 [G. Wentzel, Zeits. f. Phys. 38, 518; H. A. Kramers, Zeits. f. Phys. 39, 828;
L. Brillouin, Comptes Rendus 183, 24] as a way to fing approximate solutions of
the Schrödinger equation in quantum-mechanics and it is often referred to just as
the WKB method, so affirming the notion that methods are often named for the last
to discover them. Harold Jeffrey’s, a mathematical geophysicist, had in 1923 [Proc.
London Math. Soc. (2)23, 428] proposed a similar technique, and Lord Rayleigh in
1912 [Proc. Roy. Soc. A86, 207] had already addressed some aspects of the theory.
The general mathematical matter was in fact treated by Joseph Liouville and George
Green in the first half of the 19th century, so perhaps the method should really be
called the LGRJWKB method!

9 At the critical latitude the JWKB analysis fails and both dissipative and nonlinear
effects are likely to play a role. See Dickinson (1968) and Tung (1979).

10 From Grose and Hoskins (1979) and Hoskins and Karoly (1981).

11 Use of log-pressure coordinates, or the modified height coordinate set of White
(1977), gives only a slightly different lower boundary condition. See 13.??.

12 This argument may seem like prestidigitation. If so, problem 13.6 provides an
another approach that some may find more transparent.
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13 Charney and Drazin (1961).

14 Because of such difficulties, understanding the effects sea-surface temperature
anomalies, on the atmosphere has become largely the subject of GCM experi-
ments, and one plagued with ambiguous results that depend in part on the par-
ticular configuration of the GCM. Some of the modelling issues are reviewed by
Kushnir et al. (2002).

15 From Hoskins and Karoly (1981).

16 Such solutions are nearly always most easily obtained numerically. One way is to
use a Fourier method described earlier. A related method is to write the equations
in finite difference form, schematically as AX D F , where X is the vector of all the
model fields, F represents the known forcing and A is a matrix obtained from the
equations of motion and boundary conditions, and solve for X . A quite different
method is to use a nonlinear time dependent model, such as a GCM: Prescribe or
hold steady the zonally averaged zonal flow as well as all the zonally asymmetric
forcing terms, but multiply the asymmetric terms by a small number (e.g., 0.01)
to ensure the response is linear; then calculate by forward time integration the
steady response, and then divide that solution by the small number to obtain the
final solution.

17 Adapted from Held et al. (2002).

18 Adapted from Fels (1985), with the help of K. Hamilton.

19 Courtesty of J. Wilson of GFDL, using data from Fleming et al. (1988).

20 Brewer (1949), Dobson (1956). Brewer deduced upward motion into the strato-
sphere at low latitudes based on the water vapour distribution, while Dobson
deduced a polewards transport within the stratosphere based on the ozone dis-
tribution — the circulation takes ozone from the low latitudes toward the poles.
Although originally the Brewer-Dobson circulation was taken to mean the chemical
transport circulation, it is now usually taken to mean the residual (mass) circula-
tion. The two may differ if there is mixing of chemical without mixing of mass,
and the chemical transport may differ among chemicals.

21 Adapted from Eluszkiewicz et al. (1996).

22 Modified from Plumb (2002).

23 Courtesy of D. Waugh.

24 Courtesy of A. Dörnbrack.

25 Courtesy of G. Esler. See also Lait (1994) for discussion of the alternative PV.

Problems

13.1 Consider the barotropic vorticity equation on the ˇ-plane, with an uneven lower
surface, satisfying the equation of motion

Dq

Dt
D 0; q D r

2 C ˇy C hb.x;y/ (P13.1)

where hb is proportional to the bottom topography, assumed small. Linearize this
about a constant zonal flow, U , and seek steady state solutions of the form  D

Re z ei.kxCly/, with the topography similarly represented. (Re means take the
real part of what follows.) Show that the response is infinite (a resonance) if its
wavenumber is equal to that of stationary, free, barotropic Rossby waves.
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Suppose that friction is introduced, so that the equation of motion becomes Dq=Dt D

�r�. Show that the response is now always finite. If the mountain is a single sinu-
soid, hb D H sin kx, sketch the response (i.e., the streamfunction field).

13.2 Explore the response the single-layer quasi-geostrophic system to flow over topog-
raphy. Using Matlab, or otherwise, first obtain a response similar to that in Fig.
13.1. Then vary the frictional timescale, the wavenumber of the stationary Rossby
wave, and the structure of the topography. Show that when the topography con-
tains a resonant wavenumber that a trough in the streamfunction often occurs just
downstream of the mountain peak, and that this is to be expected from the analytic
solution.

13.3 � Using an atlas, or obtaining the information from the literature or on-line, obtain
rough representation of the earth’s topography at 45° N and express it as a Fourier
series. Then obtain (e.g., using Matlab) the barotropic stationary response to this
topography — that is, the solution to (13.11). Explore the sensitivity of the solution
to variations in u, to using a different u on the left- and right-hand sides of (13.11),
to the frictional parameter r , and to the deformation radius Ld . Artificially flatten
the topography in the eastern and then the western hemisphere and comment on
how the results vary. Finally, discuss whether your calculations are qualitatively and
quantitatively in accord with observations. Optional: Repeat the entire problem for
the southern hemisphere. [This problem develops a calculation similar to that of
the well-known paper of Charney and Eliassen (1949).]

13.4 Obtain an expression analogous to (13.19) for the case with a finite deformation
radius (kd ¤ 0). Compare the two results and explain the differences, if any.

13.5 Using log-pressure coordinates, show that the surface boundary condition analo-
gous to (13.51) is

@
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�

N 2
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 0
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@x
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@x
C ˛r

2 0

�
at Z D 0;

(P13.2)
where here Z is proportional to log-pressure.
Hint: Note that the relation between W D Dz=Dt and the real vertical velocity is
w D .f0=g/@ =@t C RT=.gH /W and choose H D RT .0/=g.

13.6 The vertical energy flux in a radiating wave is proportional to �Rp0w0 where the
overline denotes a horizontal average and p0 and w0 are the pressure and vertical
velocity.

(a) For the oscillatory solution, with m2 > 0, show that if the energy flux is to be
directed upwards then the product km must be positive, where k and m are the
zonal and vertical wavenumbers.

(b) For the trapped solution with m2 < 0, show that the vertical propagation of
energy is zero.

N. B. In this problem and the next it is important to take the real part of each
field properly before evaluating the averages. Thus, if h D Re hbeikx where hb D

hbr C ihbi then hb D hbr cos kx � hbi sin kx. But with little loss of generality one
may choose either hbr or hbi equal to zero.

13.7 Obtain an expression for the meridional heat flux associated with the solutions
(T.1). In particular, show that for m2 > 0 it is proportional to jhbj2km=.K2

s � K2/

and therefore deduce that it is positive for an upwardly propagating wave. Show
that for the trapped solutions the meridional heat flux is zero.
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13.8 Evaluate the wave activity density (pseudo-momentum) associated with the solu-
tions (T.1), and the associated EP flux. Show that the group velocity property is
satisfied, and that the transport of wave activity is directed upwards for oscillatory
solutions.

13.9 � Obtain the homogeneous solution to (13.70) that, when added to the particular
solution, properly satisfies the boundary condition (13.74). Discuss the solution,
and in particular show that the total response remains bounded even as the de-
nominator in (13.73) goes to zero.



Part IV

LARGE-SCALE OCEANIC
CIRCULATION





To increase our knowledge the subject [oceanography] must be made
attractive to men who do not mind facing up to the difficulties of fluid
mechanics.

From Nature, 25 December 1954.

CHAPTER 14

Wind-Driven Gyres

U
NDERSTANDING THE CIRCULATION OF THE OCEAN involves a combination of observa-
tions, comprehensive numerical modelling, and more conceptual modelling, or
‘theory’. All have become essential, but in this chapter, and the ones follow-

ing, our emphasis is on the last of the tripos. Its (continuing) role is not to explain every
feature of the observed ocean circulation, nor to necessarily describe details best left
to numerical simulations. It is to provide a conceptual and theoretical framework for
understanding the circulation of the ocean, for interpreting observations and suggesting
how new observations may best be made, and to aid the development and interpretation
of experiments with numerical models.

The main currents of the worlds oceans are sketched in Fig. 14.1.1 (Over most of
the ocean, the vertically averaged currents have a similar sense as the surface currents,
one exception being at the equator where the surface currents are mainly westwards
but the vertical integral is dominated by the eastwards undercurrent.) Two seemingly
dichotomous aspects stand out: (i) the complexity of the currents as they interact with
topography and the geography of the continents; (ii) the simplicity and commonality
of the large-scale structures in the major ocean basins, and in particular the ubiquity of
subtropical and subpolar gyres. Indeed these gyres, sweeping across the great oceans
carrying vast quantities of water and heat, are perhaps the single most conspicuous
feature of the circulation. The subtropical gyres are anticyclonic, extending polewards
to about 45°, and the subpolar gyres are cyclonic and polewards of this, primarily in the
Northern Hemisphere. The existence of gyres, and that they are strongest in the west,
has been known for centuries; this western intensification leads to such well-known
currents as the Gulf Stream in the Atlantic (charted by Benjamin Franklin), the Kuroshio
in the Pacific, and the Brazil Current in the South Atlantic. Although even today we
barely have sufficient observations to produce a synoptic map of the ocean currents,
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SPG: NA

STG: NA

ECS: ATL

STG: SA

           WBC: 
BRAZIL CURRENT

         WBC: 
GULF STREAM

      WBC: 
KUROSHIO

   WBC:  EAST
AUSTRALIAN

STG: SP

ECS: PAC

STG: NP

SPG: NP

STG: SI

     WBC: 
AGULHAS

ACC
ACC

Subtropical Gyres
Equatorial and Tropical Circulations
Intergyre and/or Interbasin Exchanges
Polar and Subpolar Current Systems

Fig. 14.1 A schema of the main currents of the global ocean. Key: STG –
Sub-Tropical Gyre; SPG – Sub-Polar Gyre; WBC – Western Boundary Current;
ECS – Equatorial Current System; NA – North Atlantic; SA – South Atlantic;
NP – North Pacific; SP – South Pacific; SI – South Indian; ACC – Antarctic
Circumpolar Current; ATL – Atlantic; PAC – Pacific.

except at the surface, the large-scale mean currents are fairly well mapped and Fig.
14.2 illustrates the average current pattern of the North Atlantic using a combination of
observations and a numerical model, and the Gulf Stream is clearly visible.2

For much of this chapter we consider a model, and variations about it, that explains
the large-scale features of ocean gyres and that lies at the core of ocean circulation
theory — the steady, forced-dissipative, homogeneous model of the ocean circulation
first formulated by Stommel.4 Such models explain many of the zeroth-order features
of the ocean, in particular the existence of gyres and the appearance of intense western
boundary currents. In the later part of the chapter we examine the vertical structure
of the wind-driven circulation, taking the stratification as given. In the two chapters
following we consider the maintenance of that stratification.
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Fig. 14.2 Top: The time-averaged velocity field at a depth of 75 m in the
North Atlantic, obtained by constraining a numerical model to hydrographic
observations. Bottom: The streamfunction of the vertically integrated flow,
in Sverdrups. Note the presence of an anticyclonic subtropical gyre, a cy-
clonic subpolar gyre, and intense western boundary currents.3

14.1 THE DEPTH INTEGRATED WIND-DRIVEN CIRCULATION

The equations that govern the large-scale flow in the oceans are the planetary-geostrophic
equations. Greatly simplified as these are compared to the Navier-Stokes equations,
or even the hydrostatic Boussinesq equations, they are still quite daunting: a prog-
nostic equation for buoyancy is coupled to the advecting velocity via hydrostatic and
geostrophic balance, and the resulting problem is formidably nonlinear. However, it
turns out that thermodynamic effects can effectively be eliminated by the simple device
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of vertical integration; the resulting equations are linear, and the only external forcing
is that due to the wind-stress. The resulting model then, at the price of some compre-
hensiveness, gives a useful picture of the wind-driven circulation of the ocean.

14.1.1 The Stommel Model

The planetary geostrophic equations for a Boussinesq fluid are:

Db

Dt
D Pb; r � v D 0; (14.1a,b)

f � u D �r� C
1

�0

@�

@z
;

@�

@z
D b: (14.2a,b)

These equations are, respectively, the thermodynamic equation (14.1a), the mass con-
tinuity equation (14.1b), the horizontal momentum equation (14.2a), (i.e., geostrophic
balance, plus a stress term) and the vertical momentum equation (14.2b), (i.e, hydro-
static balance). These equations are derived more fully in chapter 5, but they are es-
sentially the primitive equations with the advection terms omitted in the horizontal mo-
mentum equation, on the basis of small Rossby number. Take the curl of (14.2a) (that
is, cross differentiate its x and y components) and integrate over the depth of the ocean
to give Z

f rz � u dz C
@f

@y

Z
v dz D curlz.z�t � z�b/ (14.3)

where the operator curlz is defined by curlzA � @Ay=@x � @Ax=@y D k � r � A,
and z� is the kinematic stress, z� D �=�0. The divergence term vanishes if the vertical
velocity is zero at the top and bottom of the ocean. Strictly, at the top of the ocean
the vertical velocity is given by the material derivative of height of the ocean’s surface,
Dh=Dt , but on the large-scales that is negligible and setting it to zero is the rigid-
lid approximation. At the bottom of the ocean the vertical velocity is only zero if the
ocean in flat-bottomed; otherwise it is u � r�b , where �b is the orographic height at the
ocean floor. The neglect of this topographic term probably the most restrictive single
approximation in the formulation of this model. Given this neglect, (14.3) becomes

ˇv D curlz.z�t � z�b/ (14.4)

where henceforth, in this section, quantities with an overbar are understood to be the
vertical integral over the depth of the ocean. If the stresses depend only on the velocity
fields then thermodynamic variables evidently do not affect the vertically integrated
flow.

At the top of the ocean, the stress is given by the wind. At the bottom, it is given
by bottom friction, and we assume that this may be parameterized by a linear drag, or
Rayleigh friction, as might be generated by an Ekman layer; it is this assumption that
particularly characterizes this model as that due to Stommel. Eq. (14.4) then becomes

ˇv D �r� C W .x;y/ (14.5)
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Formulation of the Stommel/Munk model

? Vertically integrated planetary-geostrophic equations, or a homogeneous fluid
with nonlinearity neglected.

? Friction parameterized by a linear drag (Stommel model) or a harmonic New-
tonian viscosity (Munk model) or both (Stommel-Munk model).

? Flat bottomed ocean.

Variations on the theme include allowing nonlinearity in the vorticity equation,
posing the problem in domains of various shapes, and allowing bottom topogra-
phy (in particular sloping sidewalls). The solutions are normally calculated in the
boundary-layer approximation, but some exact solutions exist.

where W is proportional to the wind-stress curl at the top of the ocean and is a known
function. Because the velocity is divergence-free, we can define a streamfunction  
such that u D �@ =@y and v D @ =@x . Eq. (14.5) then becomes

rr
2 C ˇ

@ 

@x
D W .x;y/: (14.6)

This equation is often referred to as the Stommel problem or Stommel model, and may
be posed in a variety of two dimensional domains.

14.1.2 Alternative formulations

A number of alternative formulations, still leading to (14.6), are possible. None are
perhaps as well justified as the derivation via the planetary-geostrophic equations but the
differences in the specific assumptions made both give some indication of the robustness
of the derivation, and show how the model might be extended to include topographic or
nonlinear effects.

I. A Homogeneous Model

Rather than vertically integrating, we may suppose that the ocean is a homogeneous
fluid obeying the shallow water equations (chapter 3). The potential vorticity equation
is:

D
Dt

�
� C f

h

�
D

F

h
; (14.7)

where F represents friction and forcing [c.f., (3.81)]. In an ocean with a rigid-lid and
flat bottom then we obtain the barotropic vorticity equation,

D�
Dt

C ˇv D F: (14.8)
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The forcing term F we again represent as a wind-stress curl, and a linear drag. Further,
since the horizontal velocity is divergence-free (because of the flat-bottom and rigid-lid
assumptions) we may represent it as a stream-function, whence we obtain the closed
equation

D
Dt

r
2 C ˇ

@ 

@x
D WE.x;y/ � rr

2 : (14.9)

This equation is the ‘time-dependent nonlinear Stommel problem’. The steady nonlin-
ear problem is sometimes of interest, too, and this is just

J. ;r2 /C ˇ
@ 

@x
D WE.x;y/ � rr

2 : (14.10)

To obtain the original Stommel model we just ignore the advective derivative, which
will be valid if j�j � Z � ˇL where Z D U=L is a representative value of vorticity.
This condition is equivalent to

Rˇ �
U

ˇL2
� 1: (14.11)

Rˇ is called the beta-Rossby number. On sufficiently large scales, ˇ � f=L so that
(14.11) is then similar to a small Rossby number assumption. Given this, (14.9) reduces
to (14.6).

II. Quasi-geostrophic formulation

In the PG formulation, the horizontal velocity is divergence-free only because we have
vertically integrated, and the divergence-free aspect of the flow is crucial in our obtain-
ing a solution. If the scales of motion are not too large the horizontal flow at every
level is divergence-free for another reason: because it is in geostrophic balance. In
reality, over a single oceanic gyre (say from 15° to 40° latitude), variations in Cori-
olis parameter are not large, and this prompts us to formulate the model in terms of
the quasi-geostrophic equations. Formally, such a model would then be restricted to
length-scales L no more than O.Ro�1 larger than the deformation radius, and for gyre
scales this criterion is marginally satisfied if Ld D 100 km. An advantage of the quasi-
geostrophic equations is that it readily allows for the inclusion of both nonlinearity and
stratification. [For a quick-and-dirty summmary of quasi-geostrophy, see the box on
page 235.] The quasi-geostrophic potential vorticity equation for a Boussinesq system
is:

D
Dt
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� C
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C ˇv D f0
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C curlz
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(14.12)

If we neglect the advective derivative, and vertically integrate, we obtain

ˇ

Z
v dz D f0Œw�

t
b C curlz Œz��tb: (14.13)

where t denotes the ocean top and b the bottom. We now make one of two virtually
equivalent choices.
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(i) We suppose that the integration is over the entire depth of the ocean, in which
case the term Œw�t

b
vanishes given a rigid lid and a flat bottom. If the stress at the

top of the ocean is given by the wind stress, and at the bottom of the ocean it is
parameterized by a linear drag, then we obtain

ˇv D W .x;y/ � r� (14.14)

just as in (14.5). The velocity is the integrated velocity over the depth of the ocean,
and because the advecting velocity can be obtained from the streamfunction, (14.6)
follows.

(ii) We suppose that the integration is between two thin Ekman layers at the top and
bottom of the ocean. The stress is zero at the interior edge of these layers, but the
vertical velocity is not. At the base of the upper Ekman layer it is given by:

w.x;y;�ıu/ D curlz.z�=f0/ (14.15)

where the top of the ocean is at z D 0 and ıu is the thickness of the upper Ekman
layer. Similarly, at the top of the lower Ekman layer, the vertical velocity is:

w.x;y;�D C ıb/ D ıb� (14.16)

where ıb is the thickness of the bottom Ekman layer.

Neglecting the advective derivative, and integrating over the ocean between the
two Ekman layers, (14.12) becomes

ˇv D curlz z� � f0ıb�: (14.17)

Defining the drag coefficient r by r D f0ıb , we arrive at (14.14).

Because the flow is quasigeostrophic we may define a streamfunction such that v D

@ =@x and � D r2 , and (14.14) becomes

rr
2 C ˇ

@ 

@x
D curlz z�; (14.18)

which is the same as (14.6). Note that in all of these derivations, we have effectively
parameterized the friction at the bottom of the ocean by a linear drag acting on the
vertically integrated velocity (or vorticity) field. In reality, the bottom friction is pro-
duced by the velocity at the bottom of the ocean, but this wrinkle is beyond the scope
of vertically integrated models.

14.1.3 Approximate solution of Stommel model

Sverdrup balance

Equation (14.6) is linear and it is possible to obtain an exact, analytic solution. How-
ever, it is more insightful to approach the problem perturbatively, by supposing that the
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frictional term is small, meaning there is an approximate balance between wind-stress
and the ˇ-effect.5 Friction is small if jr�j � jˇvj or

r

L
D
f0ı

HL
� ˇ (14.19)

using r D fd=H where ı is the thickness of the Ekman layer and L is the horizontal
scale of the motion, and generally speaking this inequality is well satisfied for large-
scale flow. The vorticity equation becomes

ˇv � curlz z�; (14.20)

or Sverdrup balance.6 The observational support for Sverdrup balance is rather mixed,
discrepancies arising not so much from failure of (14.19), but from the presence of
small-scale eddying motion with concomitantly large nonlinear terms, and the presence
of non-negligible vertical velocities induced by the interaction with bottom topogra-
phy.7 Nevertheless, Sverdrup balance provides a useful, if not impregnable, foundation
on which to build.

Boundary-layer solution

For simplicity, consider a square domain of side a and rescale the variables by setting

x D ayx; y D ayy; z� D �0y�;  D y 
�0

ˇ
(14.21)

where �0 is the amplitude of the windstress. The hatted variables are nondimensional
and, assuming our scaling to be sensible, these are O.1/ quantities in the interior. Eq.
(14.18) becomes

@ y 

@yx
C �sr

2 y D curlz y� (14.22)

where �s D .r=aˇ/ � 1, in accord with (14.19). For the rest of this section we will
drop the hats over nondimensional quantities

Over the interior of the domain, away from boundaries, the frictional term is small
and an approximate solution may be obtained by simply dropping it, giving

@ I

@x
D curlz�; (14.23)

where  I is the interior streamfunction, or the ‘Sverdrup flow’. The solution of this
equation is

 I .x;y/ D

Z x

0

curlz�.x0;y/ dx0
C g.y/; (14.24)

where g.y/ is an arbitrary function of y, which thus gives rise to an arbitrary zonal
flow. The corresponding velocities are

vI D curlz�; uI D �
@

@y

Z x

0

curlz�.x0;y/ dx0
�
@g.y/

@y
: (14.25)
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Fig. 14.3 Two possible Sverdrup flows,  I , for the wind stress shown in
the center. Each solution satisfies the no-flow condition at either the eastern
or western boundary, and a boundary layer is therefore required at the
other boundary. Both flows have the same, equatorward, meridional flow in
the interior. Only the flow with the western boundary current is physically
realizable, however, because only then can friction produce a torque that
opposes that of the wind-stress, so allowing the flow to equilibrate.

The dynamics is most clearly illustrated if we now restrict attention to a windstress
curl that is zonally uniform, and that vanishes at two latitudes, y D 0 and y D 1. An
example is

�y
D 0; �x

D ��0 cos. y/; (14.26)

for which curlz� D �  sin. y/. The Sverdrup (interior) flow is then

 I .x;y/ D .x � C.y//curlz� D  .C.y/ � x/ sin y: (14.27)

Now, if we choose C to be a constant, then the arbitrary zonal flow is C curlz�. Then
we can satisfy  D 0 at either x D 0 (if C D 0) or x D 1 (if C D 1). These solutions
are illustrated in Fig. 14.3 for the particular stress (14.26).

Regardless of our choice of C we cannot satisfy  D 0 at both zonal boundaries.
We must choose one, and then construct a boundary layer solution to satisfy the other
condition. Which choice do we make? On intuitive grounds it seems that we should
choose the solution that satisfies  D 0 at x D 1 (the solution on the left in Fig.
14.3), for then the interior flow then goes round in the same direction as the wind: the
wind is supplying a clockwise torque, and to achieve an angular momentum balance
anticlockwise angular momentum must be removed by friction. We can imagine that
this would be provided by the frictional forces at the western boundary layer if the
interior flow is clockwise, but not by friction at an eastern boundary layer when the
interior flow is anticlockwise. Note that this argument is not dependent on the sign
of the windstress-curl: if the wind blew the other way a similar argument still implies
that a western boundary layer is needed. We will now see if and how the mathematics
reflects this intuitive but non-rigorous argument.
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Asymptotic Matching

Let the complete solution be the sum of the Sverdrup interior solution plus a correction
that we expect to be important only near the boundary. Thus we write

 .x;y/ D  I .x;y/C �.x;y/; (14.28)

where � is the boundary layer correction, required to be small in the interior. At
the boundary, the solution varies rapidly with x. To reflect this, let us stretch the x-
coordinate near this point of failure (i.e., at x D 0 or x D 1) and let

x D �˛ or x � 1 D �˛ (14.29a,b)

Here, ˛ is the stretched-coordinate, which has values O.1/ in the boundary layer, and �
is a small parameter, as yet undetermined. Then (14.22) becomes

�S .r
2 I C r

2�/C
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@x
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�

@�

@˛
D curlz� (14.30)

where � D �.˛;y/ and r2� D ��2@2�=@˛2 C @2�=@y2. Now, by choice,  I exactly
satisfies Sverdrup balance, and so (14.30) becomes
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2 I C
1
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D 0 (14.31)

We now choose � to obtain a physically meaningful solution. The obvious choice is
� D �S , for then the leading-order balance in (14.31) is

@2�

@˛2
C
@�

@˛
D 0: (14.32)

The solution of this equation is

� D A.y/C B.y/e�˛; (14.33)

Evidently, � grows exponentially in the negative ˛ direction. If this were allowed,
it would violate our assumption that solutions are small in the interior, and we must
eliminate this possibility by allowing ˛ to take only positive values in the interior of
the domain, and by setting A.y/ D 0. We therefore choose x D �˛ so that ˛ > 0 for
x > 0. The boundary layer is then at x D 0, that is, it is a western boundary, and it
decays eastward in the direction of increasing ˛ — that is, into the ocean interior. We
then choose C D 1 in (14.27) to make  I D 0 at x D 1 in (14.27) and then, for the
windstress (14.26), the interior solution is given by

 I D  .1 � x/ sin y: (14.34)

This alone satisfies the boundary condition at the eastern boundary. The function B.y/

is chosen to satisfy the additional condition that

 D  I C � D 0 at x D 0; (14.35)
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and using (14.34) this gives

  sin y C B.y/ D 0: (14.36)

Thus, the boundary layer solution is:

� D �  sin ye�x=�S : (14.37)

The composite (boundary layer plus interior solution) is

 D .1 � x � e�x=�S /  sin y; (14.38)

or, in full dimensional form,

 D .1 � x=a � e�x=.a�S //  sin. y=a/ : (14.39)

This is a ‘single gyre’ solution. Two or more gyres can be obtained with a different
wind forcing, such as �x D ��0 cos.2 y/, as in Fig. 14.4.

It is a relatively straightforward matter to generalize to more arbitrary wind-stresses,
provided these also vanish at the two latitudes between which the solution is desired. It
is left as a problem to show that in general

 I D

Z x

xe

curlz�.x0;y/ dx0; (14.40)

and that the composite solution is

 D  I �  I .0;y/e�x=.xe�S /: (14.41)

14.2 USING VISCOSITY INSTEAD OF DRAG

A natural variation on on the Stommel problem is to use a harmonic viscosity, �r2�, in
place of the drag term �r� in the vorticity equation, the argument being that the wind-
driven circulation does not reach all the way to the ocean bottom so that an Ekman drag
is not appropriate. This variation is called the Munk problem or Munk model,8 and if
both drag and viscosity are present we have the ‘Stommel-Munk’ model. The particular
form of the lateral friction used in the Munk problem is still somewhat hard to justify
because it relies on an ill-founded eddy diffusion of relative vorticity (chapter 10). Our
treatment of this problem is relatively brief, concentrating only on those areas where
the problem differs from the Stommel problem. The problem is to find and understand
the solution to the (dimensional) equation

ˇ
@ 

@x
D curlz� C �r

2� D curlz� C �r
4 (14.42)

in a given domain, for example a square of side a. We need two boundary conditions
at each wall to solve the problem uniquely, and as before for one of them we choose
 D 0 to satisfy the no-normal-flow condition. For the other condition, two possibilities
present themselves:
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Streamfunction Wind Stress

Fig. 14.4 Two solutions of the Stommel model. Upper panel shows the
streamfunction of a single-gyre solution, with a windstress proportional to
� cos. y=a/ (in a domain of side a), and the lower panel shows a two-
gyre solution, with windstress proportional to cos.2 y=a/. In both cases
�s D 0:04.

(i) Zero vorticity, or � D 0. Since  D 0 along the boundary, this possibility is equiv-
alent to @2 =@n2 D 0 where @=@n denotes a derivative normal to the boundary.
This is known as a ‘free-slip’ condition. At x D 0, for example, the condition
becomes @v=@x D 0; that is, there is no horizontal shear at the boundary.

(ii) No flow along the boundary (the ‘no slip’ condition). That is  n D 0 where the
subscript denotes the normal derivative of the streamfunction. At x D 0 we have
v D 0.

There is little a priori justification for choosing either of these. The second choice
would be demanded if � were a molecular viscosity, but then we would have to resolve
a molecular boundary layer which perhaps would be a few millimeters thick. Instead,
� must be interpreted as some form of eddy viscosity, as we discuss in chapter 10. In
that case, one might argue that the free-slip condition should be preferred, but in the
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Some Properties of the Stommel Model

(i) The transport in the Sverdrup interior is equatorwards for an anti-cyclonic
wind-stress curl. This transport is exactly balanced by the polewards transport
in the boundary layer.

(ii) There must be a boundary layer to satisfy mass conservation, and this must
be a western boundary layer if the friction acts to provide a torque of oppo-
site sign to the motion itself. As there is a balance between friction and the
ˇ-effect, it is a ‘frictional boundary layer’. The western location does not de-
pend on the sign of the wind-stress, nor on the sign of the Coriolis parameter,
but it does depend on the sign of ˇ, and so on the direction of rotation of the
earth.

(iii) The boundary layer width arises by noting that the terms rr2 and ˇ@ =@x
are in approximate balance in the western boundary layer, implying a length-
scale of Lw D .r=ˇ/. If r , the inverse frictional time, is 20 days�1 then
Lw � 60 km, similar to the width of the Gulf Stream.

absence of a proper theoretical basis for such eddy viscosities there is no truly rational
way to make the choice. We will solve the no-slip problem; see exercise 14.3 for the
free-slip problem.

Let the wind stress be the canonical �x D ��0 cos. y=a/. Then the interior (Sver-
drup) flow is given by (14.34), as for the Stommel problem. This satisfies the free-slip
boundary conditions at y D 0; 1, namely @2

x D 0, automatically. However, we will
need boundary layers at both western and eastern boundaries, because the interior so-
lution cannot satisfy all four boundary conditions required by (14.42). The eastern
boundary layer will be relatively weak, and needed only to satisfy the no-slip or free-
slip condition but, as in the Stommel problem, there will be a strong western boundary
layer, needed to satisfy the no-normal flow condition. How thick will this be? In-
spection of (14.42) suggests that the frictional term and the ˇ term will balance in a
boundary layer of thickness LM where

LM �

�
�

ˇ

�1=3

(14.43)

and indeed this scale will result from a more formal analysis.
Nondimensionalizing (14.42) a similar way as for the Stommel problem yields

�M r
4 C

@ 

@x
D curlz� (14.44)

where �M D .�=ˇa3/. Considering for now only the western boundary layer correction
we let the solution be the sum of an interior (Sverdrup) streamfunction plus a boundary
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layer correction:
 D  I C �w.˛;y/ (14.45)

where, as before, � is a small parameter and ˛ is a stretched coordinate such that x D

�˛. Similarly, may we add a correction to the eastern edge with a stretched coordinate
˛0 such that x �1 D �˛0. Substituting (14.45) into (14.44) and subtracting the Sverdrup
balance gives

� �M

�
1

L4
w

@4�w

@˛4

�
C

1

Lw

@�w

@˛
D 0 (14.46)

As expected from the simpler dimensional analysis, a nontrivial balance is obtained
when Lw D LM D .�=ˇ/1=3. The boundary conditions on this are that:

(i) �w ! 0 as ˛ ! 1. This states that the perturbation decays as it extends into the
interior.

(ii) �w D � I at x D ˛ D 0. This is the no-normal-flow condition on the meridional
boundary.

(iii) @x�w D �@x I at x D ˛ D 0. (The no-slip condition.)
Solving (14.46) is a standard albeit non-trivial algebraic exercise and, omitting the weak
zonal boundary layers at y D 0; 1 but including the eastern boundary layer correction,
the solution of (14.44) is found to be

 D  I �  .0;y/e�x=.2�M /

"
cos

 p
3

2

x

�M

!
C

1
p

3
sin

 p
3

2

x

�M

!#

� �M e.x�1/=�M
@

@x
 I .1;y/ (14.47)

With the canonical windstress this solution becomes

 D .1 � x/  sin. y/ �   sin. y/e�x=.2�M /

"
cos

 p
3

2

x

�M

!
C

1
p

3
sin

 p
3

2

x

�M

!#
C �M  sin. y/e.x�1/=�M (14.48)

The solutions of this are plotted in Fig. 14.5. Note how the Munk layers bring the
tangential as well as the normal velocity to zero. The eastern boundary layer has similar
thickness to the western boundary layer, but is not as dynamically important since its
raison d’etre is to enable the no-slip condition to be satisfied, a relatively weak frictional
constraint that manifests itself by a boundary layer in which the flow parallel to the
boundary is slowed down. On the other hand the western boundary layer exists in order
that the no-normal flow condition can be satisfied, which causes a qualitative change in
the flow pattern. It should be emphasized that neither the Stommel nor Munk models
are quantitative descriptors of the real ocean, but taken together the similarities of their
solutions are a powerful argument for the relative insensitivity of the qualitative form
of the solution to the detailed form of the friction. The models do in fact produce
qualitatively realistic patterns of large-scale flow in the major basins of the world, as
illustrated in Fig. 14.6.
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Fig. 14.5 The Stommel and Munk solutions, (14.48) with �S D �M D

0:04], with the windstress � D � cos y, for x;y 2 .0; 1/. Upper panels are
contours of streamfunction in the x–y plane, and the flow is clockwise. The
lower panels are plots of meridional velocity as a function of x, in the center
of the domain (y D 0:5). The Munk solution can satisfy both no-normal flow
and one other boundary condition at each wall, here chosen to be no-slip.

14.3 ZONAL BOUNDARY LAYERS

The canonical wind stress [�x D ��0 cos. y=a/] is special because the its curl vanishes
at y D 0; a, and so the interior solution satisfies  I D 0 at y D 0; 1. We cannot expect
the real wind to be so forthcoming. Consider the linear wind profile,

�x
D
�0

a

�
y �

a

2

�
: (14.49)

Then, scaling the variables in the usual way leads to the problem

�Sr
2 C

@ 

@x
D �1 (14.50)

We now suppose the solution is the sum of five parts,

 D �I C �w C �e C �n C �s (14.51)
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Fig. 14.6 The solution to the Stommel-Munk problem numerically cal-
culated for the North Atlantic, using the observed wind field. The model
ocean has realistic geometry, but is flat-bottomed. The calculation repro-
duces well the large-scale patterns, including the subtropical and subpolar
gyre and the western intesification of both. However, the separation of the
Gulf Stream from the coast is a little too far North, and that is likely due to
the absence of baroclinic effects, topography, and mesoscale eddies. Com-
pare with Fig. 14.2.9

where the notation is self-explanatory. The interior solution is simply the solution of
@ I=@x D �1 so that a solution satisfying  I D 0 at x D 1 is  I D .1 � x/ and,
as before, there is no need for an eastern boundary layer. The western boundary layer
solution is straightforwardly found to be

�w D �e�˛
D �e�x=�S : (14.52)

The interior solution alone does not satisfy  D 0 at either y D 0 or y D 1 (the
interior flow is vI D �1 everywhere) and we must again find these through a boundary
layer analysis. Consider the solution at y D 1, and introduce the stretched coordinate

�n˛ D y � 1: (14.53)

Substituting this into (14.22) we find

�S

�
r

2 I C
@2�n

@x2
C

1

�2
n

@2�n

@˛2

�
C
@ I

@x
C
@�n

@x
D �1 (14.54)

We may neglect the small contributions from the other boundary layer streamfunctions
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Figure 14.7 Solutions to the
Stommel problem with a wind-
stress that increases linearly from
y D 0 to y D 1, as in (14.49). The
interior solution is  I D .1 � x/,
or vI D �1, necessitating zonal
boundary layers at y D 0 and y D

1, as well as the western boundary
current at x D 0.

(such as �s). To obtain a nontrivial balance we choose �2
n D O.�S / and obtain the

dominant balance

@2�n

@˛2
C
@�n

@x
D 0 (14.55)

(noting that the interior solution already satisfies @ I=@x D �1). The boundary con-
ditions necessary to complete the solution are:

(i) The total streamfunction (interior plus boundary correction) must vanish at the
northern boundary. That is, �n.x; ˛ D 0/ D � I .x;y D 1/ D �.1 � x/.

(ii) The boundary solution should match to the interior streamfunction far from the
boundary. That is �n.x; ˛ ! 1/ D 0.

(iii) At the eastern boundary �n should also vanish, else it would provide a velocity
into the eastern wall. Thus, �n.1; ˛/ D 0.

The solution at the southern boundary is obtained in an analogous way (the details are
complicated, however), and the complete solution is illustrated in Fig. 14.7. The nondi-
mensional thickness, Ln, of the northern (and southern) boundary layers is Ln � �

1=2
S

a,
which, because it scales like the half power of a small number, is much thicker than the
western boundary current. This thickness arises from the dimensional equations that
dominate at the boundary, namely

r
@2 

@y2
C ˇ

@ 

@x
D 0: (14.56)

This follows from (14.18) by noting that the Laplacian operator must be dominated by
the derivatives in the y�direction, and the ˇ term has an (interior) component that ani-
hilates the wind-stress-curl, plus a boundary layer correction to balance the Laplacian.
Inspection of (14.56) yields a dimensional thickness Ln �

p
ra=ˇ, where a is the

length-scale in the x-direction.
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14.4 THE NONLINEAR PROBLEM

In the nonlinear problem we seek solutions to

@�

@t
C J. ; �/C ˇ

@ 

@x
D �rr

2 C curlz� C �r
2�; (14.57)

which we have written in dimensional form. In the Stommel problem we set � D 0 and
in the Munk problem we set r D 0. In general solutions will be time-dependent and
turbulent and this will create motion on small scales, so that � cannot be neglected. The
‘steady nonlinear Stommel-Munk problem’ is

J. ; �/C ˇ
@ 

@x
D �rr

2 C curlz� C �r
2�: (14.58)

We can scale this by first supposing that the leading order balance is Sverdrupian (i.e.,
ˇ@ =@x � curlz�), from which we obtain the scales 	 D j� j=ˇ and U D j� j=.ˇL/.
Equation (14.58) may then be nondimensionalized to yield

RˇJ. y ; y�/C
@ y 

@yx
D ��Sr

2 y C curlz y� C �M r
2y� (14.59)

where Rˇ D U=ˇL2 D j� j=.ˇ2L3/, the ˇ-Rossby number for this problem, is a
measure of the nonlinearity. Evidently, the nonlinear term increases in importance with
increasing wind-stress and for a smaller domain.

If the nonlinearity were a priori expected to be of leading order importance, we
might assume the nonlinear balance

J. ; �/ � curlz� (14.60)

which suggests the scaling U D .j� jL/1=2. The nondimensional version of (14.58)
would then be

J. y ; y�/C 
@ y 

@yx
D �0

Sr
2 y C curlz y� C �0

M r
2y� (14.61)

where  D ˇL2=U D ˇ=.j� jL5/1=2 and �0
S

D r.L=j� j/1=2. This implies that the
friction becomes less important as the wind-stress increases but, because it is a high-
order term, it will remain important near the boundaries and the details of the solution
may still depend on its particular form.

14.4.1 A perturbative approach

A direct attack on the full nonlinear problem (14.58) is is possible only through numeri-
cal methods, so first we shall explore the problem perturbatively, assuming the nonlinear
term to be small; the analysis is straightforward. We begin with the Stommel problem,
(14.59) with �M D 0, and expand the streamfunction in terms of Rˇ ,

 D  0 C Rˇ 1 C � � � : (14.62)
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Now substitute this into (14.59) and equate powers of Rˇ . The lowest order problem is
simply

�Sr
2 0 C

@ 0

@x
D curlz� (14.63)

which is the Stommel problem we have already solved. At next order,

�Sr
2 1 C

@ 1

@x
D J. 0; �0/ (14.64)

This equation has precisely the same form as the Stommel problem, with the known
nonlinear term on the right playing the part of the wind-stress. The algebra to obtain
the solution is rather tedious, because the right-hand side varies with both x and y, but
this is much ameleriated by the use of computer algebraic manipulation languages. For
the canonical wind stress �x D ��0 cos. y=a/ the corrected solution, in the boundary
layer approximation and ignoring any corrections at the zonal boundaries, is found to
be:10

 � sin. y/.1 � x � e�x=�S / �
Rˇ 

3

2�3
S

sin.2 y/xe�x=�S : (14.65)

The solution is illustrated in Fig. 14.8. The perturbation is antisymmetric about y D

1=2, being positive for y > 1=2 and negative for y < 1=2. This tends to move the
center of the gyre polewards, narrowing and intensifying the flow in the polewards half
of the western boundary current, whereas the western boundary current equatorwards
of y D 1=2 is broadened and weakened. The net effect is that the center of the gyre
is pushed polewards. This occurs because the western boundary current is advecting
the vorticity of the gyre polewards. In the perturbation solution the advection is both
by and of the linear Stommel solution; thus, negative vorticity is advected polewards,
intensifying the gyre in its polewards half, weakening it in its equatorward half. The
solution illustrated in Fig. 14.8 has � D 0:04 and Rˇ D 0:0001; for larger values of Rˇ

the perturbation itself starts to dominate.
The problem with this perturbative approach is that boundary layer solution to the

Stommel problem does not calculate derivatives accurately, so that the nonlinear term
J. ;r2 / is poorly approximated in the western boundary layer; however, in the inte-
rior where the errors are small the perturbative correction is negligible. A more accurate
perturbative approach begins with the exact solution to the Stommel problem, and pro-
ceeds in the same way. However, the analytic effort is considerable, and the intuitive
sense of the way nonlinearities affect the solution is not apparent. (See problem 14.6.)

14.4.2 A numerical approach

Fully nonlinear solutions show qualitatively similar effects to those seen in the pertur-
bative solutions, as we see in Fig. 14.9, where the solution to (14.59) for the Stommel
and Munk problems are obtained numerically by a Newton’s method.11 Just as with
the perturbative procedure, for both the Stommel and Munk problems small values of
nonlinearity lead to the poleward advection of the gyre’s anticyclonic vorticity in the
western boundary current, strengthening and intensifying the boundary current in the
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Fig. 14.8 The nonlinear perturbation solution of the Stommel prob-
lem, calculated according to (14.65). On the left is the perturbation,
�Rˇ 

3=.2�2
S
/ sin.2 y/xe�x=�S , and on the right is the reconstituted so-

lution, using Rˇ D 10�4 and � D 0:04. Dashed contours are negative.

northwest corner. A higher level of nonlinearity results in a strong recirculating regime
in the upper westward quadrant, and ultimately much of the gyre’s transport is confined
to this regime. The western boundary current itself becomes less noticeable as non-
linearity increases, the more nonlinear solutions have a much greater degree of E-W
symmetry than the linear ones, just as the fully nonlinear Fofonoff solutions (section
14.5.3).

Such qualitative effects do not depend on the precise formulation of the model, but
the boundary conditions do play an important role in the detailed solution. For example,
for a given value of Rˇ , nonlinearity has a stronger effect in the Munk problem with
slip boundary conditions than with no-slip, because in the latter the velocity is reduced
to zero at the boundary with a corresponding reduction in the advection term. However,
these solutions themselves are unlikely to be relevant for larger values of nonlinearity,
because then the flow becomes hydrodynamically unstable.

14.5 * THE INERTIAL WESTERN BOUNDARY CURRENT

In this section we ask: might purely inertial effects be sufficient to satisfy boundary
conditions at the Western boundary? Can we envision a purely inertial gyre circulation?
Now, the steady wind-driven, Rayleigh damped quasi-geostrophic equation is,

J. ;r2 /C ˇ
@ 

@x
D WE � rr

2 (14.66)

U 2

L2
ˇU jWEj r

U

L
(14.67)

where WE is the wind forcing and the second line indicates the magnitude of the various
terms. Since the inertial (advective) terms are higher order than the linear terms, indeed
they are higher order than the Rayleigh drag, it is natural to wonder if they themselves
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Fig. 14.9 Streamfunctions in solutions of the nonlinear Stommel and Munk
problems, obtained numerically with a Newton’s method, for various values
of the nonlinearity parameter S D R

1=2

ˇ
. As in the perturbation solution,

for small values of nonlinearity the center of the gyre moves polewards,
strengthening the boundary current in the north-western quadrant (for a
northern-hemisphere solution). As nonlinearity increases, the recirculation
of the gyre dominates, and the solutions become increasingly inertial.

might serve to satisfy the no-normal flow condition on the western boundary, without
recourse to rather ill-defined frictional terms. The answer is no, as we see below, but
nevertheless nonlinear effects are likely to be important in the Western boundary layer
even if they are small in the interior.
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14.5.1 The need for friction

Consider the steady barotropic flow satisfying

u � rq D curlz� C F (14.68)

where q D r2 C ˇy and F represents frictional effects. Noting that u is divergence-
free and integrating the left-hand side of (14.68) over the area, A, between two closed
streamlines ( 1 and  2, say) and using the divergence theorem we findZ

A

r � .uq/ dA D

I
 1

uq � n dl �

I
 2

uq � n dl D 0: (14.69)

Here, n is the unit vector normal to the streamline so that u � n D 0. The integral of
the wind-stress curl over the same area will not in general be zero. Now, we can take
these two streamlines as close together as we wish; thus, a balance in (14.68) can only
be achieved if every closed contour passes through a region where frictional effects are
non-zero. This does not mean that nonlinear terms may not locally dominate the fric-
tion, just that friction must be somewhere important. In the Stommel and Munk prob-
lems, it means that every streamline must pass through the frictional western boundary
layer.

The ratio of the size of the nonlinear terms to the linear terms is given by the the
beta Rossby number,

Rˇ D
U

ˇL2
: (14.70)

In the western boundary layer the length scales can be expected to be much smaller than
the basin scale. Indeed, if the balance in the western boundary layer were between the
nonlinear and beta term, perhaps being of the form

u
@

@x
r

2 � ˇ
@ 

@x
(14.71)

then the inertial boundary layer thickness, ıI , is given by

ıI D

�
U

ˇ

�1=2

; (14.72)

which of course gives Rˇ D 1 if L D ıI . The more energetic the flow, the wider the
region where nonlinearity is important, and the corresponding scale is sometimes called
the Charney thickness.12

The linearized Stommel equation has a boundary layer of thickness ıS � .r=ˇ/,
obtained by equating ˇ@ =@x and rr2 . This thickness is equal to the inertial bound-
ary layer thickness when U D .r2=ˇ/. If ıI > ıS , i.e., if U > .r2=ˇ/ then nonlinearity
must be important in the western boundary layer, because the nonlinear terms are at least
as important as the beta term in (14.66). On the other hand, if the Stommel boundary
layer is wider than the inertial boundary layer, there is no obvious need for nonlinearity
to be important, since the Stommel boundary layer generates no length scales smaller
than ıI and Rˇ remains small.
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14.5.2 A perturbative approach

Although friction must be important, it is instructive to try to find an inertial solution us-
ing the familiar boundary layer methods we used for the Stommel and Munk problems.
The relevant dimensional equation of motion is

J. ; �/C ˇ
@ 

@x
D WE (14.73)

and we may seek a solution as the sum of two parts  D  I C� where  I is Sverdrup
interior solution that satisfies

ˇ
@ I

@x
D WE : (14.74)

In the boundary layer it is now convenient to consider the equation for the full
streamfunction,  rather than the perturbation �, and this is

J. ;r2 C ˇy/ D 0: (14.75)

and this must tend to  I for x � ıI . Equation (14.75) has the general solution

r
2 C ˇy D G. / (14.76)

where G is an arbitrary function of its argument. We determine a special form of G, by
considering flow entering the boundary layer with a local velocity �U (i.e., westward).
That is,  I D Uy. The potential vorticity in the interior region is QI D ˇy. Thus, the
relation between potential vorticity and streamfunction is,

QI D
ˇ I

U
(14.77)

and thus, in this particular case

G. / D
ˇ 

U
: (14.78)

Because we are assuming the flow is inviscid, the fluid will preserve this relationship
between potential vorticity and streamfunction even as it moves through the western
boundary layer. Thus, using (14.76) and (14.78), the flow in the interior and in the
boundary layer are given by solutions of

r
2 C ˇy D

ˇ 

U
: (14.79)

The appropriate boundary conditions are determined by matching the flow in the bound-
ary layer to that in the interior, and the no-normal-flow condition at the western edge.

Since  I D Uy the boundary layer flow is determined by solutions of

r
2� �

ˇ�

U
D 0: (14.80)

In the western boundary layer, length-scales in the x-direction are much smaller than
length-scales in the y-direction, and so (14.80) becomes approximately

@2�

@x2
�
ˇ�

U
D 0 (14.81)
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Solutions of this are � D � I e�x=ıI , where ıI D .U=ˇ/1=2, and thus the full solution
(interior plus boundary layer) is

 D  I .1 � e�x=ıI / (14.82)

it is easily checked that this satisfies the no-flow condition at the western boundary, and
smoothly transitions into the interior solution for large x.

What about solutions exiting the boundary layer? We attempt a similar procedure,
but now the interior boundary condition that we must match is that of westward flow,
namely

 I D �Uy: (14.83)

Thus, we seek solutions to the problem,

r
2 C ˇy D �

ˇ 

U
(14.84)

[c.f. (14.79)], for which the homogeneous (boundary layer) equation is

@2�

@x2
C

ˇ�

U
D 0 (14.85)

Solutions of (14.85) are also of the form

 D  I .1 � e�x=ıI / (14.86)

except that now ıI D i.U=ˇ/1=2. The solution is wavelike, and does not transition
smoothly to the interior flow.13 Physically, we can see that we appear to be attempting
the impossible, in that flow in the westward flowing region of the interior flow has a
different potential vorticity–streamfunction (q � ) relationship than does the eastward
flowing interior. If these are to be connected by a boundary layer flow, that flow must
be viscous or unsteady since the value of potential vorticity on mean streamlines must
change. The western boundary layers of a flat-bottomed ocean are irreducibly frictional.

14.5.3 A fully inertial approach: the Fofonoff model

Rather than attempt to match an inertial boundary layer with an interior Sverdrup flow,
we may look for a purely inertial solution that holds basinwide, and such a construction
is known as the ‘Fofonoff model’.14 That is, we seek global solutions to the inviscid,
unforced problem,

J. ;r2 C ˇy/ D 0 (14.87)

We should not regard this problem as representing even a very idealised wind-driven
ocean; rather, we may hope to learn about the properties of purely inertial solutions that
might, in turn, tell us something about the ocean circulation.

The general solution to (14.87) is

r
2 C ˇy D Q. / (14.88)



14.5 * The Inertial Western Boundary Current 627

where Q. / is an arbitrary function of its argument. For simplicity we choose the linear
form,

Q. / D A C B; (14.89)

where A D ˇ=U and B D ˇy0, where U and y0 are arbitrary constants. Thus, (14.88)
becomes �

r
2

�
ˇ

U

�
 D ˇ.y0 � y/: (14.90)

We will further choose ˇ=U > 0, which we anticipate will provide a westward flowing
interior flow, but which (from our experience in the previous section) is more likely to
provide a meaningful solution than an eastward interior, and we will use boundary-layer
methods to find a solution. A natural scaling for  is UL, where L is the domain size,
and with this the nondimensional problem is

.�r2
� 1/ y D yy0 � yy (14.91)

where � D U=.ˇL2/ and we presume this to be small. The interior solution is just

y I D yy � yy0 (14.92)

or, in dimensional form,
 I D U.y � y0/: (14.93)

A boundary layer is required on each wall. Thus we write

y D y I C � (14.94)

where �, the boundary layer correction, satisfies

�
@2�

@x2
� � D 0: (14.95)

Just as in the Stommel and Munk problems, we stretch the coordinate in the region of
failure, although a priori we do not know how much to stretch it. Thus, at the western
boundary (x D 0) we write ˛ D .x=�/ and obtain

�

�
@2�

@x2
C

�
1

�

�n
@2�

@˛2

�
� � D 0 (14.96)

By choosing  D 1=2 we obtain a nontrivial balance, and obtain the boundary layer
correction

� D B.y/e�˛
D B.y/e�x=ıf (14.97)

where ıf D
p

U=ˇ and B.y/ is chosen to satisfy  D 0 at x D 0. Note that if U < 0

the boundary layer solution is oscillatory, and does not decay in the interior. We follow
a similar procedure at each boundary to obtain the full solution, and in dimensional
form this is

 D U.y � y0/
�
1 � e�x=ıf � e�.x�xe/=ıf

�
� U.yn � yo/e�.yn�y/=ıf C Uy0e�y=ıf :

(14.98)
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Figure 14.10 The Fofonoff solu-
tion. Plotted are contours (stream-
lines) of (14.98) in the plane 0 <

x < xe, 0 < y < yn with U D

1; yn D 1; xe D yn D 1, y0 D 0:5

and ıf D 0:05. The interior flow is
westward everywhere, and  D 0

at y D y0. In addition, boundary

layers of thickness ıf D

p
U=ˇ

bring the solution to zero at x D

.0; xe/ and y D .0; yn/, excepting
small regions at the corners.

By construction this satisfies  D 0 at x D .0; xe/ and at y D .0; yn/.
A typical solution is illustrated in Fig. 14.10. On approaching the western bound-

ary layer, the interior flow bifurcates at y D y0. The western boundary layer, of width
ıf , accelerates away from this point, being constantly fed by the interior flow. The west-
ward return flow occurs in zonal boundary layers at the northern and southern edges,
also of width ıf . Flow along the eastern boundary layers is constantly being deceler-
ated, because it is feeding the interior. If one of the zonal boundaries corresponds to y0

(e.g., if yn D y0) there would be no boundary layer along it, since  is already zero at
y D y0. Rather, there would be westward flow along it, just as in the interior. Indeed, a
slippery wall placed at y D 0:5 would have no effect on the solution illustrated in Fig.
14.10

14.5.4 Connection between boundary layer and interior

We have seen that solutions with a boundary layer character that transition smoothly to
a flow interior exist only for westward interior flow (uI D �U < 0). If the interior
flow were eastward, wavelike solutions would be required, just as are needed to satisfy
flow emerging from a western boundary current in section 14.5. That is to say, inertial
western boundary layers on a beta-plane cannot smoothly release fluid into the interior
and still conserve potential vorticity, and the underlying reason is illustrated in Fig.
14.11.

Conservation of potential vorticity demands that vx � uy C ˇy is a constant on
streamlines. Now, in the interior relative vorticity is zero, and in the meridional bound-
ary layers it is effectively vx . Consider first the case with westward flow in the interior
(upper panel of Fig. 14.11). Fluid from the irrotational interior approaches the western
boundary and if it is polewards of the bifurcation latitude y0 it will be deflected pole-
wards, generating negative relative vorticity. Potential vorticity is conserved because
this can be exactly balanced by the reduced value of f . Similarly, flow deflected south-
wards generates positive relative vorticity, which is compensated for by the reduced
value of f . In the eastern boundary layer, southwards (northwards) moving flow has
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Fig. 14.11 Putative inertial boundary layers connected to a westward flowing internal
flow (left panel) or eastward flowing internal flow (right panel), in the Northern Hemi-
sphere. Westward flow into the western boundary layer, or flow emerging from an east-
ern boundary layer, is able to conserve its potential vorticity through a balance between
changes in relative vorticity and Coriolis parameter. But flow cannot emerge smoothly
from a western boundary layer into an eastward flowing interior and still conserve its
potential vorticity. The right panel thus has inconsistent dynamics.

negative (positive) relative vorticity. As it emerges into the interior its relative vortic-
ity increases (decreases), this being balanced by a fall (rise) in the value of f . Thus,
we see that the Fofonoff solution with a westward flowing interior can indeed conserve
potential vorticity.

On the other hand suppose the interior flow were eastward (right panel of Fig.
14.11). Flow moving polewards in the western boundary layer has negative relative
vorticity. It cannot be freely released into an irrotational (� D 0) interior because f
and � would then both need to increase, violating potential vorticity conservation. Flow
moving southwards with positive relative vorticity similarly is trapped within the west-
ern boundary current, unless it meets a zonal boundary which allows a eastward moving
boundary current with positive relative vorticity. Similar arguments show that an eastern
boundary current cannot entrain fluid from an eastward flowing, irrotational interior.

Finally, one might ask, why we cannot simply reverse the trajectory of all the fluid
parcels in an inviscid flow and thereby obtain a solution with an eastward-flowing in-
terior? The answer is that such a flow will only be a solution if we also reverse the
direction of the earth’s rotation, and so reverse the sign of ˇ. With negative ˇ, an
eastward flowing interior is indeed the solution to the Fofonoff problem.

14.6 TOPOGRAPHIC EFFECTS ON WESTERN BOUNDARY CURRENTS

The above sections have emphasized the role of friction in satisfying the boundary con-
ditions in the west. However, we should not think of friction as being the cause of the
western boundary layer and in this section we shall show that if there are sloping side-
walls the role of friction is significantly different, and the western bouundary current
may even be largely invisicid!15 The key point is that the flow may be inviscid if it is
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able to follow potential vorticity contours. Now, in a flat-bottomed western boundary
layer the flow is moving to larger values of f (and not as a direct response to the wind
forcing) and so the flow must be frictional. However, if the sidewalls are sloping, then
the flow may preserve its value of potential vorticity (essentially its value of f=h) if
it moves offshore as it moves polewards. We will focus on homogeneous fluids, not-
ing that the interaction of topography and stratification is a subtle and rather complex
problem.

14.6.1 Homogeneous model

The potential vorticity evolution equation for a homogeneous model with topography
and a rigid lid [c.f., (14.7)] may be written as:

Dq

Dt
D

F

h
: (14.99)

where h D h.x;y/ is the depth of the fluid and F represents all forcing and frictional
terms. Because h is given, the relative vorticity may be obtained from this by � D qh �

f . The advecting velocity is determined by noting that the mass conservation equation
is just r � Œuh.x;y/� D 0, which allows us define the mass-transport streamfunction  
such that

u D �
1

h

@ 

@y
; v D

1

h

@ 

@x
: (14.100)

The streamfunction is obtained from the vorticity by solving the elliptic equation,

r �

�
1

h
r 

�
D � D qh � f: (14.101)

The system — equations (14.99), (14.101) and (14.100) — is then closed. Note that,
unlike in quasi-geostrophy, neither the Rossby number nor the topography need be small
for the validity of the model. Including finite size topography but not stratification is
not especially realistic vis a vis the real ocean, but nevertheless this model is physically
realizable and a useful tool.

The ‘topographic Stommel problem’ is obtained by neglecting relative vorticity in
(14.99), which on expanding the advective term and omitting time dependence gives

J

�
 ;
f

h

�
D �r �

� r

h
r 

�
C curlz.�=h/; (14.102)

where the boundary conditions are  D 0 at the domain edges.

14.6.2 Advective dynamics

An illuminating way to begin to study the problem is to write (14.102) in the form:16

J.	;  / D Cr �

� r

h
r 

�
� curlz.�=h/ (14.103)
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Figure 14.12 The ˇ-plume,
namely the Green’s function for
the Stommel problem. Specifically
we plot the solution of (14.104)
with  D 0 at the walls, and
a delta-function source at x D

0:75; y D 0:5. The streamfunction
trails westward from the source,
as if it were a tracer being dif-
fused while being advected west-
ward along lines of constant f .

where 	 � f=h. Thus, noting that J.	;  / D U � r where U D k � r.f=h/,
we regard  as being advected by the pseudo-velocity U . This advection is along
f=h contours and is quasi-westward, meaning that high values of potential vorticity
lie to the right. Eq. (14.103) is then an advection-diffusion equation for the tracer  ,
with the advection occuring along f=h contours. The ‘source’ of  is the wind-stress
curl, and  is diffused by the first term on the right-hand side of (14.103). This same
interpretation applies to the original Stommel problem, of course, where the pseudo-
velocity, �ˇi, is purely westward, and it is useful to revisit this problem.

Consider, then, a flat-bottomed ocean, where the wind is only a point source at x0.
Eq. (14.103) becomes

rr
2 C ˇ

@ 

@x
D ı.x � x0/: (14.104)

This can be transformed to a Helmholtz equation by writing � D  exp.ˇx=2r/, giving
r2� � Œˇ=.2r/�2� D ı.x � x0/. This may then be solved exactly, and the solution (for
 ) is illustrated in Fig. 14.12 — this is the Greens function for the Stommel problem.
The tracer  is ‘advected’ westwards along f=h contours — lines of latitude in this
case — spreading diffusively as it goes; the resulting structure is a simple example of a
‘ˇ-plume’. The western boundary layer results as a consequence of the f=h contours
colliding with the western boundary, along with the need to satisfy the boundary condi-
tion  D 0. If there is no diffusion at all,  just propagates westwards from the source,
and if the source is spatially distributed, for example as sin y, we obtain the Sverdrup
interior flow.

Now consider the case with a sloping sidewall on the western boundary. The f=h

contours (the dashed lines in Fig. 14.13b) tend to converge at the southwest corner of the
domain, and only where f=h contours intersect the boundary is a diffusive boundary
layer required. The solution to (14.104) with r D 0 with a conventional ‘two-gyre’
wind-stress are also illustrated in that figure; this is the Sverdrup flow for this problem
and it evidently satisfies  D 0 on the western boundary. In terms of the interpretation
above, wind-stress provides a source for the streamfunction  and the latter is advected
pseudo-westward — i.e., along potential vorticity contours, with higher values to the
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Figure 14.13 The
two-gyre Sverdrup
flow (solid contours)
for (a) a flat-bottomed
domain and (b) a do-
main with sloping
sidewalls. The
f=h contours are
dashed.17

right. The source in this case is distributed over the entire domain, but the contours all
converge in the southwest corner. The (numerically obtained) solution to the associated
Stommel problem is illustrated in Fig. 14.14, and the western boundary current in this
case is no longer a frictional boundary layer. Friction is necessarily important where the
flow crosses f=h contours; linear theory suggests that this will occur at the southwest
corner. It also occurs on the western boundary where the f=h contours are densely
packed and the vorticity in the topographic Sverdrup flow is large, and the friction
enables the flow to move across the f=h contours. (In the flat bottomed case the f=h

contours are zonal and friction allows the flow to move meridionally.)

14.6.3 Bottom pressure torques and form drag

In the homogeneous problem f and h appear only in the combination f=h, and we
may solve the problem entirely without considering pressure effects. It is nevertheless
informative to think about how the pressure interacts with the topography to produce
meridional flow. The geostrophic momentum equation is

f � u D �r� C F (14.105)

where F represents both wind forcing and frictional terms. Integrating this over the
depth of the ocean (with z D 0 at the top), and using Leibnitz’s rule (r

R 0

�b
� dz DR 0

�b
r� dz � �br�b) to evaluate the pressure term, gives

f � u D �r� � �br�b C F : (14.106)

Here, the overbar denotes a vertical integral (e.g., u D
R 0

�b
u dz), �b is the pressure at

z D �b and �b is the z-coordinate of the bottom topography. We take the top of the
ocean at z D 0, and note that r�b D �rh where h is the fluid thickness. Taking the
curl of (14.106) gives

ˇv D �J.�b; �b/C curlzF (14.107)
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Fig. 14.14 The numerically obtained steady solution to the homogenous
problem with a two-gyre forcing and friction, for a flat-bottomed doman
and a domain with sloping western sidewall. The shaded regions in the
right panel show the regions where bottom pressure torque is important,
in the meridional flow of the western boundary currents.18

This equation holds for both a stratified and homogeneous fluid. The first term on the
right-hand side is the bottom pressure torque, B, discussed more below.

Equation (14.107) is similar to (14.102), in that both arise from (14.106). To derive
a equation with the same form as (14.102) but valid for a stratified fluid, we write the
vertical integral of the pressure asZ 0

�h

� dz D

Z 0

�h

Œd.�z/ � z.@�=@z/ dz� D

Z 0

�h

Œd.�z/ � zb dz� D h�b C�; (14.108)

using hydrostatic balance, and where � � �
R 0

�h
zb dz. Using (14.108) in (14.106) we

obtain:
f � u D �hr�b C r� C F : (14.109)

The curl of this equation just gives back (14.107), but if we divide by h before taking
the curl we obtain

J. ; f=h/C J.h�1; � / D curlz.F =h/: (14.110)

If the stratification vanishes we may take � D 0 and the equation reprises (14.102),
given an appropriate choice of F . The second term in (14.110) equation is known as
the JEBAR term — joint effect of baroclinicity and relief — and it serves to couple the
depth integrated flow with the baroclinic flow.

Bottom pressure torque in a homogeneous gyre
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The first term on the right-hand side of (14.107) is the bottom pressure torque, B. It
be written as the curl of a form stress �b; that is, Bk D r � �b D �r � .�br�b/ D

�r�b � r�b , and so is non-zero whenever the pressure gradient has a component
parallel to the topographic contour. Note that for unforced and inviscid flow we have
both J. ; f=h/ D 0 and, from (14.107), ˇv D B. That is, flow along f=h contours
is equivalent to meridional flow balanced by a bottom pressure torque and, of course, if
the domain is flat-bottomed, all meridional flow is viscid.

However, unlike viscosity, the bottom pressure torque cannot balance the effects of
the wind-stress curl when integrated over the whole domain, or indeed when integrated
over an area bounded by a line of constant �b or constant �b , because its integral over
such an area vanishes and (14.102) cannot be balanced if r D 0. Locally, however,
bottom pressure torque can be as or more important than either the wind forcing or
friction. In the numerical simulations shown in Fig. 14.14, it is the bottom pressure
torque term that largely balances the polewards flow .ˇv/ in the vorticity equation in
parts of western boundary current, with friction acting in the opposite sense. That is,
over some regions where the flow is crossing f=h contours we have the balance

Œˇv� � ŒBottom pressure torque� � ŒFriction�; (14.111)

where the terms in square brackets are positive, and friction is small. In contrast, in the
flat-bottomed case in the western boundary layer we have the classical balance Œˇv� �

CŒFriction�, with both terms positive.
Now consider the balance of momentum, integrated zonally across the domain. We

write the vorticity equation (14.107) in the form

r � .f v/ D �curlz.�br�b/C curlz�w � curlz�f ; (14.112)

where �w represents the wind stress and �f represents frictional effects. Integrate
(14.112) over the area of a zonal strip bounded by two nearby lines of latitude, y1

and y2, and the coastlines at either end. The term on the left-hand side vanishes by
mass conservation and using Stokes’s theorem we obtain:Z

y1

�b

@�b

@x
dx �

Z
y2

�b

@�b

@x
dx D

Z
y1

.�x
w � �x

f / dx �

Z
y2

.�x
w � �x

f / dx: (14.113)

If the topography is non-zero, there is nothing in this equation to prevent the wind-stress
being balanced by the form stress terms, with the friction being a negligible contribu-
tion. If, for example, friction were to be confined to the southwest corner, then bottom
pressure torque is the proximate driver of fluid polewards in the western boundary cur-
rent. This may hold only if the scale of the sloping sidewall is greater than the thickness
of the Stommel layer; if the converse holds, the sidewalls appear to be essentially ver-
tical to the flow. If the sidewalls are truly vertical, then the form stress is confined to
delta-functions at the walls. Friction must then be important even in the zonal balance,
because if we restrict the integral in (14.113) to a strip that does not quite reach the side-
walls, the left-hand side vanishes identically and the wind-stress can only be balanced
by friction.
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To conclude this discussion, we note that the effects of topography are likely greater
in homogeneous fluids than in stratified fluids, because the stratification may partially
shield the wind-driven upper ocean from feeling the topography, but we leave the ex-
ploration of that topic for another day.

14.7 * VERTICAL STRUCTURE OF THE WIND-DRIVEN CIRCULATION

We now examine the vertical structure of the wind-driven flow. We pose the problem
in the framework of the quasi-geostrophic equations, taking the overall stratification
of the ocean as a given. Of course the production of the stratification itself one of the
most important problems of physical oceanography, but we will leave that to subsequent
chapters.

14.7.1 A Two-Layer Quasi-Geostrophic Model

Scales of motion

We will concern ourselves with scales that are sufficiently larger than the deformation
radius that we can ignore relative vorticity relative to vortex stretching and the ˇ-effect.
We must be careful in so doing, because quasi-geostrophic scaling applies only to scales
that are not significantly larger than the deformation scale; thus, our analysis will be
formally valid under the following set of inequalities.

ˇL � f0 (small variations in Coriolis parameter)

ˇL > U=L (to ignore relative vorticity compared to planetary vorticity)

L2 > L2
d (to ignore relative vorticity compared to vortex stretching)

Ro L2
� L2

d (to keep the variations in stratification small)

where Ld is the deformation radius and L the scale of the motion. Since in the midlat-
itude ocean Ld � 105 m, then the above inequalities are reasonably well satisfied for
L � 106 m and U � 0:1 m s�1 with ˇ D 10�11 m�1 s�1 and f0 D 10�4 s�1. The first
and last of the inequalities are standard quasi-geostrophic requirements, with the ‘�’
symbol denoting the asympotic ordering. The middle two inequalities are taken within
the quasi-geostrophic dynamics, and are needed in order to ignore relative vorticity and
give a balance between the ˇ-effect and vortex stretching. The simultaneous satisfaction
of all these conditions may seem restrictive, but the plangent dynamics contained within
the quasi-geostrophic equations and the generality of the method employed below will
suggest that the principle results obtained may transcend the particular limitations of
the equations used.

Constructing the model

We now make the following simplifications for our model ocean.
(i) We use the two-layer quasi-geostrophic equations, with layers of equal thickness.
(ii) We seek only statistically-steady solutions.



636 Chapter 14. Wind-Driven Gyres

(iii) We include a frictional term derived by assuming potential vorticity is fluxed
downgradient. Given the neglect of relative vorticity, this is equivalent to an inter-
facial drag.

(iv) We will neglect the western boundary layer.
Because of the equal-layer-thickness assumption, which we make primarily for alge-
braic simplicity, it is best considered as model for the upper ocean above a level where
the vertical velocity is approximately zero. The equations of motion are then

J. 1; q1/ D
1

H0

curlz� � r � T1; J. 2; q2/ D �r � T2 (14.114a,b)

where

q1 D ˇy C F. 2 �  1/; q2 D ˇy C F. 1 �  2/: (14.115a,b)

Here, F D f 2
0
=.g0H0/ D 1=L2

d is a measure of the stratification, where H0 is the
thickness of either layer, and the r � T terms are represent interfacial eddy stresses,
which we parameterize by by a downgradient flux of potential vorticity: are given by

T1 D ��rq1 D �Rr. 2 �  1/; T2 D ��rq2 D �Rr. 1 �  2/; (14.116)

where R and � are constants, and R D �F . We will be interested in the limit of small
R, or more specifically UFL=R � 1, which is a large Péclet number condition. (The
Péclet number is similar to a Reynolds number, but with the diffusivity replacing the
kinematic viscosity.) So first consider the case when R is identically zero. An exact
solution to (14.114) has  2 D 0, so that (14.114a) becomes ˇ@ 1=@x D H �1

0
curlz�,

with solution

 1 D �
1

H0ˇ

Z xe

x

curlz� dx: (14.117)

That is, there is no flow in the lower layer, and the upper layer solution is given by
Sverdrup balance. The solution satisfies  1 D 0 at x D xe and, because  2 D 0, the
nonlinear term on the left-hand side of (14.114a) vanishes identically.

General Solution

We now construct the solution without assuming  2 D 0. Although the equations
are nonlinear, we obtain a linear equation for the lower-layer streamfunction by adding
(14.114a) and (14.114b), giving

J. 1; ˇy C F. 2 �  1//C J. 2; ˇy C F. 1 �  2// D
1

H0

curlz�: (14.118)

The nonlinear terms cancel leaving

J. ; ˇy/ D
1

H0

curlz�; where  D  1 C  2; (14.119a,b)

with solution [c.f., (14.117)]

 D �
1

H0ˇ

Z xe

x

curlz� dx0: (14.120)
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Fig. 14.15 Contours of q D ˇy C A sin y.1 � x/, with ˇ D 1. The dashed
line is q D 1, which separates the blocked region to the east (q < 1) from
the closed region to the west (q > 1). See Fig. 14.16 for plots of the other
fields.

This simply says that the vertically integrated flow obeys Sverdrup balance. For the
canonical windstress

� D ��0 cos y i (14.121)

we obtain  D . �0=ˇH0/.xe � x/ sin y. It is useful to define

q � .ˇy C F /; (14.122)

and then q D ˇŒy C A.1 � x/ sin y�, where A D  �0=.ˇH0/ parameterizes the wind
strength, and this is plotted in Fig. 14.15. For q < 1 (below and to the right of the
dashed line) all the geostrophic contours intersect the eastern boundary and the flow is
‘blocked’. For q > 1 the flow is ‘closed’.

Lower layer

Although the full equations are nonlinear, using (14.122) we can obtain a linear equation
for the lower layer. Because the Jacobian of a field with itself vanishes, (14.114b) and
(14.115b) imply that

J. 2; q/ D �r � T2; (14.123)

and this is useful because q is a function of the wind, using (14.122). If r � T2 D 0 then

J. 2; q/ D 0: (14.124)

As well as the possibility that  2 D 0 we now have the more general solution

 2 D G.q/ (14.125)

where G is an arbitrary function of its argument. Isolines of  2 and q are then co-
incident. (Contours that are isolines of both streamfunction and potential vorticity are
generally known as geostrophic contours.)

Consider a blocked isoline of q; that is, one that intersects the eastern boundary
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(see again Fig. 14.15). The  2 contour coincident with this has value zero at the eastern
boundary (by the no-normal flow condition). Thus  2 D 0 everywhere in the blocked
region, and q2 D q. In this region the Sverdrup transport is carried everywhere by the
upper layer, and the lower layer is at rest. This region is called a ‘shadow zone’, for the
fluid is in the shadow of the eastern boundary, and it will re-appear in a model of the
thermocline in chapter 16. In the region of closed contours,  2 cannot be given by this
argument. But if R is small, we can expect (14.124) to approximately hold, and that
the presence of a small amount of dissipation will determine the functional relationship
between  2 and q. Thus, in summary, there are two regions of flow:

(i) The blocked region in which  1 �  �  2 and  1 is approximately given by
(14.117).

(ii) A closed region in which  2 D G.q/C O.R/.

14.7.2 The form of G.q/

A general argument

In chapter 10 we showed that, within a region of closed contours, the values of tracer
that is materially conserved except for the effects of a small diffusion would become ho-
mogeneous. In the case at hand, potential vorticity is that tracer so that within potential
vorticity contours or closed streamlines potential vorticity will become homogenized.
If we can determine the value of q2 within the region of closed contours, then from
(14.115)  2 is given by

 2 D .1=2F /.q � q2/ (14.126)

and the solution would be complete. Now, outside the closed region  2 �  1, so that
the outermost contour of the closed region must be characterized by q2 � q, for this
makes  2 continuous between closed and blocked regions. Thus, the value of q2 within
the closed homogeneous region is that of q (i.e., ˇy C F ) on its boundary. Since this
contour intersects the poleward edge of the domain, where  is zero, the value of this
contour is just ˇy at y D L; that is, ˇL. Thus, within the closed region,

q2 D ˇL: (14.127)

A specific calculation

Now consider the steady, lower-layer potential vorticity equation (14.114b); since J. 2;F. 1�

 2// D J. 2;F. 1 C  2//, (14.114b) may be written as

J. 2; q/ D �r � T2 (14.128)

Integrating around a closed contour of q the left-hand side vanishes and

R

Z
.r 1 � r 2/ � n dl D 0 (14.129)

or I
u1 � dl D

I
u2 � dl (14.130)
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Summary of Wind-driven, Two-layer Solution

The vertically integrated flow in a wind-driven two-layer quasi-geostrophic model is
determined by Sverdrup balance. The effects of eddies may be crudely parameterized
by a downgradient diffusion of potential vorticity. If this is identically zero, then the
lower layer flow is identically zero and the upper layer flow carries all the transport.
If the diffusion is small but non-zero, the lower layer streamfunction approximately
satisfies J. 2; q, where q is given by (14.122), and therefore  2 is a function of q

— that is,  2 � G.q/. For a typical subtropical wind, contours of q, and therefore
contours of  2, are naturally divided into two regions (Fig. 14.15):

(i) A blocked region (the shadow zone), in which contours of q intersect the eastern
boundary, the lower layer flow is zero and the upper layer carries all the Sverdrup
transport.

(ii) A closed region in which (if we envision a nearly inviscid western boundary cur-
rent) the flow recirculates. In this region we posit that the lower layer potential
vorticity becomes homogeneous, with a value determined by the value at the re-
gion’s boundary, and this is in turn is determined by tracing q back to the domain
boundary.

To satisfy a circulation constraint the function G.q/ must be a linear function, and
given this the entire solution may be determined. If, for example, the wind is zonal and
a function of y only, and curlz� D g.y/ then, in both regions:

 �  1 C  2 D �
1

ˇH0

g.y/.xe � x/; q � ˇy C F (OC.1a,b)

In the blocked region:

 2 D 0;  1 D �
1

ˇH0

.xe � x/g.y/; (OC.2a)

q1 D ˇy C F. 1 �  2/; q2 D ˇy C F. 2 �  1/: (OC.2b)

In the closed region:

q2 D ˇL (by homogenization); (OC.3a)

 2 D
1

2F
.q � ˇL/;  1 D  �  2; (OC.3b)

q1 D ˇy C F. 2 �  1/ D 2ˇy � ˇL: (OC.3c)

For g.y/ D � sin y these solutions are illustrated in Fig. 14.15 and Fig. 14.16.

This approach provides a solution to the conundrum of what drives the lower ocean
ocean, for if there are no eddy effects at all [i.e., T1 D T2 D 0 in (14.116))], then the
lower layer flow is stationary. This seems unrealistic, for the upper layer flow could be
made quite shallow. Another solution to this issue is provided in section 16.4, wherein
it is assumed that the lower layers may outcrop and so feel the wind directly.



640 Chapter 14. Wind-Driven Gyres

thus, the deep circulation around a mean geostrophic contour (i.e., isoline of q) is equal
to the upper level circulation.

Now, previously we argued that

 2 D G.q/ D G.ˇy C F. 1 C  2//: (14.131)

where G is an arbitrary function of its argument. In order to satisfy (14.130), G must
clearly be a linear function, and so we write

 2 D C

�
ˇy

F
C . 1 C  2/

�
C B; (14.132)

where C and B are constants. This may be re-arranged to give

 1 D �C
ˇy

F
C . 1 C  2/.1 � C / � B: (14.133)

This is consistent with (14.130) if C D 1=2. With this, (14.132) gives

q D 2F. 2 � B/ (14.134)

and the potential vorticity in the closed contour region of the lower layer is

q2 D ˇy C F � 2F 2 D �2FB: (14.135)

That is, it is constant. Outside the closed contours  2 �  1 so that q2 � q D

ˇy C F 1. If we trace this contour to the edge of the domain where  1 D 0 and
y D L then we see that the value of q on the contour, and hence q2 in the closed region,
is ˇL, as in (14.127), and B D �ˇL=.2F /. Using (14.134) then gives

 2 D .2F /�1.q � ˇL/: (14.136)

Given  2 and q2 [from (14.127)], we obtain q1 and  1 using (14.115) and (14.119b),
giving

q1 D 2ˇy � ˇL;  1 D  �  2: (14.137)

All these fields are illustrated in Fig. 14.16, and see the shaded box on the preceding
page for a summary.

14.8 * A MODEL WITH CONTINUOUS STRATIFICATION

We now look the dynamics of the continuously stratified circulation by way of an exten-
sion of our two-layer procedure.19 Let us first consider how deep the wind’s influence
is.
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Fig. 14.16 Upper and lower level potential vorticity and streamfunction
for the canonical windstress (14.121). The field of q is that of Fig. 14.15
with A D 1. The dashed line divides the blocked region from the closed
region. The lower layer streamfunction  2 is non-zero only in the closed
region, and here q2 D ˇL) and q1 D 2ˇy � ˇL. In the blocked region the
upper layer carries all of the Sverdrup transport. Both streamfunction and
potential vorticity are continuous at the divide:  2 D 0 and q2 D q D ˇL.

14.8.1 Depth of the Wind’s Influence

The thermal wind-relationship in the form f @u=@z D @b=@y implies a vertical scale
H given by

H D
f UL

�b
(14.138)

where �b is a typical magnitude of the horizontal variation of the buoyancy. We can
relate this to the Ekman pumping velocity using the linear geostrophic vorticity equa-
tion, ˇv D f @w=@z , which, (assuming that the horizontal components of velocity are
roughly similar, i.e., V D U ), implies that

U D
fWE

ˇH
; (14.139)



642 Chapter 14. Wind-Driven Gyres

Equations (14.138) and (14.139) may be combined to give an estimate of the depth of
the wind-driven circulation, namely

H D

�
f 2WEL

ˇ�b

�1=2

; (14.140)

where L may be interpreted as the gyre scale. We now use quasi-geostrophic scaling to
relate the horizontal temperature gradient to the stratification using the thermodynamic
equation,

Db

Dt
C wN 2

D 0; (14.141)

with implied scaling

�b D
WEN 2L

U
D

N 2ˇHL

f0

; (14.142)

where the second equality uses (14.139). Using (14.140) and (14.142) gives

H D

�
WEf

3

ˇ2N 2

�1=3

: (14.143)

Potential vorticity interpretation

The estimate (14.143) can be obtained and interpreted more directly: the wind-driven
circulation penetrates as far as it can alter the potential vorticity q from its planetary
value ˇy. Recall that, ignoring relative vorticity,

q D ˇy C
@

@z

 
f 2

0

N 2

@ 

@z

!
: (14.144)

The two terms are comparable if

f 2
0

N 2H 2
UL � ˇL (14.145)

or

H 2
�
f 2

0
U

N 2ˇ
: (14.146)

Using (14.139) to eliminate U in favour WE recovers (14.143). Thus, for a given
stratification, we have an estimate of the depth of the wind-driven circulation, or at least
a scaling for depth of the vertical influence of the wind.



14.8 * A Model with Continuous Stratification 643

14.8.2 The complete solution

Armed with an estimate for the depth of the wind’s influence, we can obtain a solution
for the continuously stratified case analogous to that found in the two-layer case section
14.7. Our assumptions are:

(i) In the limit of small dissipation streamfunction and potential vorticity have a func-
tional relationship with each other.

(ii) Potential vorticity is homogenized within closed isolines of q or  . The value of
q within the homogenized pool is that of the outermost contour, which here is the
value of q at the poleward edge of the barotropic gyre.

(iii) Outside of the pool region, (i.e., below the depth of the wind’s influence) the
streamfunction is zero, and the potential vorticity is given by the planetary value,
i.e., ˇy.

Given these, finding a solution is not difficult. If N 2 is constant and neglecting relative
vorticity, the expression for potential vorticity is

q D
@2

@z2

 
f 2

0

N 2
 

!
C ˇy (14.147)

We nondimensionalize by writing

z D

 
f 2

0
U

N 2ˇ

!1=2

yz; q D ˇLyq;  D y UL; y D Lyy; w D
U 2f0

N 2H
yw;

(14.148)
where the hatted variables are nondimensional, and the scaling for w arises from the
thermodynamic equation N 2w � J. ; f0 z/. With this, (14.147) becomes

yq D
@2 y 

@yz2
C yy; (14.149)

The flow is then given by solving the following equations:

 zz C y D y0; �D.x;y/ < z < 0; (14.150a)

 D 0; z � �D.x;y/; (14.150b)

where D is the (to-be-determined) depth of the bowl, y0 is a constant, and we have
dropped the hats over the nondimensional variables. The solution in D.x;y/ < z < 0

corresponds to the closed region of the two-layer model, and the solution z � �D.x;y/

corresponds to the blocked region of zero lower-layer flow. The constant y0 is the
nondimensional value of potential vorticity within the pool region, and following our
reasoning in the two-layer case this is the value of the potential vorticity at the northern
boundary. Dimensionally this is ˇL, so that in nondimensional units y0 D 1.

The lower boundary conditions on (14.150a) is that  D  z D 0 at z D �D,
because in the abyss  D @ =@z D 0 and we require that both  and @ =@z be
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Fig. 14.17 Solutions of (14.122) for two different barotropic streamfunctions. On the
left  B D .1 � x/ sin y and on the right  B D 1 � .x2 C y2/ for x2 C y2 < 1, zero
elsewhere. The upper panels show contours of the depth of the wind-influenced region
(solutions of (14.155)). The depth increases to the northwest in the left panel, and to the
north in the right panel, so that in both cases the area of the bowl shrinks with depth.
The lower panels are contours of z C .ˇL=f0/ z=2, with ˇL=f0 D 1=2, obtained from
(14.151) or (14.156), at x D 0:25 and x D �0:5 in the two cases. These are isopcynal
surfaces, with a rather large value of ˇL=f0 to exaggerate the displacement in the bowl
region. The dashed lines indicate the boundary of the bowl region, outside of which the
isopycnals are flat.

continuous (note that the buoyancy perturbation is proportional to @ =@z). The solution
that satisfies this

 D
1

2
.z C D/2.y0 � y/; (14.151)

and  D 0 for z < D To obtain an expression for D we first note that the nondimen-
sional vertical velocity at z D 0 is given by

w D �J. ;  z/; (14.152)

which, using (14.151), gives

w D
1

2
.z C D/2.y0 � y/

@D

@x
: (14.153)
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Fig. 14.18 As for Fig. 14.17, but now a perspective of potential vorticity (upper panels,
obtained from (14.157)) and contours of streamfunction (lower panels, from (14.156)), at
a nondimensional depth of z D �1:5. Within the bowls the circulation is clockwise within
the bowls and the potential vorticity is uniform. Outside the bowls the fluid is stationary
and the potential vorticity has the planetary value ˇy. The value of potential vorticity
within the bowl is the planetary value at the poleward edge of the gyre, and is the same
value at all depths.

At z D 0 the vertical velocity is the Ekman pumping velocity and (14.153) becomes

D2 @D

@x
D

2wE

.y0 � y/
(14.154)

But the Ekman pumping velocity is related to the barotropic streamfunction,  B , by the
Sverdrup relationship, so that integrating (14.154) gives

D3
D

6 B

.y0 � y/
D �

6.xe � x/wE

.y0 � y/
: (14.155)

where the second equality holds if we is not a function of x. This is a solution for
the depth of moving region, the bowl in which potential vorticity is homogenized. An
expression for the streamfunction is then obtained by using (14.155) in (14.151), and is



646 Chapter 14. Wind-Driven Gyres

found to be

 D

(
1
2

�
z.y0 � y/1=2 C .6 B/

1=3.y0 � y/1=6
�2

�D < z < 0;

0 z < �D:
(14.156)

The potential vorticity corresponding to this solution is

q D

(
y0 �D < z < 0;

y z < �D:
(14.157)

Solutions are illustrated in Fig. 14.17 and Fig. 14.18 for two different barotropic stream-
functions.

It is possible to extend models such as the one described above by appending a
western boundary layer, and indeed the homognization of potential vorticity depends
upon presence of such layer in allowing the flow to recirculation. However, as we saw
in section 14.5.3, it is difficult for flow leave a western boundary layer without the help
of friction, and a neutrally stable, damped, stationary Rossby wave typically forms. The
critical issue then is whether the presence of dissipation in the western boundary layer
affects the homogenization of potential vorticity in the gyre itself. Numerical solutions
with a quasi-geostrophic model do show that potential vorticity is able to homogenize
under such circumstances. Homgenization in the real ocean has been observed in the
Pacific and, somewhat less compellingly, in the Atlantic.20

Notes

1 This figure is based in part on earlier drawings by W. Schmitz and L. Talley that
are largely based on observations, as well as on output from numerical models
constrained to the observations at GFDL. However, it is highly schematic and not
quantitative.

2 The climatological data set of Conkright et al. (2001) was assimilated into a primi-
tive equation numerical model (MOM) by strongly relaxing the model temperature
and salinity fields to those of the data set, a method arcanely known as ‘robust di-
agnostics’ or ’nudging’. Larger scale features are broadly representative of reality
but smaller scale feature may be inaccurate.

3 Courtesy of R. Zhang. See also Zhang and Vallis (2006).

4 Henry Stommel (1920–1992) was one of the most creative and influential physical
oceanographers of the 20’th century. Spending most of his career at Woods Hole
Institute of Oceanography, his enduring contributions include the first essentially
correct theory of western intensification (and so of the Gulf Stream), some of the
first models of abyssal flow and the thermohaline circulation (chapter 15), and his
foundational work on the thermocline. His forté was in constructing elegantly sim-
ple models of complex phenomena — often models that were physically realizable
in the laboratory — while at the same time encouraging the testing of the mod-
els against observations. This chapter might have been entitled ‘Variations on a
theme of Stommel’.

5 The asymptotic solution to this boundary value problem was obtained by Wasow



Notes and Problems 647

(1944), a few years prior to Stommel’s work, and further investigated by Levinson
(1950). However, it seems unlikely these two investigators were motivated by the
oceanographic problem.

6 Harald Sverdrup (1888–1957) was a Norwegian meteorologist/oceanographer who
is most famous for the balance that now bears his name, but he also played a
leadership role in scientific policy and was the director of Scripps Institution of
Oceanography from 1936–1948. The Sverdrup unit is also named for him. Origi-
nally defined as a measure of volume transport, with 1 Sv � 106 m3 s�1, it is more
generally thought of as a mass transport with 1 Sv � 109 kg s�1, in which case it
can also be used as a measure of transport in the atmosphere. The Hadley Cell,
for example, has an average transport of about 100 Sv (Fig. 11.3 and Fig. 12.19).

7 Leetmaa et al. (1977) and Wunsch and Roemmich (1985) offer somewhat different
views on the matter.

8 After Munk (1950).

9 Courtesy of R. Zhang. See also Zhang and Vallis (2006).

10 Hendershott (1987), Veronis (1966a).

11 Veronis (1966b) investigated nonlinear effects in the Stommel and Munk problems.
I am grateful to B. Fox-Kemper for providing the solutions shown in Fig. 14.9, and
for many comments on this chapter. See also Fox-Kemper and Pedlosky (2003).

12 After Charney (1955).

13 A more general discussion is given by Greenspan (1962). Il’in and Kamenkovich
(1964) and Ierley and Ruehr (1986) show numerically that the friction must in fact
be sufficiently strong for steady boundary-layer solutions to exist, and in partic-
ular that the Munk boundary layer width must be greater than twice the inertial
boundary layer width, ıM > 2ıI . If this does not hold, Ierley (1987) suggests
that an inertial ‘recirculation gyre’ may form, whose strength may be controlled by
transient eddy fluxes Fox-Kemper (2004).

14 After Fofonoff (1954).

15 Hughes and de Cuevas (2001), Jackson et al. (2005).

16 Welander (1968).

17 Figure kindly provided by Laura Jackson.

18 From Jackson et al. (2005).

19 Following Rhines and Young (1982b). Young and Rhines (1982) also considered
the problem of a western boundary layer.

20 See Rhines and Young (1982a) for a numerical example of PV homogenization
(numerical simulation by W. Holland). See Keffer (1985), Talley (1988) and Lozier
et al. (1996) for some observed PV fields. See Holland et al. (1984) for some of
both.

Further Reading

Abarbanel H. D. I. and W. R. Young (eds) 1987. General Circulation of the Ocean.
This book contains several useful articles on the oceanic general circulation. Par-
ticularly relevant to this chapter is the article by Hendershott on homogeneous
single-layer models.
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Pedlosky, J. 1996. Ocean Circulation Theory.
As well as covering the theory of wind-driven gyres, this book discusses cross-gyre
flows and equatorial dynamics.

Salmon, R. 1998. Lectures on Geophysical Fluid Dynamics.
This book provides a discussion of topographic effects (including the effects of
stratification), as well as a discussion of thermocline theory relevant to the material
of our chapter 16.

Problems

14.1 � Obtain the exact analytic solution to the Stommel problem (14.6) in a rectangular
basin, and not by way of a boundary-layer approximation.

14.2 � Obtain the exact analytic solution to the Munk problem (14.42) in a rectangular
basin, and not by way of a boundary-layer approximation. You may use a simple,
single-gyre, zonal wind-stress.

14.3 Obtain a boundary-layer solution of the Munk problem, (14.44), but with ‘free-slip’
boundary conditions instead of no-slip boundary conditions. Thus, instead of set-
ting the normal derivative of  to be zero at the boundaries (@ =@n D 0), set the
relative vorticity at the boundary to be zero, and thus @2 =@n2 D 0.

14.4 Obtain a solution of either the Stommel or Munk problems in a triangular domain
(or a circular domain).

14.5 What is the formal asymptotic accuracy of derivatives in the boundary-layer solution
to the Stommel problem? Show that the nonlinear term J. s ;r

2 s/, where  s is
the streamfunction, is estimated to O.1=ı3

S
/ accuracy, where ıS is the width of the

western boundary layer.

14.6 � (a) Using regular perturbation theory explicitly obtain the nonlinear corrections
to the Stommel solutions for a single gyre flow, and show that (14.65) is
an appropriate approximation of this. Discuss the properties of the solution,
and in particular, show where are the errors largest. Optional: Repeat this cal-
culation using the exact solution to the Stommel problem, and compare the
solutions to those obtained using the boundary-layer approximation. [This
problem may be made easier by using algebraic manipulation software.]

� (b) Suggest a better approach to this problem that is still semi-analytic or that at
least gives some insight into the nonlinear solution.

14.7 � Do problem 14.6, but with lateral viscosity instead of bottom drag, as in the
Munk problem.

14.8 Consider the two-dimensional, non-divergent flow in a box of side L, as pictured.
The equatorward flow, of magnitude U , is weak and spread over a lateral scale L,
whereas the poleward flow is concentrated in a layer of width d � L. Suppose the
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initial condition is a spot of tracer, as shown.

$

"

Estimate how long it takes to homog-
enize the tracer in terms of U , L, �
and d . Hint: Consider the advection-
diffusion equation,

@�

@t
C u � r� D �r

2�: (P14.1)

and estimate advective and diffusive
times in the western boundary layer and
the interior.

14.9 For a two-layer wind-driven quasi-geostrophic model, obtain an expression for the
minimum strength of the wind that leads to closed contours of q D ˇy C F . In
particular, for the solution illustrated in Fig. 14.15, at what values of A do closed
contours first form?
(Answer: A D  �1.)

14.10 Show by differentiating (14.156) that potential vorticity is uniform in the pool re-
gion. What is its value?





Paradise Lost.

John Milton, c. 1667.

CHAPTER 15

The Buoyancy Driven Circulation

O
UR GOAL in this chapter and the next is to gain a rudimentary understanding of
the three-dimensional dynamics and structure of the ocean circulation. In this
chapter we focus on the meridional overturning and the associated abyssal

circulation of the ocean, treating them as if they were solely driven by buoyancy forces,
and in chapter 16 we look at the combined effects of wind and buoyancy forcing.

The meridional overturning circulation (MOC) is so-called because it is associated
with sinking at high latitudes and upwelling elsewhere, although as we shall see even
such a seemingly simple matter as this is not wholly settled. The circulation is also
sometimes known as the ‘thermohaline’ circulation, reflecting a belief that it is driven
by gradients in temperature and salinity, but because other mechanisms are also impor-
tant that name is not appropriate as a general descriptor. In fact, the theory explaining
the MOC is not in as satisfactory a state as it is for the quasi-horizontal wind-driven
circulation discussed in chapter 14. In the theory of the wind-driven circulation, a ra-
tional series of approximations from the governing Navier-Stokes equations leads to a
sequence of simple models (e.g., the homogeneous models of the wind-driven circu-
lation, layered quasi-geostrophic models, etc.) whose foundations are thus reasonably
secure, whose shortcomings are understood, and whose behaviour can be fairly com-
pletely analyzed. Attempts to proceed in a similar fashion with overturning circulation
have been less successful; the reason is that the approximations required in order that
a tractable conceptual model be constructed are unavoidably severe and, from a fluid-
dynamicist’s perspective, unjustifiable. Thus, although the large-scale overturning flow
is well-described by the planetary geostrophic equations whose complexity is similar to
that of the quasi-geostrophic equations, there is no rational simplification of these that
leads to a model that is both as simple and informative as the homogeneous Stommel
model of the quasi-horizontal, wind-driven circulation. Nevertheless, progress has been
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Figure 15.1 The mean
meridional overturning
circulation in the North
Atlantic, obtained with a
combination of observa-
tions and a model. The
contours are the stream-
function of the zonally
averaged meridional flow.
The units are Sverdrups,
and the circulation is
mostly clockwise, with
sinking at high latitudes.2

made, both numerically and through the use of very simple models, and in this chapter
we concentrate on the foundations underlying these.

15.1 A BRIEF OBSERVATIONAL OVERVIEW

That there is a deep circulation has been known for a long time, largely from observa-
tions of tracers such as temperature, salinity and constituents such as dissolved oxygen
and silica.1 We can also take advantage of numerical models that are able to assim-
ilate hydrographic and other observations and produce an estimate of the overturning
circulation that is consistent with both the observations and the equations of motion, as
illustrated in Fig. 15.1.

Associated with the overturning circulation is a stratification that has a quite dis-
tinctiv structure, as illustrated in Fig. 15.2. Most of the stratification is evidently con-
centrated in the upper kilometre or so of the ocean, with a relatively (although not
completely) unstratified abyss full of dense water that has originated from high lati-
tudes — the isopycnals shown in Fig. ?? all outcrop (i.e., intersect the surface) in the
North Atlantic subpolar gyre and/or in the Antarctic Cicumpolar Current (ACC). The
region of high stratification near the surface is known as the thermocline (‘thermo’ for
temperature, ‘cline’ for changing); it is effectively synonymous with the pycnocline
(for changing density), although the latter could exist without the former if there were
a halocline, in which salinity changed rapidly. What is the cause of this circulation and
the associated stratification?
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Fig. 15.2 Sections of potential density (�� ) in the North Atlantic: Upper
panel: meridional section at 53° W, from 5° N to 45° N, across the subtrop-
ical gyre. Lower panel: zonal section at 36° N, from about 75° W to 10° W.
The region of rapid change of density (and temperature) is concentrated
in the upper kilometer, in the main thermocline, below which the ocean
has a much more uniform density. A front is associated with the west-
ern boundary current and its departure from the coast near 40° N. In the
upper northwestern region of subtropical thermocline there is a region of
low stratification known as MODE water: isopycnals above this outcrop in
the subtropical gyre and are ‘ventilated’; isopycnals below the MODE water
outcrop in the subpolar gyre.3
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Fig. 15.3 A schema of ‘sideways convection’. The y-axis represents lati-
tude and the z-axis represents depth. The fluid is differentially heated and
cooled along its top surface, whereas all the other walls are insulating. The
result is, typically, a small region of convective instability and sinking near
the coldest boundary, with generally upwards motion elsewhere.4

15.2 SIDEWAYS CONVECTION

Perhaps the simplest and most obvious fluid dynamical model of the overturning circu-
lation is that of sideways or horizontal convection. The physical situation is sketched
in Fig. 15.3. A fluid (two- or three-dimensional) is held in a container that is insulated
on all its sides and bottom, but its upper surface is non-uniformly heated and cooled. In
the purest fluid dynamical problem the heat enters the fluid solely by conduction at the
upper surface, and one may suppose that here the temperature is imposed. Thus, for a
simple Boussinesq fluid the equations of motion are

Dv
Dt

C f � v D �r� C bk C �r
2v; (15.1a)

Db

Dt
D �r

2b; (15.1b)

r � v D 0; (15.1c)

with boundary conditions
b.x;y; 0; t/ D f .x;y/; (15.2a)

where f .x;y/ is a specified field, and @nb D 0 on the other boundaries, meaning that
the derivative normal to the boundary, and so the buoyancy flux, is zero. An alternative
upper boundary condition is to impose a flux condition whereby

�
@

@z
b.x;y; 0; t/ D g.x;y/; (15.2b)

where g.x;y/ is given. The oceanographic relevance of and (15.2) should be clear: the
ocean is heated and cooled from above, and although the thermal forcing in the real
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15.2 Sideways Convection 655

ocean may differ in detail (being in part a radiative flux, and in part a sensible and latent
heat transfer from the atmosphere), (15.2) is a useful idealization. In some numerical
models of the ocean, the heat input at the top is parameterized by way of a relaxation to
some specified temperature. This is a form of flux condition in which

Flux D �
@b

@z
D C.b�

� b/; (15.3)

and C is an empirical constant.5 Although this may be a little more realistic than (15.2a)
it will not affect the arguments below.

15.2.1 Two-dimensional convection

We may usefully restrict attention to the two-dimensional problem, in latitude and
height. The two-dimensional flow may then loosely be thought of as representing the
statistically steady zonally averaged flow of the ocean, valid only for large spatial scales.
The zonally-averaged zonal flow is then small, and concomitantly so is the Coriolis
force. The incompressibility of the flow then allows one to define a streamfunction
such that

v D �
@ 

@z
; w D

@ 

@y
; � D r

2
x D

�
@2 

@y2
C
@2 

@z2

�
(15.4)

where � is the vorticity in the meridional plane. We will neglect the subscript x on
the Laplacian operator where there is no ambiguity. Taking the curl of Boussinesq
equations of motion (15.1) then gives

@r2 

@t
C J. ;r2 / D

@b

@y
C �r

4 (15.5a)

@b

@t
C J. ; b/ D �r

2b (15.5b)

where J.a; b/ � .@ya/.@zb/ � .@za/.@yb/.

Nondimensionalization and scaling

We non-dimensionalize (15.5) by formally setting

b D �b yb;  D 	 y ; x D Lyx; z D Hyz; t D
LH

	
yt ; (15.6)

where the hatted variables are non-dimensional,�b is the temperature difference across
the surface, L is the horizontal size of the domain, and 	 , and ultimately the vertical
scale H , are to be determined. Substituting into (15.6) gives

@ yr2 y 

@yt
C J. y ;r2 y / D

H 3�b

	2

@yb

@yy
C
�L

H
yr

4 y (15.7a)

@yb

@yt
C J. y ; yb/ D

�L

	H
yr

2yb (15.7b)

Ageliss_John
高亮

Ageliss_John
高亮

Ageliss_John
高亮

Ageliss_John
高亮

Ageliss_John
高亮

Ageliss_John
高亮

Ageliss_John
高亮

Ageliss_John
高亮



656 Chapter 15. The Buoyancy Driven Circulation

where yr2 D .H=L/2@2=@yy2 C @2=@yz2 and the Jacobian operator is also appropriately
non-dimensional. If we now use (15.7b) to choose 	 as

	 D
�L

H
(15.8)

so that t D H 2yt=�, then (15.6) become

@ yr2 y 

@yt
C J. y ;r2 y / D Ra�˛5 @

yb

@yy
C � yr

4 y (15.9)

@yb

@yt
C J. y ; yb/ D yr

2yb (15.10)

and the three non-dimensional parameters that govern the behaviour of the system are

Ra D

�
�bL3

��

�
; (the Rayleigh number), (15.11a)

� D
�

�
; (the Prandtl number), (15.11b)

˛ D
H

L
; (the aspect ratio): (15.11c)

The Rayleigh number is a measure of the strength of the buoyancy forcing relative to the
viscous term, and in the ocean it will be very large indeed, perhaps � 1024 if molecular
values are used. (Sometimes H is used instead of L in the Rayleigh number definition;
we use L here because it is an external parameter.)

For steady non-turbulent flows (or conceivably statistically steady flows in which
� and � are an eddy viscosity and an eddy diffusivity) then we can demand that the
buoyancy term in (15.9) is O.1/. If it is smaller then the flow is not buoyancy driven,
and if it is larger there is nothing to balance it. This can only hold if the vertical scale of
the motion appropriately adjusts, and for � D O.1/, this leads to the possible scalings6

H D L��1=5Ra�1=5; 	 D Ra1=5��4=5�: (15.12a,b)

Note that the vertical scale arises as a consequence of the scaling analysis, and the
vertical size of the domain plays no direct role. (For � � 1 we might expect the
nonlinear terms to be small and if the buoyancy term balances the viscous term in (15.9)
the right-hand sides of (15.12) are multiplied by �1=5 and ��1=5. For seawater � � 7

with the molecular values of � and �. If small scale turbulence exists, then the eddy
viscosity will likely be similar to the eddy diffusivity and � � 1.)

Numerical experiments (Fig. 15.4 and Fig. 15.5) do provide some support for this
scaling, and although the range of Rayleigh numbers that has been achieved is limited a
few simple and robust points that have relevance to the real ocean do emerge, namely:

? Most of the box fills up with the densest available fluid, with a boundary layer
in temperature near the surface required in order to satisfy the top boundary
condition. The boundary gets thinner with decreasing diffusivity, consistent
with (15.12). This is a diffusive prototype of the oceanic thermocline.
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15.2 Sideways Convection 657

Fig. 15.4 The streamfunction in a numerical simulation of two-dimensional
sideways convection. The circulation is clockwise, and the imposed temper-
ature at the top linearly decreases from left to right, and the other walls are
insulating. From left to right the Rayleigh numbers are 104, 106 and 108,
and the contour interval is 1, 4 and 10 in arbitrary units. The Prandtl num-
ber is 10.7

? The horizontal scale of the overturning circulation is large, being at or near the
scale of the box.

? The downwelling regions (the regions of active convection) tend to be of smaller
horizontal scale than the upwelling regions, especially as the Rayleigh number
increases.

Let us now try to explain some of these features in a simple and heuristic way.

15.2.2 Phenomenology of the overturning circulation

No water can be denser (or, more accurately, have a greater potential density) than the
densest water at the surface, and if the subsurface water is a little lighter than this the
surface water will be convectively unstable and sink in a plume.8 The plume slowly en-
trains the warmer water that surrounds it, and then spreads horizontally when it reaches

Fig. 15.5 The temperature or buoyancy field corresponding to the stream-
function fields shown in Fig. 15.4. Note an increasingly sharp gradient (a
thermocline) near the top as the Rayleigh number increases, and that the
bulk of the domain is filled with the densest available fluid.
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the bottom or when density becomes similar to that of its surroundings. The presence
of water denser than its surroundings creates a pressure gradient, and the ensuing flow
will displace any adjacent lighter fluid, and so the domain fills with the densest avail-
able fluid. This process is a continous one: the plumes take cold water into the interior,
where the water slowly warms by diffusion, and the source of cold water at the surface is
continuously replenished. If diffusion is small, the end result is that density of the fluid
in the interior will be almost the same as (in fact just slightly less than) that of the dens-
est fluid formed at the surface. (Because diffusion can act only to reduce extrema, no
fluid in the interior can be colder than the coldest fluid formed at the surface.) However,
the value at the surface is given by the boundary condition b.x;y; z D 0/ D f .x;y/.
Thus, the interior cannot fill all the way to the surface with this cold water and there
must be a boundary layer connecting the cold, dense interior with the surface; its thick-
ness ı is given by the height scale of (15.12a), that is

ı � L��1=5Ra�1=5
D

�
L2��

� �b

�1=5

: (15.13)

Such a strong boundary layer will not necessarily be manifest in the velocity field, how-
ever, because the no-normal flow boundary condition on the velocity field is satisfied
by setting  D 0 as a boundary condition to the elliptic problem r2 D �, where �
is the prognostic variable in (15.5a), and this boundary condition has a global effect on
the velocity field.

Why is the horizontal scale of the circulation large? The circulation transfers heat
meridionally, and it is far more efficient to do this by a single overturning cell than by
a multitude of small cells, so although we cannot entirely eliminate the possibility that
some instability will produce such small scales of motion, it seems likely the horizontal
scale of the mean circulation will be determined by the domain scale. Indeed, at low
Rayleigh number we can explicitly calculate an approximate analytic solution to the
problem.9 To do this we define R � Ra˛5 and, with an eye to the nondimensional
equations (15.9), we try

y D R 1 CR2 2 C O.R3/; yb D b0 CRb1 C O.R2/: (15.14)

We also suppose that the aspect ratio is sufficiently small that yr2 D @2=@yz2. Substitut-
ing into (15.9) gives at zeroth order

@2b0

@yz2
D 0; (15.15)

whence b0 D f .x;y/, which satisfies the boundary conditions at both top and bottom.
Proceeding a little further reveals that

@4 1

@yz4
D �

@f

@yy
; J. 1; f / D

@2b1

@yz2
: (15.16a,b)

These equations can be solved, but it is clear without explicitly doing so that 1.y; z/ D

.@f=@y/A.z/ and b1.y; z/ D .@f=@y/2B.z/, and therefore that horizontal form of the
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15.3 Energetics of Sideways Convection 659

solution is determined by the surface forcing, provided there are no meridional walls
that force  to zero where @f=@y ¤ 0. It is important to realise that even for large
diffusion and viscosity there is no stationary solution: as soon as we impose a temper-
ature gradient at the top the fluid begins to circulate, a manifestation of the dictum that
a baroclinic fluid is a moving fluid, encountered in section 4.2. For higher Rayleigh
number the perturbation analysis fails and we must resort to numerical solutions; these
(e.g., Fig. 15.4), do show the circulation dominated by a single overturning circulation
rather than many small convective cells. We cannot rigorously prove that this will al-
ways be the case, but a general energetic argument that shows that the flow cannot in
fact break up into a succession of ever smaller cells in a turbulent cascade is given in
the next section.

15.3 ENERGETICS OF SIDEWAYS CONVECTION

This section is a slight extension of section 2.4.3, but now with a starring role for diffu-
sion and the boundary conditions. Let us write the equations of motion as

@v

@t
C .f C 2!/ � v D �rB C bk C �r

2v (15.17a)

@b

@t
C r � .bv/ D Q D J C �r

2b (15.17b)

r � v D 0: (15.17c)

where B is the Bernoulli function and Q (D Pb) is the total heating, with J its non-
diffusive component.

15.3.1 The energy budget

To obtain an energy budget we follow the procedure of section 2.4.3. First take the dot
product of (15.17a) with v to give

1

2

@v2

@t
D �r � .vB/C wb C �v � r

2v: (15.18)

Integrating over a domain bounded by rigid walls gives the kinetic energy equation

d
dt

�
1

2
v2

�
D hwbi � "; (15.19)

where angle brackets denote a volume integration and " D ��
˝
v � r2v

˛
D �

˝
!2
˛

is the
total dissipation of kinetic energy, a positive definite quantity. Thus, in a statistically
steady state in which the left-hand side vanishes after time-averaging, the dissipation
of kinetic energy is maintained by the buoyancy flux; that is, by a release of potential
energy with light fluid ascending and dense fluid descending.

We obtain a potential energy budget by using (15.17b) to write

Dbz

Dt
D z

Db

Dt
C b

Dz

Dt
D zQ C bw; (15.20)
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and integrating this over the domain gives the potential energy equation

d
dt

hbzi D hzQi C hbwi : (15.21)

Subtracting (15.21) from (15.19) gives the energy equation

d
dt

�
1

2
v2

� bz

�
D �hzQi � ": (15.22)

15.3.2 The maintenance of a circulation and Sandström’s theorem

In a statistically steady state the left-hand side of (15.22) vanishes and the kinetic energy
dissipation is balanced by the buoyancy source terms; that is

hzQi D �" : (15.23)

The right-hand side is negative definite, and to balance this the heating must be nega-
tively correlated with height. (Note also that hQi D 0 if the fluid is not being heated
or cooled overall, and the origin of the z-coordinate is immaterial.) Thus, in order to
maintain a circulation in which kinetic energy is dissipated, the heating must occur, on
average, at lower levels than the cooling. Results resembling this are sometimes called,
albeit unjustifiably, ‘Sandström’s theorem’.10 In the ocean the non-diffusive heating
occurs predominantly at the surface, except for the negligible effects of hydrothermal
vents. (In fact, the heating at low latitudes occurs at a slightly higher elevation than the
cooling at high latitudes, because sea-level is on average a little higher there.) Thus,
hJzi � 0 and a kinetic-energy-dissipating circulation can only be maintained, in the
absence of mechanical forcing, if the diffusion is non-zero — in that case heat may be
diffused from the surface to depth so effectively providing a deep heat source. In the
atmosphere, the heating is mostly at the surface and the cooling is higher up, at lower
pressure, so that (15.23) does not provide any particularly useful information.

There are a couple of ways to think intuitively about this result. If the heating is
below the cooling, then the heated fluid will expand and become buoyant and rise, and
a steady circulation between heat source and heat sink can readily be imagined. But
if the heating is above the cooling, there is no obvious pathway between source and
sink. Another point of view, more appropriate for a compressible fluid, is in terms of
work: if the heating is to do work, as it must because this is the source of the energy
that is ultimately dissipated, then the heating and concomitant expansion must occur at
a higher pressure than the cooling and concomitant compression.

Surface fluxes, diffusion and diffusivity

Suppose that the only heating to the fluid is via diffusion through the upper surface;
that is J D 0 in (15.17b). We will show that as � ! 0 the kinetic energy dissipation
does indeed go to zero.11 Assuming a statistically steady state, integrating (15.17b)
horizontally gives

@bw

@z
D �

@2b

@z2
; (15.24)

Ageliss_John
高亮
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where an overbar indicates a horizontal and time average. Integrating this equation up
from the bottom (where there is no flux) to a level z gives

wb � �bz D 0; (15.25)

at every level in the fluid. The two terms on the left-hand-side together comprise the
total buoyancy flux through the level z, and this vanishes because there is no buoyancy
input except at the surface. If we integrate this vertically we have

hwbi D H �1�
h
b.0/ � b.�H /

i
; (15.26)

where the angle brackets denote an average over the entire volume. In the limit � ! 0,
the integrated advective buoyancy flux will vanish, because the term b.0/ � b.�H /

remains finite. (This follows because b is conserved on parcels, except for the effects
of diffusion which can only act to reduce the value of extrema in the fluid — see also
section 10.5.1. Thus, b.0/ � b.�H / can only be as large as the temperature difference
at the surface, which is set by the boundary conditions.)

Now consider the kinetic energy budget. Using (15.22) and (15.26) we have in a
statistically steady state

" D H �1�
h
b.0/ � b.�H /

i
: (15.27)

The right-hand side is bounded by the maximum difference of b at the surface, so that
kinetic energy dissipation goes to zero if the thermal diffusivity goes to zero; that is,
" ! 0 as � ! 0 and in particular " < �b0=H where b0 is the maximum temperature
difference at the surface. We may also consider the limit .�; �/ ! 0 with fixed Prandtl
number � � �=�, and in this limit also the energy dissipation vanishes with �.

Finally, let us see how the surface temperature is related to the buoyancy flux, for
any value of �. Multiplying (15.17b) by b and integrating over the domain gives the
buoyancy variance equation,

1

2

dhb2i

dt
D �

"
b
@b

@z

ˇ̌̌̌
ˇ
zD0

�

D
jrbj

2
E#
: (15.28)

We have assumed that the normal derivative of b vanishes on all surfaces except the top
one (z D 0) and an overbar denotes a horizontal integral. In a statistically steady state,

b
@b

@z

ˇ̌̌̌
ˇ
zD0

D

D
jrbj

2
E
; (15.29)

where the overbar and angle brackets now also imply a time average. The right-hand
side is positive definite, and thus there must be a positive correlation between b and
@b=@z , meaning there is a heat flux into the fluid where it is hot, and a heat flux out
of the fluid where it is cold. This result holds no matter whether the upper boundary
condition is a condition on b or on @b=@z .
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15.3.3 Interpretation

The result encapsulated by (15.27) means that, for a fluid forced only at the surface by
buoyancy forcing, as the diffusivity goes to zero so does the energy dissipation. One
immediate result, for a fluid of finite viscosity, is that the vorticity in the fluid must go to
zero, because " D �

˝
!2
˛
; this in turn means that the flow cannot be baroclinic, because

baroclinicity generates vorticity, even in the presence of viscosity (section 4.2). An
even more interesting result follows for a fluid with small viscosity. In turbulent flow,
the energy dissipation at high Reynolds number is not a function of the viscosity; if the
viscosity is reduced, the cascade of energy to smaller scales merely continues to still
smaller scale, generating vorticity at these smaller scales, and the energy dissipation is
unaltered, remaining finite even in the limit � ! 0. In contrast, for a fluid heated and
cooled only the upper surface, the energy dissipation tends to zero as � ! 0, whether
or not one is in the high Reynolds number limit. This means that vorticity cannot be
generated at the viscous scales by the action of a turbulent cascade, for that would lead
to energy dissipation. Effectively, the result prohibits an ocean that is forced only at
the surface by a buoyancy flux from having an ‘eddy viscosity’ that would enable the
fluid to efficiently dissipate energy, and if there is no small scale motion producing an
eddy viscosity there can be no eddy diffusivity either. This is a rather different picture
from that which describes the real ocean, where there is some dissipation of energy
in the interior because of breaking gravity waves, and dissipation at the boundary in
Ekman layers, and the eddy diffusivity is needed for there to to be a non-negligible
buoyancy-driven meridional overturning circulation.

Of course, thermal forcing in the ocean is in part an imposed flux, coming from
radiation among other things, and this penetrates below the surface. However, this
makes little real physical difference, provided that this forcing remains confined to the
upper ocean. If so, then for any level below this forcing we still have the result (15.25),
and the final result (15.27) holds, assuming that the range of temperatures produced by
the forcing is still finite.

15.3.4 The importance of mechanical forcing

The real ocean does have a deep circulation, so something is missing. Suppose we add
a mechanical forcing, F , to the right-hand-side of (15.17a); this might represent wind
forcing at the surface, or tidess. The kinetic energy budget becomes

" D hwbi C hF � vi D H �1�Œb.0/ � b.�H /�C hF � vi : (15.30)

In this case even for � D 0 there is a source of energy and turbulence (i.e., a dissipative
circulation) can be maintained. We emphasize that the results of (15.23) and (15.27) do
not prohibit there being a thermal circulation, with fluid sinking at high latitudes and
rising at low. However, in the absence of any mechanical forcing this circulation must
be laminar as � ! 0, even at high Rayleigh number, and the flow is not allowed to
break in such a way that energy can be dissipated — a very severe constraint that most
flows cannot satisfy. The solution most likely adopted by the fluid is for the flow to
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become confined to a very thin layer at the surface, with no abyssal motion at all, which
is completely unrealistic vis-a-vis the observed ocean.

Now, turbulent motion at small scales provides a mechanism of mixing and so can
effectively generate an ‘eddy diffusivity’ of buoyancy. Given such an eddy diffusivity,
it is by no means self-evident that wind forcing is subsequently important for the over-
turning circulation. That is to say, it is useful to think of mechanical forcing as having
two distinct effects:

(i) The wind provides a stress on the surface that may directly drive the large-scale
circulation, including the overturning circulation. (An explicit example of this is
discussed in section 16.5.)

(ii) Both tides and the wind provide a mechanical source of energy to the system that
allows the flow to become turbulent and so provides a source for an eddy diffusivity
and eddy viscosity.

In either case, we may conclude that presence of mechanical forcing is necessary
for there to be an overturning circulation in the world’s oceans of the kind observed.
In the remainder of this chapter we ignore the first of these effects, and we suppose
that the most important effect of the wind is that it provides an eddy diffusivity to
the ocean that is much larger than the molecular value; this then allows large volumes
of the ocean to become mixed, so allowing a substantial buoyancy-driven overturning
circulation (sometimes called a thermohaline circulation). We first consider extremely
simple models of this circulation, so-called box models.

15.4 SIMPLE BOX MODELS

Even though they are far simpler than the real ocean, the fluid dynamical models of the
previous section are still quite daunting. The analysis that can be performed is either
very specific and of little generality, for example the construction of solutions at low
Rayleigh number, of it is a very general form, being of the form of scaling or energetic
arguments at high Rayleigh number. Models based on the fluid dynamical equations
do not easily allow for the construction of explicit solutions in the parameter regime —
high Rayleigh and Reynolds numbers — of interest. It is therefore useful to consider
an extreme simplification of the overturning circulation, box models. These are very
simple caricatures of the circulation, constructed by dividing the ocean into a very small
number of boxes with simple rules determining the transport of fluid properties between
them.12 The purist may consider this section a diversion away from a consideration
of the fluid dynamical properties of the ocean, but such box models have been quite
fecund and an evident source of qualitative understanding, and thus find a place in our
discussion.

15.4.1 A Two-Box Model

Consider two boxes as illustrated in Fig. 15.6. Each box is well-mixed and has a uni-
form temperature and salinity, T1, T2 and S1, S2. The boxes are connected with a
capillary tube at the bottom along which the flow is viscous, obeying Stokes’ Law. That
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Fig. 15.6 A two-box model of relevance to the overturning circulation of
the ocean. The shaded walls are porous, and each box is well-mixed by its
stirrer. Temperature and salinity evolve by way of fluid exchange between
the boxes via the capillary tube and the overflow, and by way of relaxation
with the two infinite reservoirs at .CT �;CS�/ and .�T �;�S�/.

is, the flow along the tube is proportional to the pressure gradient which, because the
flow is hydrostatic, is proportional the density difference between the two boxes. An
overflow at the top keeps the upper surfaces of the two boxes at the same level. Thus,
the circulation is given by

	 D A.�1 � �2/; (15.31)

where 	 is proportional to the flow in the pipe, �1 and �2 are the densities of the fluids
in the two boxes and A is a constant. The boxes are enclosed by porous walls beyond
which are reservoirs of constant temperature and salinity, and we are at liberty to choose
the origin of the temperature scale such that the two reservoirs are at CT � and �T �,
and similarly for salinity. Thus, heat and salinity are transferred into and out of the
boxes as represented by simple linear laws and we have

dT1

dt
D c.T �

� T1/ � 2j	 j.T1 � T2/;
dT2

dt
D c.�T �

� T2/ � 2j	 j.T2 � T1/;

dS1

dt
D d.S�

� S1/ � 2j	 j.S1 � S2/;
dS2

dt
D d.�S�

� S2/ � 2j	 j.S2 � S1/:

(15.32)
Note that the advective transfer is independent of the sign the circulation, because it
occurs through both the capillary tube and the overflow.

From these equations it is apparent that the sum of the temperatures, T1CT2 decays
to zero and is uncoupled from the difference, and similarly for salinity. Defining yT D
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.T1 � T2/=.2T �/ and yS D .S1 � S2/=.2S�/ then gives

d yT

dt
D c.1 � yT / � 2j	 j yT

d yS

dt
D d.1 � yS/ � 2j	 j yS

(15.33)

Using a linear equation of state of the form � D �0.1 � ˇT T C ˇSS/ (where the
variables are dimensional) the circulation (15.31) becomes

	 D 2�0T �ˇT A

�
� yT C

ˇSS�

ˇT T �
yS

�
: (15.34)

Finally, nondimensionalizing time using � D ct , the equations of motion become

d yT

d�
D .1 � yT / � j˚ j yT ; (15.35a)

d yS

d�
D ı.1 � yS/ � j˚ j yS ; (15.35b)

˚ D � . yT � � yS/; (15.35c)

where the three parameters that determine the behaviour of the system are

 D
4�0T �ˇT A

c
; ı D

d

c
; � D

ˇSS�

ˇT T �
: (15.36)

The parameter  measures the overall strength of the forcing in determining the strength
of the circulation, and is the ratio of a relaxation to an advective timescale. The param-
eter ı is the ratio of the reciprocal time constants of temperature and salinity relaxation,
and � is a measure of the ratio of the effect of the salinity and temperature forcings on
the density. Salinity transfer will normally be much slower than heat transfer so that
ı � 1, whereas if salinity and temperature are both to play a role in the dynamics we
need � D O.1/. We also might expect both advection and relaxation to be important if
 D O.1/, and this will depend on the properties of the capillary tube.

Interpretation

The above model describes a potentially real system, one that might be constructed in
the laboratory, and one with relevance to aspects of the ocean circulation. One box then
represents the entire high-latitude ocean and the other the entire low-latitude ocean, and
the capillary tube and the overflow carry the overturning circulation between them. The
reservoirs at ˙T � and ˙S� represent the atmosphere. Typically, we would choose the
low latitudes to be both heated and salted (the latter because of the low rainfall and
high evaporation in the subtropics) and the high latitudes to be cooled and freshened
by rainfall. Thus, T � and S� have the same sign, and they force the circulation in
opposite directions. Given the common fluid-dynamical experience that the behaviour
of highly-truncated systems often has little resemblance to that of the complete system,
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this may only be a cartoon of the ocean circulation. For example, we have restricted
the circulation to be of basin scale, and the parameterization of the intensity of the
overturning circulation by (15.35c) must be regarded with caution, because it represents
a frictionally controlled flow rather than a nearly inviscid geostrophic flow. However,
observations and numerical simulations do indicate that the overturning circulation does
have a relatively simple vertical and horizontal structure: the circulation in the North
Atlantic is similar to that of a single cell, for example, indicating that an appropriate
low-order model may be useful.

One might also question the oceanic appropriateness of the linear relaxation terms.
For temperature, the bulk ærodynamic formulae often used to parameterize air-sea
transport do have a similar form, but the freshening of sea-water by rainfall is more
akin to an imposed (negative) flux of salinity, and evaporation is a function of tempera-
ture. An alternative might be to impose a salt flux so that

d
dt
.S1 � S2/ D 2E � 2j	 j.S1 � S2/ (15.37)

where E is an imposed, constant, rate of salt exchange with the atmosphere. After
nondimensionalization, using E=c to nondimensionalize salt, (15.35b) is replaced by

dS

d�
D 1 � j˚ jS: (15.38)

Another aspect of the model that is oceanographically questionable is that it as-
sumes that the water masses can be mixed below the surface. Thus, when water enters
one box from the other it immediately mixes with its surroundings. Without the stirrer
to ensure this this would not occur and the equations of box model would not represent
a real system. In the real ocean, most of the mixing of water masses seems to happen
near the surface (in the mixed layer) and near lateral boundaries or possibly regions of
steep topography. Elsewhere in the ocean mixing is quite small, and likely far from
sufficient to mix a large volume of water in the advective or relaxation times of the box
model. We will defer consideration of this and continue with an analysis of the model.

Solutions

Perhaps the most interesting aspect of the set (15.35) is that it exhibits multiple equi-
libria; that is, there are multiple steady solutions with the same parameters. Equilibria
occur when the time-derivatives vanish, and the circulation satisfies

˚ D �.˚/ � 

�
�1

1 C j˚ j
C

�

1 C j˚ j=ı

�
: (15.39)

A graphical solution of this is obtained as the intercept of the right-hand side with the
left-hand side, the latter being a straight line through the origin at an angle of 45°, and
this is plotted in Fig. 15.7.

Evidently, for a range of parameters three solutions are possible, whereas for others
only one solution exists. Although a fairly complete analysis of the nature of the steady
solutions is possible, it is instructive to consider the special case with  � 1 and
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Fig. 15.7 Left panel: Graphical solution of the two-box model. The straight
line has unit slope and passes through the origin, and the curved lines plot
the function �.˚/ as given by the right-hand-side of (15.39). The intercepts
of the two are solutions to the equation. The parameters for the three
curves are: a,  D 5, ı D 1=6, � D 0:1:5; b,  D 1, ı D 1=6, � D 1:5; c,
 D 5, ı D 1=6, � D 0:75. Right panel: same except with ˚2 in place of
j˚ j on rhs of (15.39).

ı � 1. This corresponds to the situation in which the advective timescale is shorter
than the diffusive one and temperature relaxation is much faster than salt relaxation.
Two of the solutions are then close to the origin, with ˚ � 1 and satisfying

˚ D �.˚/ � 

�
�1 C

�ı

ı C j˚ j

�
: (15.40)

giving for small j˚ j

˚ � ˙Œı.� � 1/�: (15.41)

Only the positive solution will be stable, and this solution is driven by the density gra-
dient in salinity; the high salinity of box 1 outweighs (so to speak) the compensating
fact that it is also warmer, leading to a flow along the capillary tube from box 1 to box
2. Solving for temperature and salinity we find that T � 1 (i.e., it is close to its re-
laxation value and hardly altered by advection), and S � 2 � � or �, for � < 2 and
� > 2 respectively. The saline contribution to density can therefore be larger than that
of temperature, and indeed is so for this solution.

The other solution has a circulation far from the origin, and the balance in (15.39)
is between the left-hand-side and the first term on the right. In the limiting case we find

˚ � �
p
 : (15.42)

This solution has a density gradient dominated by the temperature effect: the tempera-
ture difference is T � 1=

p
 whereas the salinity difference is S � ı=

p
 , and thus

its effect on density is much smaller.
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Fig. 15.8 A three-box model. Each box has a constant value of temperature
and salinity within it, each exchanges fluid with its neighbour, and in each
the temperature and salinity are relaxed back to fixed atmospheric values.

15.4.2 More boxes

More boxes can be added in a variety of ways and, now forgoing an easy relevance to
a laboratory apparatus, one such is illustrated in Fig. 15.8. The three boxes represent
the mid- and high-latitude northern hemisphere, the mid- and high-latitude southern
hemisphere, and the equatorial regions. Each of the three boxes can exchange fluid with
its neighbour, and each is also in contact with a reservoir and subject to a relaxation to a
fixed value of temperature and salinity, .T �

s ;S
�
s /, .T

�
e ;S

�
e /, .T

�
n ;S

�
n /. (A variation on

this theme allows direct communication between the two poleward boxes.) Then, with
obvious notation, we infer the equations of motion:

dTs

dt
D c.T �

s � Ts/ � 2j	sj.Ts � Te/;
dTn

dt
D c.T �

n � Ts/ � 2j	nj.Tn � Te/;

dTe

dt
D c.T �

e � Te/ � j	sj.Te � Ts/ � j	nj.Te � Tn/;

dSs

dt
D d.S�

s � Ss/ � 2j	sj.Ss � Se/;
dSn

dt
D d.S�

n � Ss/ � 2j	nj.Sn � Se/;

dSe

dt
D d.S�

e � Se/ � j	sj.Se � Ss/ � j	nj; .Se � Sn/;

(15.43)
with flow rates given by the density differences.

	s D A�0Œ�ˇT .Ts �Te/CˇS .Ss �Se/�; 	n D A�0Œ�ˇT .Tn �Te/CˇS .Sn �Se/�:

(15.44)
These equations may be nondimensionalized and reduced to four prognostic equations
for the quantities Te � Tn, Te � Ts , Se � Sn, Se � Ss . Not surprisingly, multiple equi-
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Fig. 15.9 Schematic of four solutions to the three box model with the
symmetric forcing S�

s D S�
n and T �

n D T �
s . The two solutions on the top

row have an asymmetric, ‘pole-to-pole’, circulation whereas the solutions
on the bottom row are symmetric.13

libria can again be found. One particularly interesting aspect is that stable asymmetric
solutions arise with symmetric forcing (T �

s D T �
n , S�

s D S�
n ). These effectively have

a pole-to-pole circulation, illustrated in the upper row of Fig. 15.9. Such a circulation
can be thought of as the superposition of a thermal circulation in one hemisphere and a
salinity-driven circulation in the other.

The box models are useful because they are suggestive of behaviour that might
occur in real fluid systems, and because they provide a means of interpreting behaviour
that does occur in more complete numerical models, and perhaps in the real world.
But without other supporting evidence the solutions found in box models should not be
regarded as representing real solutions of the fluid equations for the world’s oceans.14

15.5 A LABORATORY MODEL OF THE ABYSSAL CIRCULATION

We now return to a more fluid dynamical description of the deep ocean circulation,
and consider two simple, closely related, models that are relevant to aspects of the
deep circulation. The first, which we consider in this section, is a laboratory model
that, although originally envisioned as being a prototype for the deep circulation, is
also illustrative of the principles of the wind-driven circulation. The second model,
considered in the sections following, is explicitly a model of the deep circulation. Both
models are severe idealizations that describe only limited aspects of the circulation.

15.5.1 Set-up of the laboratory model

Let us consider flow in a rotating tank, as illustrated in Fig. 15.10. The fluid is confined
by vertical walls to occupy a sector, and the entire tank rotates anti-clockwise when
viewed from above, like the Northern Hemisphere. When the fluid is stationary in the
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Fig. 15.10 The experimental set-up in the Stommel-Arons-Faller rotating
tank experiment. (a) A plan view of the apparatus. The fluid is contained in
the sector at left. (b) Side view. The free surface of the fluid slopes up with
increasing radius, giving a balance (in the rotating frame) between the cen-
trifugal force pointing outwards and the pressure force pointing inwards.
Small pipes may be introduced into the fluid to provide mass sources and
sinks.

rotating frame, the fluid slopes up toward the outer edge of the tank and the balance
of forces in the rotating frame is between a centrifugal force pointing outwards and
the pressure gradient due to the sloping fluid pointing inwards. In the inertial frame of
the laboratory itself, the pressure gradient pointing inwards provides a centripetal force
that causes the fluid to accelerate toward the center of the tank, resulting in a circular
motion. (Recall that steady circular motion is always accompanied by an acceleration
toward the center of the circle.) This set-up, and the accompanying theory, is known as
the Stommel-Arons-Faller model.15 The motivation of this construct is clear, in that the
sector represents an ocean basin. However, rather than driving the fluid with wind or
by differential heating, we drive it with localized mass sources and sinks, for example
from a small pipes inserted into the tank.

15.5.2 Dynamics of flow in the tank

Let us assume that motion of the fluid in the tank is sufficiently weak that its Rossby
number is small, and that it obeys the shallow water planetary geostrophic equations,
namely

f0 � u D �grh C˝2r yr C F ; (15.45a)
@h

@t
C r � .uh/ D S (15.45b)
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where yr is a unit vector in the direction of increasing r , F represents frictional terms and
S represents mass sources. These two equations yield the potential vorticity equation,

D
Dt

�
f0

h

�
D

curlzF

h
�
f0S

h2
: (15.46)

Let us write the height field as

h D H.r; t/C �.r; �; t/ (15.47)

where H.r; t/ is the height field corresponding to the rest state of the fluid (in the rotat-
ing frame) and � the perturbation. Thus, from (15.45a)

0 D �grH C˝2ryr; (15.48)

which gives

H D
˝2r2

2g
C yH .t/; (15.49)

where yH is a measure of the overall mass of the fluid. Its rate of change is determined
by the mass source

d yH

dt
D hSi ; (15.50)

the angle brackets indicating a domain average. The equations of motion (15.45a), and
(15.45b) become

f0 � u D �gr�C F ; (15.51a)
@

@t
.�C H /C r � Œu.�C H /� D 0: (15.51b)

Eq. (15.51a) tells us that, away from frictional regions, the velocity is in geostrophic
balance with the pressure field due to the perturbation height �.

Let us now suppose j�j � H , which holds if the mass source is small and gentle
enough. Then (15.51b) may be written

@H

@t
C r � .uH / D 0: (15.52)

In this approximation, the potential vorticity equation (15.46) becomes, away from fric-
tion and mass sources,

D
Dt

�
f0

H

�
D 0 or

DH

Dt
D 0: (15.53a,b)

where the second equation follows because f0 is a constant. (This equation also follows
directly from (15.52), because the velocity is geostrophic and divergence-free where
friction is absent; however, it is better thought of as a potential vorticity equation, not
a mass conservation equation.) Eq. (15.53b) means that fluid columns change position
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in order to keep the same value of H . Further, because H only varies with r , (15.53b)
becomes

@H

@t
C vr

@H

@r
D 0; (15.54)

which, using (15.49) and (15.50), gives

vr D �
g

˝2r
hSi : (15.55)

This is a remarkable result, for it implies that, if hSi is positive the flow if is toward the
apex of the dish except at the location of the mass sources and in frictional boundary
layers, no matter where the mass source is actually located. The explanation of this
counterintuitive result is simple enough: if hSi > 0 the overall height of the fluid is
increasing with time. Thus, in order that a given material column of fluid may keep
its height fixed, it must move toward the apex of the dish. The full velocity field may
be obtained, away from the frictional regions, using the divergence-free nature of the
velocity:

r � u D
@.rvr /

@r
C
@v�

@�
D 0: (15.56)

Then, using (15.55), @v�=@� D 0 except at a source or sink, or in a frictional boundary
layer. Assuming there is only one frictional boundary layer, v� D 0 except at those
latitudes (i.e., values of r ) that contain a mass source or sink.

Suppose then, that we introduce a localized mass source somewhere in the domain,
and a localized mass sink of equal strength somewhere else. According to our heuristic
theory, there is no flow in the interior of the domain that can provide a passage from the
mass source to the sink. Thus, there must be boundary layers in which frictional effects
are important, and which set themselves up in such a way to satisfy mass conservation.
But mass conservation alone is insufficient to determine where the boundary layers
might be — for this we need some vorticity dynamics. Now, away from the mass
source, but including friction, the potential vorticity equation is

D
Dt

�
f0

H

�
D

curlzF

H
; (15.57)

and the free surface of the water slopes downward toward the apex, as illustrated in Fig.
15.10. Now, suppose that there are mass source and a sink of equal maginudes, with
the source further from the apex than the sink, as in the panel at the bottom right of Fig.
15.11. The flow from source to sink must be along either the left of right boundary of
the container. This flow is toward smaller values of H , and therefore the left-hand side
of (15.57) is positive (just as for poleward flow in the ocean on a sphere or ˇ-plane). To
balance this the friction in the boundary current must import a positive vorticity to the
flow (i.e., curlzF > 0), implying a western boundary layer, i.e., a boundary layer on the
left of the container, for then the flow itself then has an anticyclonic (clockwise) sense
and friction will normally oppose this. For example, if F D ��u the right hand side
of (15.57) is �.�=H /curlzu and this is positive if the flow is clockwise. A little more
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Fig. 15.11 Idealized examples of the flow in the rotating sector experi-
ments, with various locations of a source (S ) or sink (�S ) of mass

thought will reveal that a western boundary layer is general feature of the flow, and is
not dependent on the placement of mass sources or sinks. If there is only a net source
of mass, as for example in the upper left example of Fig. 15.11, then the interior mass
flow will be toward the apex, the flow in the boundary layer away from the apex, but
again requiring a western boundary layer to achieve a balance in the potential vorticity
equation. It is clear that this flow is in some ways analogous to flow on the ˇ-plane, and
that in particular:

(i) The r -dependence of the height field provides a background potential vorticity
gradient, analogous to the ˇ-effect.

(ii) The time-dependence of H is analogous to a wind curl, for it is this that ultimately
drives the fluid motion.

The analogies are drawn out explicitly in shaded box on the next page; the box also
includes a column for abyssal flow in the ocean, discussed in the next two sections.

15.6 A MODEL FOR OCEANIC ABYSSAL FLOW

We will now extend the reasoning applied to the rotating tank to the rotating sphere, and
so construct a model — the Stommel-Arons model — of the abyssal flow in the ocean.16

The basic idea is simple: we will model the deep ocean as a single layer of homoge-
neous fluid in which there is a localized injection of mass at high latitudes, representing
convection (Fig. 15.12). However, unlike the rotating dish, mass is extracted from this
layer by upwelling into the warmer waters above it, keeping the average thickness of
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Analogies between a rotating dish, wind-driven and abyssal flows

Consider homogeneous models of (i) rotating dish, (ii) wind-driven flow on the ˇ-plane,
and (iii) abyssal flow on the the ˇ-plane. We model all with a single layer of homoge-
neous fluid satisfying the planetary geostrophic equations. In (i) the mass source, hSi,
is localized and the total depth of the fluid layer changes with time; fluid columns move
to keep their depth constant. In (ii) there is no mass source and depth of the fluid layer
is constant; the fluid motion is determined by the wind stress curl, curlz�, and by ˇ. In
(iii) the fluid source (convection) is localized at high latitudes and exactly balanced by
a mass loss, Su, due to upwelling everywhere else, so that layer depth is constant and
Su is uniform and negative nearly everywhere. The equations below then apply away
from frictional boundary layers and localized mass sources:

(i) Rotating dish (ii) Wind-driven flow (iii) Abyssal flow

PV Conservation
D
Dt

�
f0

H

�
D 0

D
Dt

�
f

H0

�
D

1

H0

curlz�
D
Dt

�
f

h

�
D �

fSu

h2

This leads to

vr

@H

@r
D �

@H

@t

v

H0

@f

@y
D

1

H0

curlz�
v

h

@f

@y
D �

fSu

h2

and

vr D �
g

˝2r
hSi v D

1

ˇ
curlz� v D �

fSuh

ˇ

hSi is localized curlz� is wind-stress Su is upwelling
mass source curl mass loss

Meridional mass flow away from boundaries is thus determined by:

Sign (and not location) of Sign of wind-stress curl, Upwelling and sign of
localized mass source, hSi : curlz�. f , so polewards if

Su < 0 (upwelling).
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localized
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W=0

Equator                                                           Pole

Fig. 15.12 The structure of simple Stommel-Arons ocean model of the
abyssal circulation. Convection at high latitudes provides a localized mass-
source to the lower layer, and upwelling through the thermocline provides
a more uniform mass sink.

the abyssal layer constant. We assume that this upwelling is nearly uniform, that the
ocean is flat-bottomed, and that a passive western boundary current may be invoked to
satisfy mass conservation, and which does not affect the interior flow. Obviously, these
assumptions are very severe and the model can at best be a conceptual model of the real
ocean. Given that, we will work in Cartesian coordinates on the ˇ-plane, and use the
planetary geostrophic approximation. Our treatment in this section is physically based
but quite heuristic; in section 15.7 we are a little more mathematical and a little more
formal.

The momentum and mass continuity equations are

f � u D �r� and r � u D �
@w

@z
; (15.58)

which together yield the familiar balance,

ˇv D f
@w

@z
: (15.59)

Except in the localized regions of convection, the vertical velocity is, by assump-
tion, positive and uniform at the top of the lower layer, and zero at the bottom. Thus
(15.59) becomes

v D
f

ˇ

w0

H
: (15.60)

where w0 is the uniform upwelling velocity and H the layer thickness. Thus, the flow
is polewards everywhere (including the Southern hemisphere), vanishing at the equator.
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XE

Fig. 15.13 Abyssal circulation in a spherical sector (left) and in a corre-
sponding Cartesian rectangle (right).

15.6.1 Completing the solution

Since v D f �1.@�=@x/, the pressure is given by

� D

Z x

x0

�
f 2w0

ˇH

�
dx0 (15.61)

where x0 is a constant of integration, to be determined by the boundary conditions.
Because there no flow into the Eastern boundary, xe we set � D constant at x D xe ,
and because this is a one-layer model we are at liberty to set that constant equal to zero.
Thus,

�.x/ D �

Z xe

x

�
f 2w0

ˇH

�
dx0

D �
f 2

ˇH
w0.xe � x/: (15.62)

The zonal velocity follows using geostrophic balance,

u D
1

f

@�

@y
D

2

H
w0.xe � x/; (15.63)

where we have also used @f=@y D ˇ and @ˇ=@y D 0. Thus the velocity is eastward in
the interior, and independent of f and latitude, provided xe is not a function of y.

Using (15.60) and (15.63) we can confirm mass conservation is indeed satisfied:

@u

@x
C
@v

@y
C
@w

@z
D �

2wo

H
C
w0

H
C
w0

H
D 0 (15.64)

15.6.2 Application to the ocean

Let us consider a rectangular ocean with a mass source at the northern boundary, bal-
anced by uniform upwelling (see figures 15.13 and 15.14). Since the interior flow will
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Figure 15.14 Mass budget in
an idealized abyssal ocean. Pole-
wards of some latitude y, the mass
source (S0) plus the polewards
mass flux across y (Ti ) are equal
to sum of the southwards mass
flux in the western boundary cur-
rent (Tw) and the integrated loss
due to upwelling (U ) polewards of
y. See (15.65).

be northwards, we anticipate a southwards flowing western boundary current to balance
mass. Conservation of mass in the area poleward of the latitude y demands that

S0 C Ti.y/ D �Tw.y/C U.y/ (15.65)

where S0 is the strength of the source, Tw the transport in the western boundary cur-
rent (positive if polewards), Ti the (polewards) transport in the interior, and U is the
integrated loss due to upwelling polewards of y. Then, using (15.60),

Ti D

Z xe

xw

vH dx D

Z xe

xw

f wo

ˇ
dx D

f

ˇ
w.xe � xw/: (15.66)

The upwelling loss is given by

U D

Z xe

xw

Z yn

y

w dx D w0.xe � xw/.yn � y/ (15.67)

Assuming the source term is known, then using (15.65) we obtain the strength of the
western boundary current,

� Tw.y/ D S0 C Ti � U D S0 C
f

ˇ
w.xe � xw/ � w0.xe � xw/.yn � y/: (15.68)

To close the problem we note that over the entire basin mass must be balanced,
which gives a relationship between w and S0,

S0 D w0�x�y; (15.69)

where �x D xe � xw and �y D yn � ys . where ys is the southern boundary of the
domain. Using (15.69), (15.68) becomes

�Tw.y/ D �w0

�
�x.yn � y/ �

f

ˇ
�x ��x�y

�
D w0�x

�
y � ys C

f

ˇ

�
:

(15.70)
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Figure 15.15 Schematic of a Stommel-
Arons circulation in a single sector. The
transport of Western boundary current is
greater than that provided by the source
at the apex, illustrating the property of re-
circulation. The transport in the western
boundary current Tw decreases in inten-
sity equatorwards, as it loses mass to the
polewards interior flow, and thence to up-
welling. The integrated sink, due to up-
welling, U , exactly matches the strength of
the source, S .

S

uTw

With no loss of generality we will take ys D 0 and f D f0 C ˇy. Then (15.70)
becomes

� Tw.y/ D w0�x .2y C f0=ˇ/ (15.71)

or, using S0 D w0�xyn,

� Tw.y/ D
S0

yn

�
2y �

f0

ˇ

�
: (15.72)

With a slight loss of generality (but consistent with the spirit of the planetary geostrophic
approximation) we take f0 D 0, which is equivalent to supposing that the equatorial
boundary of the domain is at the equator, and finally obtain

Tw.y/ D �2S0

y

yn

: (15.73)

At the northern boundary this becomes

Tw.y/ D �2S0; (15.74)

which means that the flow southwards from the source is twice the strength of the source
itself. We also see that:

(i) The western boundary current is equatorwards everywhere;
(ii) At the northern boundary the equatorwards transport in the western boundary cur-

rent is equal to twice the strength of the source;
(iii) The northwards mass flux at the northern boundary is equal to the strength of the

source itself.
We may check this last point directly: from(15.66)

TI .yn/ D
ˇyn

ˇ
w0�x D S: (15.75)

The fact that convergence at the ‘pole’ balances Tw and S0 does not of course depend
on the particular choice we made for f and ys .
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The flow pattern evidently has the property of recirculation (see Fig. 15.15): this is
one of the most important properties of the solution, and one that is likely to transcend
all the limitations inherent in the model. This single-hemisphere model may be thought
of as a crude model for aspects of the abyssal circulation in the North Atlantic, in
which convection at high latitudes near Greenland is at least partially associated with the
abyssal circulation. In the North Pacific there is, in contrast, little if any deep convection
to act as a mass source. Rather, the deep circulation is driven by mass sources in the
opposite hemisphere, and we now consider a simple model of this.

15.6.3 A two hemisphere model

Our treatment now is even more obviously heuristic, since our domain crosses the equa-
tor yet we continue to use the planetary geostrophic equations, invalid at the equator.
We also persist with Cartesian geometry, even for these global-scale flows. In our de-
fense, we note that the value of the solutions lies in their qualitative structure, not in
their quantitative predictions. Let us consider a situation with a source in the South-
ern Hemisphere but none in the Northern Hemisphere. For later convenience we take
the Southern Hemisphere source to be of strength 2S0, and we suppose the two hemi-
spheres have equal area. As before, the upwelling is uniform, so that to satisfy global
mass balance

S0 D w0�x�y (15.76)

where �x�y is the area of each hemisphere. Then, given w0, the zonally integrated
polewards interior flow in each hemisphere, away from the equator, follows from Sver-
drup balance,

Ti.y/ D
f

ˇ
w0.xe � xw/ D S0

y

yp

(15.77)

where yp is either yn (the northern boundary) or ys . The western boundary current is
assumed to ‘take up the slack,’ that is to be able to adjust its strength to satisfy mass
conservation. Thus, since Ti.yn/ D S0, where S0 is half the strength of the source in
the southern hemisphere, it is plain that there must be a southwards flowing western
boundary current near the northern end of the northern hemisphere, even in the absence
of any deep water formation there!

In the northern hemisphere, the total loss due to upwelling polewards of a latitude
y is given by

U.y/ D w0�xjyn � yj (15.78)

The strength of the western boundary current is then given by

Tw.y/ D U � Ti D w0�x.yn � y/ �
f

ˇ
w0�x D w0�x.yn � 2y/ (15.79)

using f D ˇy. Thus, at y � yn,

Tw.yn/ D �w0�xy D �S: (15.80)

The boundary current changes sign halfway between equator and pole, at y D yn=2. (In
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Figure 15.16 Schematic of
a Stommel-Arons circulation in a
two-hemisphere basin. There is
only one mass source, and this is
in the Southern hemisphere and
for convenience it has a strength
of 2. Although there is no source
in the Northern Hemisphere, there
is still a western boundary cur-
rent and a recirculation. The in-
tegrated sinks due to upwelling
exactly match the strength of the
source.

spherical coordinates, the analogous critical latitude turns out to be at � D sin�1.1=2/.)
The solution is illustrated schematically in Fig. 15.16. We can (rather fancifully) imag-
ine this to represent the abyssal circulation in the Pacific Ocean, with no source of deep
water at high northern latitudes.

15.7 * A SHALLOW WATER MODEL OF THE ABYSSAL FLOW

We can obtain a more complete solution of the flow that explicitly includes the western
boundary current by constructing a shallow water Stommel-Arons type model of the
abyssal circulation.17 However, the essential dynamics is the same as that of the previ-
ous section. The model is similar to that illustrated in Fig. 15.12 and comprises a single
moving layer of homogeneous fluid lying underneath a lighter, stationary layer. The
lower fluid is forced by a mass source at its polewards end that represents convection,
and by a uniform mass sink everywhere else that represents diffusive upwelling into the
upper layer. The mass source and sink are specified — that is, they are not functions
of the flow — and are equal and opposite, so that there is no net mass source. The mo-
tion of the lower layer is then governed by the planetary geostrophic reduced-gravity
shallow water equations (sections 3.2 and 5.2), to wit:

�f v D �g0 @h

@x
� ru; f u D �g0 @h

@y
� rv; (15.81a)

@h

@t
C r � .uh/ D S; (15.81b)

Here h is the thickness of the lower layer (below the thermocline of Fig. 15.12), g0 is
the reduced gravity between the two layers, and r is a constant frictional coefficient;
we will assume this is small, and in particular that r � f . The mass source term S

on the right-hand side of the mass continuity equation represents both upwelling and
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a localized convective source at the polewards end of the domain. We will suppose
the upwelling is uniform and that, when integrated over area, it exactly balances the
convective mass source. Thus, we write S D S0CSu where Su is uniform and negative,
S0 is the localized convective source, and

R
A

S dA D 0.

15.7.1 Potential vorticity and polewards interior flow

Straightforward manipulation of (15.81) gives the potential vorticity equation

D
Dt

�
f

h

�
D �

r

h
curlzu �

fSu

h2
: (15.82)

Away from boundaries the first term on the right-hand side is negligible, and so, away
from the convective source and in a steady state (15.82) becomes

ˇv

h
C
f

h2
u � rh D �

fSu

h2
: (15.83)

However, the second term on the left-hand side is small if friction is small, for then the
flow is nearly in geostrophic balance and, using (15.81a) with r D 0, it follows that

f u � rh D �g0 @h

@y

@h

@x
C g0 @h

@x

@h

@y
D 0: (15.84)

The potential vorticity equation is then just

ˇv D �fSu=h; (15.85)

and because Su < 0 the flow is polewards, regardless of the location of the convective
mass source. From the perspective of the continuously stratified equations, the corre-
sponding potential vorticity equation is just

ˇv D f
@w

@z
(15.86)

Upwelling from the abyss into the upper ocean corresponds to a postive value of the
stretching term f @w=@z , and again the interior flow is polewards.

15.7.2 The solution

It is convenient to deal with mass transports rather than velocities and we define U �

U i C V j � uhi C vhj. Away from the convective source equations of motion, (15.81),
become, in steady state,

�f V D �
@˚

@x
� rU; f U D �

@˚

@y
� rV; (15.87a)

r � U D Su; (15.87b)
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where ˚ D g0h2=2. For small friction (r � f ) we may write (15.87a) as

V D
1

f

@˚

@x
�

r

f 2

@˚

@y
; U D �

1

f

@˚

@y
�

r

f 2

@˚

@x
; (15.88a,b)

which, after differentiation and use of (15.87b), combine to give

ˇ

f

@˚

@x
D �fSu � f r �

�
r

f 2
r˚

�
: (15.89)

In the interior where the effects of friction are small (15.89) becomes ˇV D �fS ,
so recovering (15.85) and imlying polewards interior flow. However, by mass con-
servation, the flow cannot be polewards at all longitudes, for reasons similar to those
articulated in section 14.1.1 we expect there to be a frictional western boundary current.
We thus let ˚ D ˚I C ˚b , where ˚I is the interior field and ˚b the boundary layer
correction. The interior field obeys @˚I=@x D �.f 2=ˇ/S and therefore given by, for
constant S ,

˚I .x;y/ D
f 2

ˇ
Su.xe � x/C ˚e (15.90)

where˚e is the value of˚I at the eastern boundary, xe . This does not affect the solution
and may be set to zero.

In the western boundary layer the the dominant balance in (15.89) is

ˇ
@˚b

@x
D �r

@2˚b

@x2
; (15.91)

with solution
˚b D P .y/ exp.�ˇx=r/; (15.92)

where P .y/ is to be determined by mass conservation: the southwards mass flux at a
latitude y in the western boundary current must be equal to the sum of the polewards
mass flux in the interior at that latitude, plus the total mass lost to upwelling equator-
wards of y (see Fig. 15.14). These fluxes are:

Upwelling flux D

Z xe

0

Z y

0

Su dx dy D Suxey; (15.93)

using the definition of S ;

Interior flux D

Z xe

0

V dx D
1

f

Z xe

0

@˚I

@x
dx D

1

f
Œ˚e � ˚I .0;y/� D �

f

ˇ
Sxe;

(15.94)

using (15.90); and

Boundary flux D

Z 1

0

1

f

@˚b

@x
dx D P .y/; (15.95)
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X

Y

Figure 15.17 The pressure field
˚ for the shallow-water Stommel-
Arons model, as given by (15.98)
with r=ˇ D 0:04xe, f D ˇy,
and y D 0 at the equatorwards
edge of the domain. The ar-
rows indicate the flow direction,
with the western boundary cur-
rent diminishing in intensity as it
moves equatorwards. The convec-
tive mass source is, implicitly, just
polewards of the domain. (Note
that the pressure field is not ex-
actly a streamline.)

using (15.88a), neglecting the very small term r@˚=@y , and (15.92). By mass conser-
vation we have

P .y/ D Suxey C
f

ˇ
Suxe; (15.96)

and if f D ˇy and the domain goes from y D 0 to y D yn this becomes

P .y/ D 2Suxey D �2S0

y

yn

; (15.97)

where the second equality follows because the integrated upwelling balances the mass
source. Consistent with our earlier heuristic treatment, the western boundary curren:
there

(i) is equatorwards, away from the convective mass source;
(ii) diminishes in intensity as it moves equatorwards, as it feeds the interior;
(iii) has a maximum mass flux of twice that of the convective source; that is, the flow

recirculates.
Using (15.90) and (15.97) the complete (western boundary layer plus interior) solution
is thus given by

˚ D ˚I C ˚b D
f 2

ˇ
Su.xe � x/C 2Suxeye�ˇx=r ; (15.98)

and this is plotted in Fig. 15.17. This solution does not, of course, include the flow in
the neighbourhood of the convective source itself, nor does it satisfy no-normal flow
conditions at the polewards edge of the domain.

15.8 SCALING FOR THE BUOYANCY-DRIVEN CIRCULATION

Thus far, we have taken the strength of the upwelling as a given. In reality, this is
a consequence of the presence diapycnal diffusion, because in its absence the flow is
along isopycnals. In section 15.2 we estimated the upwelling for a non-rotating model;
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we now do the same for a fluid obeying the steady planetary geostrophic equations,
namely

v � rb D �r
2b; r � u C

@w

@z
D 0 (15.99a,b)

f � u D �r�; b D
@�

@z
: (15.100a,b)

On the first line we have the thermodynamic equation and the mass continuity equation,
and on the second line we have the momentum equations, that is geostrophic and hydro-
static balance, respectively. We use the continuously stratified equations rather than the
corresponding shallow water equations because the former allow for a straightforward
representation of diapycnal diffusion.

The momentum and mass continuity equations combine to give the linear geostrophic
vorticity equation and the thermal wind equation and associated scales as follows:

ˇv D f
@w

@z
! ˇU D

f0W

ı
; (15.101a)

f
@u

@z
D k � rb ! f

U

ı
D
�b

L
: (15.101b)

We use uppercase to denote scaling variables, except that the vertical scale is denoted ı
and the scaling for buoyancy variations is denoted �b. We will take �b is given, and
equal to the buoyancy difference at the surface that is ultimately driving the motion. We
also assume that the horizontal scales are isotropic, with U D V and X D Y D L. The
thermodynamic relation gives a relationship between W , � and ı if we assume a broad
upwelling region with a balance between upwards advection and diffusion:

w
@b

@z
D �

@2b

@z2
! W D

�

ı
: (15.102)

Eliminating U from (15.101) gives

W D
ı2ˇ�b

f 2L
: (15.103)

and using this with (15.102) gives scalings for the vertical velocity and ı:

W D �2=3

�
ˇ�b

f 2L

�1=3

ı D �1=3

�
f 2L

ˇ�b

�1=3

: (15.104a,b)

These scalings mean that (in so far as (15.100) describes the flow) the upwelling strength,
and the circulation more generally, are dependent on a finite value of the diffusivity, and
scale as the 2=3 power of that diffusivity. The upwelling water is cold but the water at
the surface is warm, and (15.104b) is a measure of the depth of the transition region —
that is, the thickness of the thermocline, a topic we return to in more detail in the next
chapter. We will make one important point now though: In order for the scales given
in (15.104) to be at all representative of those observed in the real ocean, we must use
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Fig. 15.18 The ocean currents at a depth of 2500 m in the North Atlantic,
obtained using a combination of observations and model (as in Fig. 14.2).
Note the southwards flowing deep western boundary current.

an eddy diffusivity for �. Using f D 10�4 s�1, ˇ D 10�11 m�1 s�1, L D 5 � 106 m,
g D 10 m s�2, � D 10�5 m2 s�1, �b D �g��=�0 D gˇT�T and �T D 10 K we
find ı � 150 m and W D 10�7 m s�1, not unreasonable values albeit ı is rather smaller
than the thickness of the observed thermocline. However, if we take the molecular value
of � � 10�7 m2 the values of W and ı are much smaller, and unrealistically so. Evi-
dently, if the deep circulation of the ocean is buoyancy driven, it must take advantage
of turbulence that enhances the small scale mixing and produces an eddy diffusivity.

15.8.1 Summary remarks on the Stommel-Arons model

If we were given the location and strength of the sources of deep water in the real ocean,
the Stommel-Arons model could give us a global solution for the abyssal circulation.
The solution for the Atlantic, for example, resembles a superposition of Fig. 15.15 and
Fig. 15.16 (with deep water sources in the Weddell Sea and near Greenland), and that for
the Pacific resembles Fig. 15.16 (with a deep water source emanating from the Antarctic
Circumpolar Current). Perhaps the greatest success of the model is that it introduces
the notions of deep western boundary currents and recirculation — enduring concepts
of the deep circulation that remain with us today. For example, the North Atlantic does
have a well-defined deep western boundary current running south along the Eastern
seaboard of Canada and the United States, as seen in Fig. 15.18.18 However, in
other important aspects the model is found to be in error, in particular it is found that
there is little upwelling through the main thermocline — much of the water formed by
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deep convection in the North Atlantic in fact upwells in the Southern Hemisphere.19

Are there fundamental problems with the model, or just discrepancies in details that
might be corrected with a slight reformulation? To help answer that we summarize the
assumptions and corresponding predictions of the model, and distinguish the essential
aspects from what is merely convenient.

(i) A foundational assumption is that of linear geostrophic vorticity balance in the
ocean abyss, represented by ˇv � f @w=@z , or its shallow water analog.

— The effects of mesoscale eddies are thereby neglected. As discussed in chapter
9, in their mature phase mesoscale eddies seek to barotropize the flow, and so
create deep eddying motion that might dominate the deep flow.

(ii) A second important assumption is that of uniform upwelling, across isopycnals,
into the upper ocean, and that w D 0 at the ocean bottom. When combined with
(i) this gives rise to polewards interior flow, and by masss conservation a deep
western boundary current. The upwelling is a consequence of a finite diffusion,
which in turn leads to deep convection as in the model of sideways convection of
section 15.2.

— The uniform-upwelling assumption might be partially relaxed, while remain-
ing within the Stommel-Arons framework, by supposing (for example) that
the upwelling occurs near boundaries, or intermittently, with corresponding
detailed changes to the interior flow.

— If bottom topography is important, thenw ¤ 0 at the ocean bottom. This effect
may be most important if mesoscale eddies are present, for then in an attempt to
maintain its value of potential vorticity the abyssal flow will have a tendency
to meander nearly inviscidly along contours of constant topography. In the
presence of a mid-ocean ridge, some of the deep western boundary current
might travel meridionally along the eastern edge of the ridge instead of along
the coast.

— The deep water may not upwell across isopycnals at at all, but may move along
isopycnals that intersect the surface (or are connected to the surface by convec-
tion). If so, then in the presence of mechanical forcing a deep circulation could
be maintained even in the absence of a diapycnal diffusivity. The circulation
might then be qualitatively different from the Stommel-Arons model, although
a linear vorticity balance might still hold, with deep western boundary currents.
This is discussed in section 16.5.

Note that, even if Stommel-Arons picture were to be essentially correct, we should not
consider the deep flow is being driven by deep convection at the source regions. It is a
convenience to specify the strength of these regions for the calculations but, just as in
the models of sideways convection considerer in section 15.2, the overall strength of the
circulation (insofar as it is thermally driven) is a function of the size of the diffusivity
and the meridional temperature gradient at the surface.
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Notes

1 See, for example, Warren (1981) who provides a review and historical background
and Schmitz (1995) who surveys the observations and provides an interpretation
of the deep global circulation.

2 From Wunsch (2002).

3 Courtesy of L. Talley

4 Adapted from Paparella and Young (2002).

5 As in Haney (1971). Only the value of C , and not the value of �, is material to the
boundary condition written in this form, because we are parameterizing only the
flux at the surface. The parameter C is often taken to be such that the heat flux is
of order 30 W m�2 K�1, but it is not a universal constant.

6 Rossby (1965).

7 Adapted from Rossby (1998).

8 Ocean convection is reviewed by Marshall and Schott (1999).

9 I am grateful to W. R. Young for some useful comments on this.

10 Sandström (1908, 1916). However, Sandström did not prove the result encapsu-
lated by (15.23); his discussion was thermodynamic, in terms of a Carnot cycle, and
the dissipation of kinetic energy played no role in his argument. Since that time
various related statements with varying degrees of generality and preciseness have
been given (see e.g., Huang 1999). The more rigorous result (15.23) is a statement
about a kinetic-energy dissipating circulation, and it does not prove that unless
the heating occurs at a lower level than the height then no circulation at all can be
maintained.

11 Following Paparella and Young (2002).

12 The original box model is due to Stommel (1961), and many studies with variations
around this have followed. Rooth (1982) developed the idea of a buoyancy-driven
pole-to-pole overturning circulation, and Welander (1986) discussed, among other
things, the role of boundary conditions on temperature and salinity at the ocean
surface. Thual and McWilliams (1992) systematically explored how box models
compare with two-dimensional fluid models of sideways convection, Quon and Ghil
(1992) explored how multiple equilibria arise in related fluid models, and Dewar
and Huang (1995) discussed the problem of flow in loops. Cessi and Young (1992)
tried to derive simple models systematically from the equations of motion, obtain-
ing various nonlinear amplitude equations. Our discussion is of just a fraction of
all this; see also Whitehead (1995), Cessi (2001) and Dijkstra (2002) for reviews
and more discussion.

13 Adapted from Welander (1986) and Dijkstra (2002).

14 Bryan (1986), Manabe and Stouffer (1988) and Marotzke (1989) did find evidence
of multiple equilibria in various three-dimensional numerical models.

15 After Stommel et al. (1958).

16 Following Stommel and Arons (1960).

17 Motivated by Cessi (2001).

18 A global Stommel-Arons-like solution was presented by Stommel (1958). The dis-
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covery of deep western boundary currents, by Swallow and Worthington (1961),
was motivated by the theoretical model. Using neutrally-buoyant floats underneath
the Gulf Stream they found a robust equatorwards-flowing undercurrent with typ-
ical speeds of 9–18 m s�1. Relevant observations of the deep circulation are sum-
marized by Hogg (2001).

19 For example, Toggweiler and Samuels (1995).

Problems

15.1 (a) Obtain an expression analogous to (15.23) for the anelastic equations.
(b) � Obtain, if possible, an expression analogous to (15.23) for a compressible

gas (which you may suppose to be ideal, if needed). Interpret the result.

15.2 � Consider a model of sideways convection in which the boundary condition at the
top is the relaxation, or Haney, condition bz D A.b�.y/ � b/ where A (a constant)
and b�.y/ are given, b is the buoyancy, proportional to the temperature, the other
boundaries are insulating, and the flow is statistically steady.

(a) Is it still the case that on average the fluid is heated (i.e., there is a heat flux into
the fluid through the upper surface) where it is already warm? If so, how may
this be reconciled with the intuition that if the ocean surface is anomalously
warm it will cool by way of a heat flux from the ocean to the atmosphere?

(b) Show that if A < 0 a statistically steady state cannot be reached.
(c) Suppose that b� varies monotonically with latitude. Show that if � is non-zero,

the average surface temperature gradient will be less than that of b�.

15.3 Consider a variation of the Stommel box model in which the equation of motion
(15.35) is replaced by

dT

d�
D .1 � T / � ˚2T;

dS

d�
D ı.1 � S/ � ˚2S; ˚ D � .T � �S/: (P15.1)

The interbox flow equations now depends on the density difference squared, so
allowing continuous equations. Show that multiple equilibria are possible, and that
one is thermally driven and one salinity driven. Obtain approximate expressions for
the temperature and salinity for these equilibria, in the limit of large  and small ı
if you wish. If ı is large, what changes about these solutions?

15.4 (a) In the Stommel two-box problem, show physically that when three solutions
are present, the middle one is generally unstable. One way to do this is to
suppose that the system is perturbed slightly from that equilibrium, and argue
qualitatively that the forces on the system will then take it farther from that
state. By use of similar arguments, show that the other solutions are generally
stable.

(b) � Alternatively, linearize the equations about the equilibrium points and show
that small perturbations will grow if the solution is that of the middle equilib-
rium state, but will be damped in the other two cases.

15.5 � Obtain the solution to (15.16) at lowest order. Take the solution to higher order
and show that the sinking region is narrower than the upwelling region.



No fairer destiny [has] any physical theory, than that it should of itself
point out the way to the introduction of a more comprehensive theory,
in which it lives on as a limiting case.

Albert Einstein, Relativity, the Special and the General Theory, 1916.

CHAPTER 16

The Wind and Buoyancy Driven
Circulation

I
N THIS CHAPTER we try to understand the combined effect of wind and buoyancy forc-
ing in setting the three-dimensional structure of the ocean. There are three main
topics we will consider:

(i) The main thermocline, the region in the upper 1 km or so of the ocean where
density and temperature changes most rapidly.

(ii) The ‘wind-driven’ overturning circulation. More precisely, we look into whether
and how the ocean might maintain a deep overturning circulation that owes its
existence to the direct effects of wind at the surface, and that persists even as the
diapycnal diffusivity in the ocean interior goes to zero.

(iii) The circulation of the flow in a channel, as a model of the Antarctic Circumpolar
Current (ACC).

16.1 THE MAIN THERMOCLINCE: AN INTRODUCTION

In the previous chapter we saw that a fluid that is differentially heated from above
will develop both an overturning circulation and a region near the surface where the
temperature changes rapidly. We now examime this in more detail, and to begin we
consider the circulation in a closed, single hemispheric basin, and again suppose that
there is a net surface heating at low latitudes and a net cooling at high latitudes which
maintains a meridional temperature gradient at the surface. We also presume, ab initio,
that there is a single overturning cell, with water rising at low latitudes before returning
to polar regions, illustrated schematically in Fig. 16.1.

At lower latitudes the surface water is warmer than the cold water in the abyss.
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Fig. 16.1 Cartoon of a single-celled meridional overturning circulation.
Sinking is concentrated at high latitudes and upwelling spread out over
lower latitudes. The thermocline is the boundary between the cold abyssal
waters that have polar origins, and the warmer near-surface subtropical
water. Wind forcing in the subtropical gyre may also mechanically push the
warm water down, deepening the thermocline.

Thus there must be a vertical temperature gradient everywhere except possibly at the
highest latitudes where the cold dense water sinks. This temperature gradient is called
the thermocline. In purely bouyancy-driven flows the thickness of the thermocline is
determined by way of an advective-diffusive balance, and proportional to (some power
of) the thermal diffusivity, and we first consider a simple model of this.

16.1.1 A simple kinematic model

The fact that cold water with polar origins upwells into a region of warmer water sug-
gests that we consider the simple one-dimensional advective-diffusive balance,

w
@T

@z
D �

@2T

@z2
: (16.1)

wherew is the vertical velocity, � is a diffusivity and T is temperature. In mid-latitudes,
where this might hold, w is positive and the equation represents a balance between the
upwelling of cold water and the downward diffusion of heat. If w and � are given
constants, and if T is specified at the top (T D TT at z D 0) and if @T=@z D 0 at great
depth (z D �1) then the temperature falls exponentially away the surface according to

T D .TT � TB/e
wz=�

C TB: (16.2)
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16.2 Scaling and Simple Dynamics of the Main Thermocline 691

where TB is a constant. This expression cannot be used to estimate how the thermocline
depth scales with either w or �, because the magnitude of the overturning circulation
depends on � (section 15.8). However, it is reasonable to see if the observed ocean
is broadly consistent with this expression. The diffusivity � can be measured; it is an
eddy diffusivity, maintained by small-scale turbulence, and measurements produce val-
ues that range between 10�5 m2 s�1 in the main thermocline to 10�4 m2 s�1 in abyssal
regions over rough topography and in and near continental margins, with still higher
values locally.1 The vertical velocity is too small to be measured directly, but various
estimates based on deep water production suggest a value of about 10�7 m s�1. Using
this and the smaller value of � in (16.2) gives an e-folding vertical scale, �=w, of just
100 m, beneath which the stratification is predicted to be almost uniform. Using the
larger value of � increases the vertical scale to 1000 m, which is probably closer to the
observed value for the total thickness of the thermocline (look at Fig. 15.2), but using
such a large value of � in the main thermocline is probably not supported by the ob-
servations. Similarly, the deep stratification of the ocean is rather larger than that given
(16.1), except with values of diffusivity on the large side of those observed.2 Thus,
there are two conclusions to be drawn:

(i) The observed thickness of the thermocline is somewhat larger than what one might
infer from observed values of the diffusivity and overturning circulation.

(ii) The observed deep stratification is somewhat larger than what one might infer
from the advective-diffusive balance (16.1) with observed values of diffusivity and
overturning circulation.

Of course the model itself, (16.1), is overly simple but these conclusions suggest
that we look for additional physical factors, and Mechanical forcing, and in particular
the wind, is one such. As regards the thermocline, the wind stress curl forces water
converges in the subtropical Ekman layer, thereby forcing relatively warm water to
downwell and therefore to meet the upwelling colder abyssal water at some finite depth,
thereby deepening the thermocline from its purely diffusive value. Indeed, in so far as
we can separate these two effects of wind and diffusion, we can say that the strength of
the wind influences the depth at which the thermocline occurs, whereas the strength of
the diffusivity influences the thickness of the thermocline. The influence of the wind on
the abyssal circulation is not quite as straightforward, but we find in section 16.5 that
it will enable both a stronger circulation, and deep stratification, to persist even in the
absence of diffusion.

16.2 SCALING AND SIMPLE DYNAMICS OF THE MAIN THERMOCLINE

We now begin to consider the dynamics that produce an overturning circulation and a
thermocline. The Rossby number of the large-scale circulation is small and the scale of
the motion large, and the flow obeys the planetary geostrophic equations:

f � u D �r�;
@�

@z
D b; (16.3a,b)

r � v D 0;
Db

Dt
D �

@2b

@z2
: (16.4a,b)
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692 Chapter 16. Wind and Buoyancy Driven Circulation

We suppose that these equations hold below an Ekman layer, so that the effects of a wind
stress may be included by specifiying a vertical velocity at the top of the domain. The
diffusivity, �, is, as we noted above, an eddy diffusivity, but since its the precise form
and magnitude are uncertain we must proceed with due caution, and a useful practical
philosophy is to try ignore dissipation and viscosity where possible, and to invoke them
only if there is no other way out. Let us therefore scale the equations in two ways, with
and without diffusion; these scalings will be the central to our theory.

16.2.1 An advective scale

As usual we denote (with one or two exceptions) scaling values with capital letter and
non-dimensional values with a hat, so that for example u D U yu and u D O.U /. Let us
ignore the diffusive term in (16.4b) and try to construct a scaling estimate for the depth
of the wind’s influence.

If there is upwelling (w > 0) from the abyss, and Ekman downwelling (w < 0) at
the surface, there is some depth Da at whichw D 0. By cross-differentiating (16.3a) we
obtain ˇv D �f rz � u, and combining this with (16.4a) gives the familiar geostrophic
vorticity equation and corresponding scaling

ˇv D f
@w

@z
; ! ˇV D f

W

Da

: (16.5)

Here, Da is the unknown depth scale of the motion, L is the horizontal scale of the
motion, which we take as the gyre or basin scale, and V is a horizontal velocity scale.
(It is reasonable to suppose that V � U , where U is the zonal velocity scale, and
henceforth we will denote both by U .) The appropriate vertical velocity to use is that
due to Ekman pumping, WE ; we will assume (and demonstrate later) that this is much
larger than the abyssal upwelling velocity, which in any case is zero by assumption at
z D �Da, and this leads to the Sverdrup-balance estimate

U D
f

ˇ

WE

Da

: (16.6)

We may determine an appropriate value of U using the thermal wind relation, which
from (16.3) is

f �
@u

@z
D �rb; !

U

Da

D
1

f

�b

L
; (16.7)

where �b is the magnitude of variations (i.e., the scaling value) of buoyancy in the hor-
izontal. Assuming the vertical scales are the same in (16.6) and (16.7) then eliminating
U gives

Da D W
1=2

E

�
f 2L

ˇ�b

�1=2

: (16.8)

[This is in fact the same as the estimate (14.140).] If we relate U and WE using mass
conservation, U=L D WE=Da, instead of using Sverdrup balance, then we write L in
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16.2 Scaling and Simple Dynamics of the Main Thermocline 693

place of f=ˇ and (16.8) becomes Da D
�
WEfL2=�b

�1=2
, which is not qualitatively

different for large scales. The important aspect of these equations is that the of depth
wind-influenced region increases with the strength of the wind-stress (as WE � curlz� )
and decreases with the meridional temperature gradient. The former dependence is
reasonably intuitive, and the latter arises because as the temperature gradient increases,
the associated thermal wind-shear U=Da correspondingly increases. But the horizontal
transport (the product UDa) is fixed by mass conservation; the only way that these two
can remain consistent is for the vertical scale to decrease. Taking WE D 10�6 m s�1,
�b D g��=�0 D gˇT�T � 10�2 m s�2, L D 5000 km and f D 10�4 s�1 gives
Da D 500 m. Such a scaling argument cannot be expected to give more than an estimate
of depth of the wind-influenced region; nevertheless, it does indicate that the wind-
driven circulation is predominantly an upper-ocean phenomenon.

16.2.2 A diffusive scale

The estimate (16.8) cares nothing about the thermodynamic equation, and if we include
this, with nonzero diffusivity, we recover the model of section 15.8. Thus, briefly, the
scaling follows from advective-diffusive balance in the thermodynamic equation, the
linear geostrophic vorticity equation, and thermal wind balance:

w
@b

@z
D �

@2b

@z2
; ˇv D f

@w

@z
; f

@u

@z
D k � rb; (16.9a,b,c)

with corresponding scales

W

ı
D

�

ı2
; ˇU D

fW

ı
;

U

ı
D
�b

fL
: (16.10a,b,c)

where ı is the vertical scale. Because there is now one more equation than in the ad-
vective scaling theory we cannot take the vertical velocity as a given, else the equations
are overdetermined. We therefore take it to be the abyssal upwelling velocity, which
then becomes part of the solution, rather than being imposed. From (16.10) we obtain
diffusive vertical scale,

ı D �1=3

�
f 2L

ˇ�b

�1=3

: (16.11)

Using � D 10�5 m2 s�2 this gives ı � 150 m and W � 10�7 m s�1, an order of
magnitude smaller than WE .

A modified diffusive scaling

The scaling above assumes that the length scale over which thermal wind balance holds
is the gyre scale itself. In fact there is another length scale that is more appropriate,
and this leads to a slightly different scaling for the thickness of the thermocline. Note
that the depth of the subtropical thermocline is not constant: it shoals up to the east
because of Sverdrup balance, and it may shoals up polewards as the curl of the wind
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694 Chapter 16. Wind and Buoyancy Driven Circulation

Figure 16.2 Schema of a
scaling for the thermocline.
The diagonal lines mark the
diffusive thermocline of thick-
ness ı and depth D.y/. The
advective scaling for D.y/,
i.e., Da, is given by (16.8), and
the diffusive scaling for ı is
given by (16.13).

stress falls (and is zero at the polewards edge of the gyre). Thus, referring to Fig. 16.2,
the appropriate horizontal length scale zL is not the basin scale itself, but is given by

zL D ı
L

Da

: (16.12)

This is no longer an external imposed parameter, but must be determined as part of the
solution. Using zL instead of L as the length scale in the thermal wind equation (16.10c)
gives, using (16.8), the modified diffusive scale

ı D �1=2

�
f 2L

�b ˇDa

�1=2

D �1=2

�
f 2L

�b ˇWe

�1=4

: (16.13)

Substituting values of the various parameters results in a thickness of about 100–200
m. The thermocline thickness now scales as �1=2. The interpretation of this scale and
that of (16.11) is that the thickness of the thermocline scales as �1=3 in the absence
of a wind stress, but scales as �1=2 if a wind stress is present that can provide a finite
slope the the depth of the thermocline that is independent of �, and this is confirmed
by numerical simulations3 The vertical velocity, and hence the meridional overturning
circulation, now scales as

W D
�

ıw
/ �1=2 (16.14)

rather than �2=3.

16.2.3 Summary of the physical picture

What do the vertical scales derived above represent? The wind-influenced scaling, Da,
is the depth to which the directly wind-driven circulation can be expected to penetrate.
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16.3 The Internal Thermocline 695

Thus, over this depth we can expect to see wind-driven gyres and associated phenom-
ena. At greater depths lies the abyssal circulation, and this is not wind-driven in the
same sense. Now, in general, the water at the base of the wind-driven layer will not
have the same thermodynamic properties as the upwelling abyssal water — this being
cold and dense, whereas the water in the wind-driven layer is warm and subtropical
(look again at Fig. 16.1). The thickness ı characterizes the diffusive transition region
between these two water masses and in the limit of very small diffusivity this becomes
a front. One might say that Da is the depth of the thermocline, while ı is the thickness
of the thermocline. In the diffusive region, no matter how small the diffusivity � is in
the thermodynamic equation, the diffusive term is important. Of course if the diffusion
is sufficiently large, the thickness will be as large or larger than the depth, and the two
regions will blur into each other, and this may indeed be the case in the real ocean. (The
real world is also complicated by the effects of mesoscale eddies.) Nevertheless, these
scales are a useful foundation on which to build.4

16.3 THE INTERNAL THERMOCLINE

We now try to go beyond simple scaling arguments and investigate in more detail the
dynamics of the thermocline. In this section we consider the diffusive, or internal,
thermocline and in section 16.4 we consider the advective, or ventilated, thermocline.
Such an investigation requires trying to actually solve the equations of motion, but the
advective term in the thermodynamic equation makes this extremely difficult; indeed
this prevents us from constructing wholly analytic models, but not from constructing
informative models. We begin by expressing the planetary geostrophic equations as an
equation in a single unknown.

16.3.1 The M-equation

The planetary geostrophic equations can be written as a single partial differential equa-
tion in a single variable, although the resulting equation is of quite high order and
nonlinear. We write the equations of motion as

� f v D �
@�

@x
; f u D �

@�

@y
; b D

@�

@z
; (16.15a,b,c)

r � v D 0;
@b

@t
C v � rb D �r

2b; (16.16a,b)

where we take f D ˇy. Cross differentiating the horizontal momentum equations and
using (16.16a) gives the linear geostrophic vorticity relation ˇv D f @w=@z which,
using (16.15a) again, may be written as

@�

@x
C

@

@z

�
�
f 2

ˇ
w

�
D 0: (16.17)
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696 Chapter 16. Wind and Buoyancy Driven Circulation

This equation is the divergence in .x; z/ of .�;�f 2w=ˇ/ and is automatically satisfied
if

� D Mz and
f 2w

ˇ
D Mx : (16.18a,b)

where the subscripts on M denote derivatives. Then straightforwardly

u D �
@y�

f
D �

Mzy

f
; v D

@x�

f
D

Mzx

f
; b D @z� D Mzz : (16.19a,b,c)

The thermodynamic equation, (16.16b) becomes

@Mzz

@t
C

�
�Mzy

f
Mzzx C

Mzx

f
Mzzy

�
C

ˇ

f 2
MxMzzz D �Mzzzz (16.20)

or
@Mzz

@t
C

1

f
J.Mz;Mzz/C

ˇ

f 2
MxMzzz D �Mzzzz : (16.21)

where J is the usual horizontal Jacobian. This is the M -equation,5 somewhat analo-
gous to the potential vorticity equation in quasi-geostrophic theory in that it expresses
the entire dynamics of the system in a single, nonlinear, advective-diffusive partial dif-
ferential equation, although note that Mzz is materially conserved (in the absence of
diabatic effects) by the three-dimensional flow. Because of the high differential order
and nonlinearity of the system analytic solutions of (16.21) are very hard to find, and
from a numerical perspective it is easier to integrate the equations in the form (16.15)
and (16.16) than in the form (16.21). Nevertheless, it is possible to move forward
by approximating the equation to one or two dimensions, or by a priori assuming a
boundary-layer structure.

A one-dimensional model

Let us consider an illustrative one-dimensional model (in z) of the thermocline.6 Merely
setting all horizontal derivatives in (16.21) to zero is not very useful, for then all the
advective terms on the left-hand side vanish. Rather, we look for steady solutions of the
form M D M.x; z/, and the M -equation then becomes

ˇ

f 2
MxMzzz D �Mzzzz; (16.22)

which represents the advective-diffusive balance

w
@b

@z
D �

@2b

@z2
: (16.23)

(We must also suppose that the value of � varies meridionally in the same manner
as does ˇ=f 2; without this technicality M would be a function of y, violating our
premise.) If the ocean surface is warm and the abyss is cold, then (16.22) represents
a balance between the upward advection of cold water and the downward diffusion of
warm water. The horizontal advection terms vanish because the zonal velocity (u) and
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the meridional temperature gradient (by) are each zero. Let us further consider the
special case

M D .x � xe/W .z/ (16.24)

where the domain extends from 0 � x � xe , so satisfying M D 0 on the eastern
boundary. Equation (16.22) becomes the ordinary differential equation

ˇ

f 2
W Wzzz D �Wzzzz; (16.25)

where W has the dimensions of (velocity)2. We nondimensionalize this by setting

z D Hyz; � D y�.HWS /; W D

�
f 2WS

ˇ

�
yW (16.26)

where the hatted variables are nondimensional and WS is a scaling value of the dimen-
sional vertical velocity, w (e.g., the magnitude of the Ekman pumping velocity WE).
Eq. (16.25) becomes

yW yWzzz D y� yWzzzz; (16.27)

(omitting the hats on the subscripted, nondimensional, z). The parameter y� is a nondi-
mensional measure of the strength of diffusion in the interior, and the interesting case
occurs when y� � 1; in the ocean, typical values are H D 1 km, � D 10�5 m s�2 and
WS D WE D 10�6 m s�2 so that y� � 10�2, which is indeed small.

The time-dependent form of (16.27), namely yWzzt C yW yWzzz D y� yWzzzz , is similar
to Burger’s equation, Vt C V Vz D �Vzz , which is known to develop fronts. (To see this,
note that the inviscid Burger’s equation has the form DV =Dt D 0, where the advective
derivative is one-dimensional, and therefore the velocity of a given fluid parcel is pre-
served on the line. Suppose that the velocity of the fluid is positive but diminishes in
the positive z-direction, so that a fluid parcel will catch-up with the fluid parcel in front
of it — there no pressure force to keep the fluid parcels apart. But since the velocity
of a fluid parcel is fixed, then a singularity must form. In presence of viscosity, the
singularity is tamed to a front.) Thus, we might similarly expect (16.27) to produce a
front, but because of the extra derivatives the argument is not as straightforward and it
is simplest to obtain solutions numerically.

Equation (16.27) is fourth order, so four boundary conditions are needed, two at
each boundary. Appropriate ones are a prescribed buoyancy and a prescribed vertical
velocity at each boundary, for example

yW D yWE ; � yWzz D T0; at top
yW D 0; � yWzz D 0; at bottom

(16.28)

where yWE is the (nondimensional) vertical velocity at the base of the top Ekman layer,
which is negative for Ekman pumping in the subtropical gyre, and T0 is a constant,
representative of the buoyancy difference across the domain. We obtain solutions nu-
merically by Newton’s method,7 and these are shown in Fig. 16.3 and Fig. 16.4. The
solutions do indeed display fronts, or boundary layers, for small diffusivity. If the wind
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Fig. 16.3 Solution of the one-dimensional thermocline equation, (16.27),
with boundary conditions (16.28), for two different values of the diffusivity:
y� D 3:2 � 10�3 (solid line) and y� D 0:4 � 10�3 (dashed line), in the domain
0 � z � �1. ‘Vertical velocity’ is W , ‘temperature’ is �Wzz , and all units
are the nondimensional ones of the equation itself. A negative vertical ve-
locity, yWE D �1, is imposed at the surface (representing Ekman pumping)
and T0 D 10. An internal boundary layer forms within the fluid interior,
separating the warm near surface fluid from the cold abyssal fluid. The
boundary layer thickness increases as y�1=3, so doubling in thickness for an
eightfold increase in y�. The upwelling velocity also increases with y�, (as
y�2=3), but this is barely noticeable on the graph because the downwelling
velocity, above the internal boundary layer, is much larger and almost in-
dependent of y�. The depth of the boundary layer increases as yW

1=2

E
, so if

yWE D 0 the boundary layer is at the surface, as in Fig. 16.4.

forcing is non-zero, the front is an internal boundary layer with an adiabatic layer above;
if the wind forcing is zero, the boundary layer is at the top of the fluid. In the real ocean,
wind forcing is non-zero and the frontal region is known as the internal thermocline.

16.3.2 * Boundary layer analysis

The reasoning and the numerical solutions of the above sections all suggest that the
internal thermocline has a boundary layer structure whose thickness decreases with �.
If the Ekman pumping at the top of the ocean is non-zero, the boundary layer is internal
to the fluid. This suggests that we might be able to learn something about the solution
by performing a boundary layer analysis, much as we did when investigating western
boundary currents in section 14.1.3. The nonlinearity precludes a complete solution of
the equation, but we can obtain useful information about the thickness of the boundary
layer itself.8

One-dimensional model

Let us now assume a steady two-layer structure of the form illustrated in Fig. 16.5. The
temperature varies rapidly only in an internal boundary layer of thickness ı located at
z D �h; above and below this the temperature is assumed to be only very slowly vary-
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Fig. 16.4 As for Fig. 16.3, but with no imposed Ekman pumping veloc-
ity at the upper boundary ( yWE D 0), again for two different values of the
diffusivity: y� D 3:2 � 10�3 (solid line) and y� D 0:4 � 10�3 (dashed line).
The boundary layer now forms at the upper surface. The boundary thick-
ness again increases with diffusivity and, even more noticeably, so does the
upwelling velocity — this scales as y�2=3, and so increases fourfold for an
eightfold increase in y�.

ing. Following standard boundary layer procedure, we introduce a stretched boundary
layer coordinate �, where

� D
z C h

ı
: (16.29)

This is the distance from z D �h, scaled by the boundary layer thickness ı. Thus,
within the boundary layer, � is an order one quantity. We also let

yW .z/ D yWI .z/C zW .�/ (16.30)

where yWI is the solution away from the boundary layer and zW is the boundary layer
correction. Because the boundary layer is presumptively thin, yWI is effectively constant
in it and, furthermore, for z < �h, yW vanishes in the limit as � D 0. We thus take
yWI D 0 throughout the boundary layer. (The small diffusively-driven upwelling below

the boundary layer is part of the boundary layer solution, not the interior solution.) Now,
temperature varies rapidly in the boundary layer but it remains an order one quantity
throughout. To satisfy this we explicitly scale zW in the boundary layer by writing

zW .�/ D ı2T0A.�/ (16.31)

where T0 is proportional to the temperature difference across the boundary layer and A

is an order one field. (Again, �Wzz is the ‘temperature’.) The derivatives of W are

@ yW

@z
D

1

ı

@ zW

@�
D ıT0

@A

@�

@2 yW

@z2
D T0

@2A

@�2
;

(16.32)
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so that yWzz is an order one quantity. Far from the boundary layer the solution must be
able to match the external conditions on temperature and velocity. On temperature we
require that T ! T0 as � ! C1 and T ! 0 as � ! �1. Thus,

A�� !

(
1 as � ! C1

0 as � ! �1:
(16.33)

On vertical velocity we require that W ! .z=h C 1/WE as � ! C1, and W !

constant as � ! �1. The first matches the Ekman pumping velocity above the bound-
ary layer, and the second condition produces the abyssal upwelling velocity, which as
noted vanishes for � ! 0.

Substituting (16.30) and (16.31) into (16.27) we obtain

T0AA��� D
y�

ı3
A���� : (16.34)

which implies that ı � .y�=T0/
1=3. Restoring the dimensions gives

ı0
�

�
�f 2L

�b ˇ

�
(16.35)

where ı0 D H ı is the dimensional boundary layer thickness and �b is the buoyancy
difference across the boundary layer. (To obtain this we use � D y�.HWS / and Tdim D

T0 � f 2WS=.ˇH 2/ and �b � LTdim, because b D Mzz D .x � 1/Wzz � LT .) The
vertical velocity scales as

yW �
�

ı
� �2=3T

1=3
0

: (16.36)

This is the strength of the upwelling velocity at base of the thermocline and, more
generally, the strength of the diffusively-driven component of meridional overturning
circulation of the ocean. The scalings for thickness and upwelling velocity are the same
as that obtained previously by more heuristic reasoning.

Somewhat different one-dimensional thermocline models may be constructed (see
problem 16.3), and these have slightly different scaling properties. However, their qual-
itative features transcend their detailed construction, and in particular:
? The thickness of the internal thermocline increases with increasing diffusivity, and

decreases with increasing temperature difference across it. In particular, as the
diffusivity tends to zero the thickness of the internal thermocline tends to zero.

? The strength of the upwelling velocity, and hence the strength of the meridional
overturning circulation, increases with increasing diffusivity and increasing tem-
perature difference.

* The three-dimensional equations

We can apply the same boundary-layer techniques to the three-dimensional M -equation.
The main difference is that the depth of the boundary layer is now a function of x and
y, so that the stretched coordinate � is now given by

ı� D z C h.x;y/: (16.37)
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Figure 16.5 The simplified boundary-
layer structure of the internal thermocline.
In the limit of small diffusivity the inter-
nal thermocline forms a boundary layer,
of thickness ı in the figure, in which the
temperature changes rapidly. The inter-
nal boundary layer lies below the ventilated
thermocline, so that in reality the temper-
ature above the internal boundary layer is
not uniform.

Just as in the one-dimensional case we rescale M in the boundary layer and write

M D T0ı
2 yA.x;y; �/; (16.38)

where the scaling factor ı2 again ensures that the temperature remains an order-one
quantity. In the boundary layer the derivatives of M become

@M

@z
D

1

ı

@A

@�
; (16.39)

and

@M

@x
D ı2T0

�
@A

@�

@�

@x
C
@A

@x

�
D ı2T0

�
@A

@�

�
1

ı

@h

@x

�
C
@A

@x

�
(16.40)

Substituting these into (16.20) we obtain, omitting the time-derivative,

ı

�
1

f

�
A�xA��y � A�yA��x

�
C

ˇ

f 2
AxA���

�
C

ˇ

f 2
hxA�A���

C
1

f

�
hx

�
A��A��y � A�yA���

�
C hy

�
A�xA��� � A��A��x

��
D

�

T0ı2
A���� ;

(16.41)

where the subscripts on A denote derivatives. (The horizontal advective terms of order
ı�1 vanish identically.) If hx D hy D 0, that is if the base of the thermocline is flat,
then (16.41) becomes

1

f

�
A�xA��y � A�yA��x

�
C

ˇ

f 2
AxA��� D

�

T0ı3
A���� : (16.42)

Since all the terms in this equation are, by construction, order one, we immediately see
that the boundary layer thickness ı scales as

ı �

�
�

T0

�1=3

; (16.43)
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just as in the one-dimensional model. On the other hand, if hx and hy are order one
quantities then the dominant balance in (16.41) is

1

f

�
hx.A��A��y � A�yA���/C hy.A�xA��� � A��A��x/

�
D

�

T0ı2
A���� (16.44)

and

ı �

�
�

T0

�1=2

; (16.45)

confirming the heuristic scaling arguments. Thus, if the isotherm slopes are fixed inde-
pendently of � (for example by the wind stress), then as � ! 0 an internal boundary
layer will form whose thickness is proportional to �1=2. We expect this to occur at the
base of the main thermocline, with purely advective dynamics being dominant in upper
part of the thermocline, and determining the slope of the isotherms (i.e., the form of hx

and hy), as in Fig. 16.2. Interestingly, the balance in the three-dimensional boundary
layer equation does not in general locally correspond to wTz � �Tzz . Both at O.1/
and O.ı/ the horizontal advective terms in (16.41) are of the same asymptotic size as
the vertical advection terms. In the boundary layer the thermodynamic balance is thus
u � rzT C wTz � �Tzz , whether the isotherms are sloping or flat. We might have
anticipated this, because the vertical velocity passes through zero within the boundary
layer.

What are the dynamics above the diffusive layer, presuming that it does does not
extend all the way to the surface? Answering this leads us into our next topic, the
‘ventilated thermocline.’

16.4 THE VENTILATED THERMOCLINE

We now consider the nature of the dynamics above the diffusive layer, presuming that
the diffusivity is sufficiently small that there is a meaningful separation of the internal
boundary layer and the advective dynamics above. In this advective region there is
no general reason that the temperature profile should be uniform, and we envision an
essentially adiabatic region that is both wind-driven and stratified. This region of the
thermocline has become known, for reasons that will become apparent, as the ventilated
thermocline. The main thermocline is comprised of the internal thermocline plus a
ventilated region, and to set our bearings it may be useful to refer now to the overall
picture sketched in Fig. 16.6, and to come back to it again later on. To elucidate the
structure of the ventilated thermocline we will assume:10

(i) The motion satisfies the ideal, steady, planetary geostrophic equations.
(ii) The surface temperature, and the vertical velocity due to Ekman pumping, are

given. (These surface conditions are, in reality, influenced by the ocean’s dynam-
ics, but we assume that we can calculate a solution with specified surface condi-
tions.) At the base of the wind-influenced region we will impose w D 0.

(iii) Rather than use the continuously stratified equations, we will assume the solu-
tion can be adequately represented by a small number of layers, each of constant
density. The abyss is represented by a single stationary layer.
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Fig. 16.6 Schema of the large-scale circulation and structure of the main ther-
mocline, in a single-hemisphere ocean driven by wind-stress (broad arrows) and
a meridional gradient of heating at the surface. The subtropical-subpolar gyre
boundary is a constant latitude �0, where the wind-stress curl changes sign. ’VT’
denotes the ventilated thermocline, an advective regime of thickness Da, and ’IT’
denotes the internal thermocline, a diffusive internal boundary layer of thickness
�I . The thin arrows indicate the meridional overturning circulation and the flow in
the Ekman layer near the ocean surface. The thick line is a temperature profile at
latitude �1: The temperature drop across the internal thermocline is �TSP , equal
to the meridional temperature difference across the subpolar gyre; the tempera-
ture drop across the ventilated thermocline is �ST , the temperature difference
across the subtropical gyre.9

(iv) We will not take into account the possible effects of a western boundary current. In
that sense the model is extension of the Sverdrup interior of homogeneous models.

The model is thus not a complete one, yet we may hope that is revealing about the
structure of the real ocean.

16.4.1 A reduced gravity, single-layer model

The simplest possible model along these lines is to suppose the ocean is composed of
just two layers, as illustrated in Fig. 16.7. The upper layer of density �1 is wind-driven,
whereas the lower layer of density �2 is assumed stationary; this is called a ‘one-and-
a-half-layer’ model or a ‘reduced gravity single-layer’ model. Pertinent questions are:
(i) How deep is the upper layer? (ii) What is the velocity field in it?

In the planetary geostrophic approximation, the momentum and mass conservation
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Figure 16.7 A re-
duced gravity, single layer
model. A single moving
layer lies above a deep,
stationary layer of higher
density. The upper sur-
face is rigid. A thin Ek-
man layer may be envi-
sioned to lie on top of the
moving layer, providing a
vertical velocity boundary
condition.

equations of the reduced gravity shallow water model may be written as:

f � u D �g0
rh; r � u D �

@w

@z
; (16.46a,b)

where r is a two dimensional operator (as it will be for the rest of this section) and
g0 D g.�2 � �1/=�0 is the reduced gravity. Taking the curl of (16.46a) gives the
geostrophic vorticity equation, ˇv C f r � u D 0, and integrating this over the depth of
the layer and using mass conservation gives

hˇv D f .wE � wb/; (16.47)

where wE is the velocity at the top of the layer, due mainly to Ekman pumping, and wb

is the vertical velocity at the layer base. If the flow is steady, wb is zero for then

wb D u � rh D �
g0

f

@h

@y

@h

@x
C

g0

f

@h

@x

@h

@y
D 0: (16.48)

Using this result and geostrophic balance, (16.47) becomes

g0

f
ˇh
@h

@x
D f wE (16.49)

which integrates to

h2
D �2

f 2

g0ˇ

Z xe

x

wE dx0
C H 2 ; (16.50)

where H is the (unknown) value of h at the eastern boundary xe , and this is a constant
to satisfy the no-normal flow condition. This apart, the equation contains complete
information about the solution. We note:
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Figure 16.8 A
two-layer model
of the ventilated
thermocline. Two
moving layers lie
above an infinitely
deep, stationary layer
of higher density.
Models with more
moving layers may
be constructed by
straightforward
extension.

? The depth of the moving layer scales as the magnitude of the wind stress (or Ekman
pumping velocity) to the one-half power.

? The horizontal solution is very similar to the simpler Sverdrup interior solution
previously obtained in section 14.1.3.

? There is no solution if wE is positive; that is, if there is Ekman upwelling.
? The solution depends on the unknown parameter H , the layer depth at the eastern

boundary.11

16.4.2 A two-layer model

If there is a meridional temperature gradient at the surface then isopycnals outcrop, or
intersect the surface. Thus, at some latitude (say y D y2) layer 2 passes underneath
layer 1, which is of lower density (and higher temperature), as sketched in Fig. 16.8.
Thus, polewards of y2 the dynamics are just those of a single layer discussed above,

whereas equatorwards of y2 layer 2 does not feel the wind directly, and its dynamics
are are governed by two principles:

(i) Sverdrup balance. This still applies to the vertically integrated motion, and thus to
the sum of layer 1 and layer 2.

(ii) Conservation of potential vorticity. The motion in layer 2 is shielded from the
wind forcing, and the effects of dissipation are (assumed) negligible. Thus, the
fluid parcels in the layer will conserve their potential vorticity.

These two principles are sufficient to provide a complete description of the dynamics.
We first use potential vorticity conservation to obtain an expression for the depths of
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each layer in terms of the total depth of the moving fluid, h, and then use Sverdrup
balance to obtain h.

Use of potential vorticity conservation

Conservation of potential vorticity in the region equatorwards of y2 is, for steady flow,

u2 � rq2 D 0 .y < y2/: (16.51)

where q2 D f=h2. Now, the velocity field in layer 2 is given by u2 D .g0
2
=f /k � rh

where h D h1 C h2 is the total depth of the fluid (see the appendix to this chapter).
Thus, (16.51) becomes

�
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2

f
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f
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2

f
J

�
f

h2

; h

�
D 0: (16.52)

This is an equation relating h and h2 and it has the general solution

q2 D
f

h2

D G2.h/ (16.53)

where G2 is an arbitrary function of its argument. However, we know what the potential
vorticity of layer 2 is at the moment it is subducted; it is just

q2.y2/ D
f .y2/

h2

D
f2

h
: (16.54)

where f2 � f .y2/, and h2 D h because h1 D 0. This relationship must therefore hold
everywhere in layer 2, equatorwards of y2. That is,

G2.h/ D
f2

h
D

f2

�z2

: (16.55)

Thus, in the subducted region,
f

z1 � z2

D �
f2

z2

(16.56)

whence

z1 D

�
1 �

f

f2

�
z2 D �

�
1 �

f

f2

�
h: (16.57)

From this we obtain expressions for the layer depths as functions of the total depth, h,
namely

h2 D z1 � z2 D
f

f2

h and h1 D �z1 D

�
1 �

f

f2

�
h: (16.58)

Note that because potential vorticity, f=h2, is conserved, as a fluid column moves
equatorward its height must decrease.
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Use of Sverdrup balance

Equations (16.58) contain the unknown total depth h, and we now use Sverdrup balance
to find this and close the problem. Because the velocity at the base of layer 2 is zero,
this may be written as

ˇ.h1v1 C h2v2/ D f wE (16.59)

where the velocities in each layer are given by [see (16A.18)]

f v1 D
@

@x
.g0

2h C g0
1h1/ and f v2 D

@

@x
.g0

2h/: (16.60)

Thus the Sverdrup relationship becomes,

ˇh1
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2h C g0
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D f 2wE ; (16.61)
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On integrating this gives �
h2

C
g0

1

g0
2

h2
1

�
D D2

0 C C: (16.63)

where

D2
0.x;y/ D �

2f 2

ˇg0
2

Z xe

x

wE.x
0;y/ dx0 (16.64)

which by construction vanishes at the eastern wall (x D xe). The constant of integration
C may be interpreted as follows. We write C D H 2 C .g0

1
=g0

2
/H 2

1
where H is the

(unknown) total depth of layers 1 and 2 at the eastern boundary, and H1 is the depth of
layer 1. These must both be constants in order to satisfy the no normal flow condition.
However, H1 must be zero, because at the outcrop line h1 D 0. Thus, H1 is zero at
y D y2, and therefore zero everywhere, and C D H 2.

Using (16.58) and (16.63) we obtain a closed expression for h, namely

h D �z2 D
.D2

0
C H 2/1=2�

1 C .g0
1
=g0

2
/.1 � f=f2/2

�1=2 : (16.65)

Using (16.57) and (16.58) the depths in each layer, and the corresponding geostrophic
velocities, can be obtained.

A typical solution is shown in Fig. 16.9. The upper layer exists only equatorwards
of the outcrop latitude, y2 D 0:8, and isolines of total thickness correspond to stream-
lines of the lower layer. We see, as expected, the overall shape of a subtropical gyre,
with the circulation beng closed by an implicit western boundary current that is not part
of the calculation. Two regions are shaded in the figure, the ‘pool’ region in the west
and the ‘shadow zone’ in the south-east. The solutions above do not apply to these, and
they require special attention.
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Fig. 16.9 Contour plots of total thickness and upper layer thickness in
a two-layer model of the ventilated thermocline. The thickness generally
increases westward, and the flow is clockwise. The shadow zone and the
western pool are shaded, and no contours are drawn in the latter. The
outcrop latitude, y2 D 0:8, is marked with a dotted line. [Parameters are
g0

1
D g0

2
D 1, ˇ D 1, f0 D 0:5, H D 0:5, and wE D � sin. y/.]

16.4.3 The shadow zone

In the fluid interior the potential vorticity of a parcel in layer 2 is determined by tracing
its trajectory back to its outcrop latitude where the potential vorticity is given. That
trajectory is determined by its velocity, and this turn is determined by inverting the
potential vorticity. Now, parcels subducted at y2 sweep equatorwards and westwards,
so that a parcel, labelled ‘a’ say, subducted at the eastern boundary will in general leave
the eastern boundary tracing a southwestern trajectory. Consider another parcel, ‘b’
say, in the interior that lies eastward of the subducted position of a, in the shaded region
of Fig. 16.10. It is impossible to trace b back to the outcrop line without trajectories
crossing, and this is forbidden in steady flow. Rather, it seems as if the trajectory of b

would emanate from the eastern wall. What is the potential vorticity there?
At the eastern boundary the condition of no normal flow at the boundary demands

that h be constant (so that u2 D 0), and h1 be constant (so that u1 D 0). But if a
parcel in layer 2 moves along the boundary potential vorticity conservation demands
that f=h2 is constant, and therefore h2 must change, contradicting the no-normal flow
requirement. Thus, there can be no motion at all along the boundary, and so we cannot
trace parcels in the shaded region back to the wall. Rather, in the absence of closed
trajectories (for example, eddying motion), we may assume that the shaded region is
stagnant, and h is constant. Of course, potential vorticity is everywhere given by f=h2,
which varies spatially, but since there is no motion potential vorticity is still, rather
trivially, conserved along trajectories. This region is aptly called the shadow zone,
since the region falls under the shadow of the eastern boundary; an analogous region
arose in the quasi-geostrophic discussion of section 14.7.

To obtain an expression for the fields within the shadow zone, first note that because
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Figure 16.10 The shadow
zone in the ventilated thermocline.
Layer 2 outcrops at y D y2. A col-
umn moving equatorwards along
the eastern boundary in layer 2
is subducted at y2. It cannot re-
main against the eastern wall and
both preserve its potential vor-
ticity, which implies the column
shrinks, at the same time that the
no-normal flow condition is satis-
fied, as by geostrophy this implies
the layer depth is constant. Thus,
the column must move westward,
along the boundary of a ‘shadow
zone’ within which is there is no
motion. The streamline it fol-
lows is the isoline of constant total
thickness of the two moving layers
[see (16A.18) or (16A.20c)].

h is constant, its values is equal to that on the eastern wall; that is, h D H . The wind
forcing must then all be taken up by the upper layer, and Sverdrup balance then implies

ˇv1h1 D f wE ; (16.66)

and using (16.60) we obtain an expression for h1, to wit:

h2
1 D �

2f 2

ˇg0
1

Z xe

x

wE.x
0;y/ dx0

D
g0

2

g0
1

D2
0 ; (16.67)

which is zero at the eastern wall. In the lower layer the thickness is just h2 D H � h1.
The boundary of the shadow zone is given by the trajectory of a fluid parcel in layer
2 that emanates from the eastern boundary at the outcrop line where h1 D 0 and h D

h2 D H . Since the flow is steady, the trajectory is an isoline of h. Thus, from (16.65)
we have

h2
D

.D2
0
.xs;ys/C H 2/�

1 C g0
1
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2
.1 � f=f2/2

� D H 2: (16.68)

where .xs;ys/ denotes the boundary of the shadow zone. (Note that xs D xe at y D

y2.) From this
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(16.69)

which, given the wind-stress, is an equation for the shadow zone boundary xs as a
function of y.
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16.4.4 † The western pool

Polewards of the outcrop latitude the fluid of layer 2 feels the wind directly and the
layer thickness is determined by Sverdrup balance. Equatorwards of the outcrop latitude
the properties of this layer are determined by potential vorticity conservation, with the
potential vorticity being determined by the layer thickness at the outcrop. However, just
as there is a region in the east where trajectories cannot be traced back to the outcrop,
there is a ‘pool’ region in the west that is bounded by the trajectory that emerges from
the western boundary at the outcrop latitude. Within the pool, trajectories cannot be
traced back to the outcrop (Fig. 16.9), and one might imagine that they emerge from the
western boundary current. In the context of ventilated themocline theory, there are two
plausible hypotheses for determining the layer depths within this region:

(i) Within layer 2, potential vorticity is homogenized;
(ii) Because there is no source for layer 2 water, layer 2 water does not exist and the

pool consists solely of ventilated, layer 1 water.
Note the analogy between these two hypotheses and those for the stratification of the
troposphere summarized on page 558.

(i) Potential vorticity homogenization

The pool region is a region of recirculation, receiving water from and depositing water
into the western boundary current. Thus, following the ideas described in chapter 10
and employed in section 14.7, we hypothesize that the potential vorticity within this
region becomes homogenized. The value of potential vorticity within the pool is just
the value of potential vorticity at its boundary, and this is given by f2=h2.w/, where
h2.w/ is the thickness of layer 2 at the western boundary at the outcrop latitude. This
is given using (16.50) with f D f2 and g0 D g0

2
, and thus the potential vorticity in the

pool is given by

qpool D
f2

D2
w C H 2

(16.70)

where D2
w D �2.f 2

2
=g0

2
ˇ/
R xe

xw
wE.x

0;y2/ dx0. The thickness of layer 2 in the pool
must be consistent with this, and so is given by

h2 D
f

qpool
: (16.71)

The thickness of layer 1 is determined by using Sverdrup balance, (16.59), which, given
h2 and geostrophy, reduces to an equation for h1.

(ii) The ventilated pool

‘I came for the waters.’ ‘What waters?’ ‘I was misinformed.’

From Casablanca (1942).

The homogenization hypothesis, although plausible, depends on the assumption of
downgradient diffusion of potential vorticity by eddies. Also, because there is no source
of layer-2 water in the pool, we must suppose that it is ventilated by eddy pathways that
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Fig. 16.11 Two north-south section of layer thickness, at different lon-
gitudes, from the same solution as Fig. 16.9 and assuming a ventilated
western pool. The numbers refer to the fluid layer. The section on the left
passes through the western ventilated pool region, where all the Sverdrup
transport is taken up by the top layer. The region near y D 0 in both plots
where the total depth of the thermocline is constant is the shadow zone.

meander down from the surface. An alternative hypothesis, and one that does not rely
on the properties of mesoscale eddies, is to suppose that the western pool is filled with
water that is directly ventilated from the surface. That is, if there is no surface source
for a water mass, we simply suppose that that water mass does not exist. In the two-
layer model, this means that the western pool is filled entirely with layer-1 fluid. If
a nonventilated (e.g., layer 2) fluid is present initially, then we hypothesize that it is
slowly expunged by the continuous downwards Ekman pumping of layer-1 water into
the pool.12

Because layer-2 fluid is absent, layer-1 fluid extends all the way down to the stag-
nant abysss; it takes up all the Sverdrup transport, and this determines the depth of the
ventilated pool. Thus, rounding up the usual equations, we set h D h1 in (16.63) to
give

h2
1 D D2

1 C g0
2H 2 (16.72)

where

D2
1.x;y/ D �

2f 2

ˇg0
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Z xe

x

wE.x
0;y/ dx0 (16.73)

and g0
1a

D g0
1

C g0
2

is the reduced gravity between layer 1 and the abyss and H , as
before, is the thickness of layer 2 at the eastern boundary. Because g0

1a
> g0

2
this

pool will generally be shallower than the total depth of moving fluid (h1 C h2) just
outside, but the depth of layer-1 fluid alone will be much greater; that is, there will be a
discontinuities in layer depths at the pool boundary. A section through the pool region
is shown in Fig. 16.11.

Although the reader may be shocked by the appearance of discontinuities in layer
depths in a fluid model, the model does provide a simple mechanism for the appearance
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of mode water. This is a distinct mass of weakly stratified, low potential vorticity wa-
ter appearing in the northwest corner of the North Atlantic subtropical gyre (where it
is sometimes called ‘18 degree water’), with analogs in the other gyres of the world’s
oceans, and so-called because it appears as a distinct mode in a census of water proper-
ties. The proximate mechanism for mode water formation is convection in winter, but
for such convection to occur the large-scale ocean circulation must maintain a weakly
stratified region, and it is the ventilated pool that enables this, and sets the formation
in the context of thermocline structure. In reality, the vertical isopycnals predicted by
the simple model will, of course, be highly baroclinically unstable, and the ensuing
mesoscale eddies will erode the pool interface and cause the isopycnals to slump, so
that the discontinuities in layer depths will be manifest only as rapid changes or fronts.

We conclude by emphasizing that both the ventilated pool theory and the potential
vorticity homogenization theory rely on hypotheses that cannot be derived from the
governing equations of motion without making additional physical assumptions that
are neither a priori true nor obvious. For an overview of the entire thermocline, refer to
the shaded box on the facing page.

16.5 † A MODEL OF DEEP WIND-DRIVEN OVERTURNING

Our goal in this section is to construct a model that illustrates that the overturning cir-
culation of the ocean, and a concomitant deep stratification, may have a wind-driven
component that persists even as the diffusivity goes to zero.13

How might deep stratification be maintained in the absence of a diapycnal diffu-
sivity? In that case, no upwelling can occur through the stratification, because that is a
diabatic process. Rather, the deep water must be directly connected to surface, perhaps
by a convective pathway. Let us recall two de facto principles that were useful in our
discussion of the overturning circulation and the thermocline:

(i) A basin will, in the of absence mechanical forcing, tend to fill up with the densest
available fluid.

(ii) Light fluid forced down by wind may displace the cold fluid, so producing stratifi-
cation.

A completely closed ocean thus fills completely with dense polar water, except in the
upper several hundred meters where the main thermocline forms, and whose thickness is
the sum of wind-driven and diffusive components. However, suppose that the polewards
part of the basin is not fully enclosed but is periodic, as illustrated in Fig. 16.12, with
a sill across it at mid-depth, and suppose too that the surface bondary conditions are
such that the surface temperature decreases monotonically polewards. A fully enclosed
basin exists only beneath the level of the sill, and we may expect the densest water in the
basin, formed at the polewards edge of the domain, to fill the basin only below the level
of the sill, and that above this may lie warmer water with origins at lower latitudes.
Furthermore, suppose that an eastward wind blows over the channel that produces a
equatorial flow in the Ekman layer. Then mass conservation demands that there must
exist a subsurface return flow, and thus a meridional overturning circulation is set up.
Note the essential role of the channel in this: if the gap were closed, then the return
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Thermocline Dynamics — a Summary and Overview

The model of the main thermocline that we have constucted in sections 16.1 to 16.4
is schematically illustrated in Fig. 16.6. Some of the features, and limitations, of this
model are listed below.

? The main subtropical thermocline consists of an advective upper region overlying
a diffusive base.

– The diffusive base forms forms the internal thermocline, and in limit of small
diffusivity this is an internal boundary layer. The advective region forms the
ventilated thermocline. The separation of the two regions may, in reality, not be
sharp.

– The relative thicknesses of these layers is a function of various parameters, no-
tably the strength of the wind and the magnitude of the diffusivity.

? Above the ventilated thermocline there may be a mixed layer with a seasonally
varying depth. In certain regions, for example at the polewards edge of the sub-
tropical gyre, convection may deepen the mixed layer as far as the base of the
thermocline.

? A western boundary layer is needed to close the circulation and the heat budget.

? The single-hemisphere model assumes that the water that sinks at high latitude ei-
ther upwells through the main thermoline or returns to the subpolar gyre beneath
the main thermocline. In reality some of this water may cross into the other hemi-
sphere, so that, for example, the deep water in the North Atlantic may upwell in
the Antarctic Circumpolar Current.

– In this case, the diffusion-dependent overturning circulation represents only part
of the overall meridional overturning circulation.

– Nevertheless, there would remain a diffusive internal thermocline, because there
is still a boundary between the warm subtropical water and cold abyssal water.

? Within the ventilated thermocline there are two regions — the shadow zone and
the western pool — whose dynamics are not determined without additional as-
sumptions. A plausible assumption for the western pool, namely that all the water
within it is ventilated, leads to a model of mode water.

? Mesoscale eddies may play an important role in thermocline dynamics. Numerical
simulations and some observations suggest that eddies may be particularly impor-
tant in the internal thermocline, and they may provide a tendency for potential
vorticity to homogenize.
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Figure 16.12 Idealized
geometry of the South-
ern Ocean: a re-entrant
channel, partially blocked
by a sill, is embedded
within a closed rectangu-
lar basin; thus, the chan-
nel has periodic boundary
conditions, whereas else-
where there is no nor-
mal flow. The chan-
nel is a crude model of
the Antarctic Circumpo-
lar Current, with the area
over the sill analagous to
the Drake Passage.

flow could take place at the surface via a western boundary current, as in a conventional
subpolar gyre, and no overturning circulation need be set up.

16.5.1 A single hemisphere model

We consider first a single-hemisphere basin with a periodic channel near its polewards
edge. We suppose it to be in the southern hemisphere, so the channel represents the An-
tactic Circumpolar Current (ACC), and that the dynamics are Boussinesq and planetary-
geostrophic. We will choose extremely simple forms of wind and bouyancy forcing to
allow us to obtain an analytic solution, and then later discuss how the qualitative forms
of these solutions might more generally apply.

Wind and buoyancy forcing

Thermodynamic forcing is imposed by fixing the surface bouyancy. South of the gap
we suppose the bouyancy is constant, then that it linearly increases across the gap, and
is constant again polewards of the gap. Thus, there is no temperature gradient across the
subtropical gyre, focussing attention on the influence of the channel. Thus, referring to
Fig. 16.13:

bs D

8̂̂̂<̂
ˆ̂:

b1; 0 � y � y1

.b2 � b1/.y � y1/

y2 � y1

; y1 � y � y2

b2; y � y2:

(16.74)

where b2 > b1, and both are constants, and we make take b1 D 0.
The wind forcing is purely zonal, and it is convenient to express this in terms of

the Ekman transport and associated pumping (refer to section 2.12). In the channel
the Ekman transport is chosen to be (realistically) equatorwards and (less realistically)
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Fig. 16.13 The surface temperature bs , merdional Ekman velocity vE ,
vertical Ekman velocity wE and the solution streamlines for the geostrophic
horizontal flow, omitting the western boundary currents. The ordinate in all
plots is latitude, with the pole at the bottom, and the four fields are given
by, respectively, (16.74), (16.75a), (16.75b), and (16.76), with purely zonal
flow given by (16.79) in the channel.

constant, a simplification that avoids complications of wind-driven upwelling in the
channel. South (polewards) of the channel there is a conventional subpolar gyre, with
an Ekman upwelling and an equatorwards Ekman transport that joins smoothly to that
of the channel. Equatorwards of the channel there is conventional subtropical gyre, with
Ekman downwelling. All this may be achieved by specifying:

vE D

8̂̂̂̂
<̂
ˆ̂̂:

V

2

�
1 � cos

�
 y

�y1

��
V

V

2

�
1 C cos

�
 .y � y2/

�y2

�� wE D

8̂̂̂̂
<̂
ˆ̂̂:

W1 sin
�
 y

�y1

�
0 � y < y1

0 y1 � y < y2

�W2 sin
�
 .y � y2/

�y2

�
y2 � y <y3:

(16.75a,b)
where �y1 D y1 and �y2 D y3 � y2. The meridional Ekman transport, vE , is related
to the Ekman pumping by wE D @vE=@y , so that Wi D  V =.2�yi/. If f were
constant, the wind stress curl would be proportional to the wE field above. The precise
details of the forcing do not affect the qualitative form of the solution — they merely
allow an analytic solution to be obtained — but there are two essential aspects to it:

(i) The surface is cold south of the channel, warm north of the channel, and there is a
temperature gradient across the channel.

(ii) The Ekman flow is equatorwards within the channel, with a conventional gyres to
either side.

The meridional extent of the region south of the channel and the wind forcing within it
are relatively unimportant, and this region could be shrunk to nearly zero.

Solution in the gyres
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Figure 16.14 Cross sec-
tion of the structure of the
single-hemisphere ocean model
described in section 16.5.1. The
domain is zonally closed equator-
wards of y2 and polewards of y1,
with a zonall-perioidic channel be-
tween latitudes y1 and y2 and
above the sill, which has height
�sill. The arrows indicate the fluid
flow driven by the equatorwards
Ekman transport in the channel,
and the solid lines are isopycnals.

Below the depth of the sill the basin is fully enclosed, and therefore up to that level
the basin will fill with the densest available water (much as described in section 15.2),
except where it may be displaced by warmer fluid polewards of the gap that is pumped
down below the level of the sill by the wind (Fig. 16.14). Thus, all of the domain south
of the channel, and nearly everywhere below the sill the water has buoyancy b1. Pole-
wards of the channel, then, the fluid is barotropic and its vertically integrated horizontal
circulation is given by Sverdrup balance, ˇV D f wE=H , where V is the vertically in-
tegrated flow. With the wind-stress of (16.75) we get a conventional barotropic subpolar
gyre (and associated western boundary current) by the same methods as we employed
in chapter 14.

Above the sill, net meridional geostrophic transfer is forbidden in the channel re-
gion, because vg D @�=@x D 0, where the overbar denotes a zonal average. Equa-
torwards of the channel the region above the sill will therefore tend to fill with the
densest water available to it, and this is water with bouyancy equal to b2. However be-
cause of the presence of wind forcing, the base of this layer is not flat; rather, this fluid
obeys the dynamics of the one-layer ventilated thermocline model discussed in section
16.4.1. In such a model the depth of the fluid on the eastern boundary is constant,
and this must be specified. Here, this is given by the height of the sill, and therefore
h.x D xe;y/ D he D H � �sill, where H is the total thickness of the fluid and �sill is
the sill height. Then, using (16.50), the thickness of the moving layer equatorwards of
the sill is given by, for y2 < y < y3.

h2
D .D2.x;y/C h2

e/
1=2 (16.76)
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where
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D �

2f 2

g0ˇ

Z xe

x

wE dx0
D

2f 2

g0ˇ
W .xe � x/ sin

�
 .y � y3/

�y

�
(16.77)

where g0 D b2 � b1. The solution is closed by the addition of a western boundary
current. Note that because h > he , the light fluid is pushed below the level of the sill in
the subtropical gyre.

Solution in the channel

In the channel, the fluid in the Ekman layer flows equatorwards, and therefore there
must be a compensating polewards flow at depth. This will occur at and just below
the level of the sill: it cannot be deeper, because here the basin is full of denser, b1

fluid, and in the absence of eddying or ageostrophic flow it cannot be shallower be-
cause of the geostrophic constraint. Now, because of the temperature gradient across
the channel the polewards flowing fluid is warmer than the fluid at the surface, and
therefore convectively unstable. Convection ensues, the result of which is the entire
column of fluid between the top of the sill and the surface takes on the temperature
of the surface. Thermal wind demands that there be a zonal flow associated with this
meridional temperature gradient, so this temperature distribution is advected eastwards
into the interior of the channel. Because the interior is presumed to to be adiabatic, this
temperature fields extends zonally throughout the channel. Thus, in steady state, the
temperature everywhere in the channel above the level of the sill is given by:

b.x;y; z/ D bs.y/ D
.b2 � b1/.y � y1/

y2 � y1

; y1 � y � y2; z > �sill. (16.78)

Note that convective mixing does not rely on a diapycnal diffusivity other than a molec-
ular one: Convective plumes are generally turbulent, generating small scales in the fluid
interior where mixing and entrainment may occur; failing that, the lighter fluid is dis-
placed to the surface where it cools by way of interaction with the atmosphere. The
zonal velocity within the channel is then given by thermal wind balance, so that

u.x;y; z/ D �
1

f

�
b2 � b1

y2 � y1

�
.z � �sill/: (16.79)

(Note that f < 0 so that the shear is positive.)
Regarding the depth-integrated zonal momentum budget, the wind-stress at the sur-

face is balanced by a pressure force against the sill walls. This pressure gradient arises
through the meridional circulation, for the southwards return flow just below the level
of the sill is associated with a zonal pressure gradient that is exactly equal, but oppo-
site, to the stress exerted by the wind. That is to say, in the Ekman layer the wind
stress is balanced by the Coriolis force on the equatorwards flow in the Ekman layer,
which by mass conservation is equal and opposite to the Coriolis force on the deep
polewards flow, which by geostrophy is equal to the net pressure force on the sill walls.
The wind-stress plays no role in determining the zonal transport of the channel: if the
wind increases the meridional overturning, and the pressure force, increase but with no
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change to the transport. This is a somewhat unrealistic feature of the model, for in re-
ality the form stress induced by the flow over bottom topography, and that balances the
wind stress, is a likely to be a function of the zonal transport as well as the meridional
transport.

A qualitative summary

The circulation of the model may described as follows. The entire basin polewards of
the channel fills with dense, b1, water. Below the sill this fluid extends equatorward,
filling the channel and the subtropical basin up to the level of the sill. Now, Ekman
pumping in the channel forces near-surface fluid equatorwards, which warms as it goes,
entering the subtropical basin at with buoyancy b1. This fluid fills the basin down to
the level of the sill, where it encounters the dense, b1, fluid. The subtropical basin is
wind-driven, and it forms a subtropical gyre with a single moving layer. Its dynamics
are completely determined by specifying the wind, the reduced gravity (g0 D b2 � b1),
and the depth of the fluid at the eastern boundary (the sill depth). Because of the re-
quirements of mass conservation, there must be a polewards return flow at depth, and so
at the level of the sill warm water flows polewards. This flow is convectively unstable
(because the water is lighter than that at the surface), and so the entire column of fluid
mixes and its density takes on the value at the surface. The meridional temperature gra-
dient gives rise to a eastwards flow, and this temperature field is advected zonally, and
in steady state the temperature distribution is zonally symmetric and given by (16.78).
The overturning circulation within the ACC is known as the Deacon cell, and this is a
crude model of it. It is considered further in section 16.6.

If we were to add some diapycnal diffusivity to this situation, the sharp boundary
between the two fluid masses at the sill height would be diffused to a front of finite thick-
ness, with some upwelling and water mass transformation occurring across the front.
This diffusive loss of dense fluid would be compensated by water-mass formation at
the surface, polewards of the channel, leading to a deep, diffusively-driven circulation.
That is, the deep water mass of b1 fluid would circulate: this is a crude model of the
‘Antarctic Bottom Water’ cell.

Suppose now that the wind were everywhere zero, and the diffusivity small but non-
zero. The cold, b1 fluid would still quickly completely fill the basin polewards of the
channel, and would fill the basin equatorwards of the channel up to the level of the sill.
However, with no wind to drive an overturning circulation dense b1 water would slowly
drift ageostrophically across the channel, displacing warmer water until the entire basin
were filled with the dense fluid, except for a thin boundary layer at the top needed to
satisfy the upper boundary condition. The final state would be one of no motion, and no
stratification, below this boundary layer. The important conclusion to the drawn is the
following: A deep meridional circulation, and a deep stratification, can be maintained,
even as the diapycnal diffusivity goes to zero, in the presence of a wind forcing and a
circumpolar channel. Of course there are a number of idealised or unrealistic aspects
to this model, perhaps the most egregious being:
? The vertical isopycnals in the channel will be highly baroclinically unstable. This
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will cause the isopycnals to slump, as well as (potentially) setting up a eddy-
induced circulation. We consider this in section 16.6.

? There is no surface temperature gradient across the subtropical gyre. If present it
would lead to the formation of a ‘main’ subtropical thermocline, a full treatment
of which would require determining its eastern boundary conditions. This would,
however, be unlikely to qualitatively affect the presence of a deep, wind-driven
overturning circulation.

? The wind stress in the model channel is chosen so that the meridional Ekman trans-
port is constant. (This means the wind-stress is chosen to vary in the same fashion
as the Coriolis parameter, and if f were constant, the wind-stress curl would van-
ish.) Thus, there is no wind-driven downwelling or upwelling in the channel, and
this simplifies the solution. Numerical simulations suggest that this choice does
not affect the qualitative nature of the overturning circulation or temperature dis-
tribution.

16.5.2 A cross-equatorial wind-driven circulation

Let us now qualitatively and heuristically extend the above model to consider flow
across the equator. The essential addition is that we suppose that the ocean basin ex-
tends to high northern latitudes, where there is, potentially, another source of cold deep
water. To keep the model simple and tractable we will assume a very simple temperature
structure:

bs D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

b1; 0 � y � y1

.b2 � b1/.y � y1/

y2 � y1

; y1 � y � y2

b2; y2 � y � y4

b3 y > y4:

(16.80)

where the geometry is illustrated in Fig. 16.15. Given that b2 > b1, there are three cases
to consider:

(i) b3 > b2. This is not oceanographically relevant to today’s climate, nor does it
provide another potential deep water source.

(ii) b3 < b1. The northern water is now the densest in the ocean, and would fill up the
entire basin north of the channel (except near the surface in regions where some
b2 water is pushed down by the wind), and so provide no mid-depth stratification.

(iii) b1 < b3 < b2. This is the most interesting and relevant case, and the only one we
explore further.

As regards the wind, we will assume that that the south of the equator this is given by
(16.75). North of the equator the wind forcing does not affect the qualitative nature of
the overturning circulation, and may be taken to be zero.

Descriptive solution

In case (iii), the entire basin below the sill fills with b1 water, except where wind forcing
forces warmer fluid below the sill level, as before. However, unlike the earlier case, the
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Figure 16.15 As for Fig.
16.14, but now for a two
hemisphere ocean with a
source of dense water, b3,
at high northern latitudes.
The solid lines are isopy-
cnals, and here the wind
is zero in the Northern
Hemisphere.

fluid above the sill is predominantly b3 water from high northern latitudes. This forms
in high polar latitudes and fills most of the basin above the sill, from the basin boundary
in the north to the channel in the south (as discussed more below). However, except at
latitudes where the b3 is formed, it does not reach the surface because of the presence
of b2 water. That water is pushed down by the wind in the southern hemisphere to some
as yet undetermined depth (discussed below), the boundary between b2 and b3 water
then forming the upper ocean thermocline.

These water masses circulate because of the wind forcing in the channel. As in the
single hemisphere case, northwards flowing water emerges from the channel with buoy-
ancy b2. This emerges into a region of Ekman downwelling, with a northwards transport
carried by a western boundary current. This transport crosses the equator finally reach-
ing the latitudes where b3 water is formed where it sinks and returns equatorwards,
again in a western bundary current. (Away from the western boundary layer there is no
meridional flow in the absence of diffusion, because the flow satisfies ˇv D f @w=@z

and there is no upwelling.) This water then crosses the sill. However, unlike in the
single hemisphere case, in the northern part of the sill this water is denser than the sur-
face water; no convection occurs and so the b3 water extends upwards to the surface,
where it warms by contact with the atmosphere and advected equatorwards to become
b2 water. Further south the surface buoyancy in the channel is less than b3, and the
column now convectively mixes, much as in the single-hemisphere case. The solution
is completed by specifying the thickness of the layer of b2 water at the surface. Now, if
the circulation is in steady state, the meridional transport between the gyres must equal
that of the northwards Ekman flow at the northern edge of the circumpolar channel,
and given the wind forcing, this is determined by the depth of the layer at the eastern
boundary, a constant. Thus, in this model, global constraints determine the depth of the
eastern boundary of the thermocline.

Suppose that the wind were everywhere zero. Then, as in the single-hemisphere
case, the circulation would eventually die. Again, though, slow ageostrophic motion
across the channel would first allow the entire basin, within and on both sides of the



16.6 Flow in a Channel, and the Antarctic Circumpolar Current 721

channel, to fill with the densest available water, and in the final steady state there would
be no stratification (and no motion) below a thin surface layer.

Suppose that a small amount of diffusion were added to the (wind-driven) model
above. Then there would be mass exchange between the layers and, in particular, the
deep cell of b1 water would begin to diffusively circulate. In addition, the middepth cell
would begin to upwell through the b2–b3 interface, and develop a diffusively driven
circulation, in much the same way as is illustrated in Fig. 16.6.

Summary remarks

The key result of this model is that, as the diffusivity falls and the interior of the ocean
becomes more and more adiabatic, a meridional cross-hemispheric circulation can be
maintained, provided that the wind across the circumpolar channel remains finite. The
diabatic water mass transformations all occur at the surface or in convection: these
processes require a finite diffusivity, but this diffusivity can be the molecular one be-
cause the associated mixing involves turbulence, which can generate arbitrarily small
scales. (Note that the convection that occurs in the circumpolar channel reduces the po-
tential energy of the column, and requires no mechanical input of energy.) Aside from
the region of the ACC, the meridional transport will occur (in this model) in western
boundary layers. Indeed, we may still expect to see a southwards flowing deep western
boundary current south of y4 and below the b2 water in Fig. 16.15, just as in the im-
plicitly diffusive Stommel-Arons model. In the ACC itself, the the meridional transport
occurs in a sub-surface current, nestled against the sill.

Although the overturning circulation in this model is ‘wind-driven’, the possibility
that it may be cross-equatorial depends upon the thermodynamic forcing; in particular,
if there is no source of dense water in the northern hemisphere, then the basin above the
sill simply fills with b2 water, as in the model of section 16.5.1, and there need be little
or no inter-hemispheric flow. We emphasize, too, that our model of interhemispheric
flow is quite heuristic: we have essentially posited that b2 water may continuously flow
across the equator, without examining the equatorial dynamics in any detail. Finally,
we note that the simple model we have discussed, the overturning circulation is equal to
that of the Ekman pumping in the channel. In reality, the ACC is a complex beast, and
some of this water most likely recirculates within the channel, and this leads us into our
next topic.

16.6 † FLOW IN A CHANNEL, AND THE ANTARCTIC CIRCUMPOLAR CURRENT

We now take a closer look at the Antarctic Circumpolar Current (ACC) itself, with less
of a focus on how the ACC connects the rest of the worlds ocean and more of a focus
on its own internal dynamics. This current system, sketched in Fig. 16.16, differs from
other oceanic regimes primarily in that the flow is, like that of the atmosphere, predom-
inantly zonal and re-entrant. The two obvious influences on the circulation are the
strong, eastward winds (the ‘roaring forties’, the ‘furious fifties’, and the ‘screaming
sixties’) and the buoyancy forcing associated with the meridional gradient of atmo-
spheric temperature and radiative effects which cause ocean cooling at high latitudes
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Figure 16.16 Schema of the
major currents in the Southern
Ocean. Shown are the South At-
lantic subtropic gyre, and the
two main cores of the ACC, as-
sociated with the Polar front and
the sub-Antarctic front.14
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and warming at low. Providing a detailed description of the resulting flow is properly
the province of numerical models, and here our goals are much more modest, namely
to describe some of the basic dynamical mechanisms that determine the structure and
transport of the system.15

16.6.1 Steady and eddying flow

Consider again the simplified geometry of the Southern Ocean as sketched in Fig. 16.12.
The ocean floor is flat, except for a ridge (or ‘sill’) at the same longitude as the the gyre
walls; this is a crude representation of the topography across the Drake Passage, that
part of the ACC between the tip of South America and the Antarctic Peninsula. In
the planetary geostrophic approximation, the steady response is that of nearly verti-
cal isopycnals in the area above the sill, as illustrated in Fig. 16.14. Below the sill a
meridional flow can be supported and the isotherms spread polewards, as illustrated in
numerical solutions using the primitive equations (Fig. 16.17).16

The stratification of the non-eddying simulation is similar to that predicted by the
idealized model illustrated in Fig. 16.14. However, the steep isotherms within the chan-
nel contain a huge amount of available potential energy (APE), and the flow is highly
baroclinically unstable, and if baroclinic eddies are allowed to form, the solution is dra-
matically different: the isotherms slump, releasing that APE and generating mesoscale
eddies. An important conclusion is that baroclinic eddies are of first order importance
in the dynamics of the ACC. A dynamical description of the ACC without eddies would
be qualitatively in error, in much the same way as would a similar description of the
mid-latitude troposphere (i.e., the Ferrel Cell). (However, it is less clear whether these
eddies are important in the interaction of the ACC with the rest of the worlds oceans.)
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(a) (b)

Fig. 16.17 The zonally-averaged temperature field in numerical solutions
of the primitive equations in a domain similar to that of Fig. 16.12. Panel
(a) shows the steady solution of a diffusive model with no baroclinic eddies,
and (b) shows the time-averaged solution in a higher resolution model that
allows baroclinic eddies to develop. The dotted lines show the channel
boundaries and the sill.17

These eddies transfer both heat and momentum, and much of the rest of our description
will focus on their effects.

16.6.2 Vertically integrated momentum balance

The momentum supplied by the strong eastward winds must somehow be removed. Pre-
suming that lateral transfers of momentum are small the momentum must be removed
by fluid contact with the solid earth at the bottom of the channel. Thus, let us first con-
sider the vertically integrated momentum balance in a channel, without regard to how
the momentum might be vertically transferred. We begin with the frictional-geostrophic
balance

f � u D �r� C
@z�

@z
; (16.81)

where z� is the kinematic stress (and henceforth we drop the tilde). Integrating over the
depth of the ocean gives [c.f. (14.106)]

f �bu D �rb� � �br�b C �w � �f ; (16.82)

where �w is the stress at the surface (due mainly to the wind), and �f is the frictional
stress at the bottom. A hat denotes a vertical integral and �b is the pressure at z D �b ,
where �b is the z-coordinate of the bottom topography.

The x-component of this equation is just

fbv D �
@b�
@x

� �b

@�b

@x
C �x

w � �x
f ; (16.83)
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and on integrating around a line of latitude the term on the left-hand side vanishes by
mass conservation and we are left withI

Œ�b

@�b

@x
C �x

w � �x
f � dx D 0: (16.84)

The first term is the form drag, encountered in sections 3.5 and 14.6, and observations
and numerical simulations indicate that it is this, rather than the frictional term �x

f
,

that predominantly balances the wind stress in the zonally and vertically integrated
momentum balance.18 We return to the question of why this should be so later.

The vorticity balance is also dominated by a balance between bottom pressure
torque and wind stress curl. Taking the curl of (16.82) gives

ˇyv D k � r�b � r�b C curlz�w � curlz�f : (16.85)

Now, on integrating over an area bounded by a latitude circle and applying Stokes’s
theorem the ˇ term vanishes by mass conservation and we regain (16.84). This means
that Sverdrup balance, in the usual sense of ˇv � curlz�w , cannot hold in the zonal
average: the left-hand side vanishes but the right-hand side does not. The same could be
said for the zonal integral of (16.85) across a gyre, but the two cases do differ: In a gyre
Sverdrup balance can (in principle) hold over most of the interior, with mass balance
being satisfied by the presence of an intense western boundary current. In contrast, in a
channel where the dynamics are zonally homogeneous then v must be, on average, zero
at all longitudes and form drag and/or frictional terms must balance the wind-stress curl
in a given water column. Sverdrup balance is thus a less useful foundation for channel
dynamics (at least zonally homogeneous ones) than it is for gyres. Of course, the real
ACC is not zonally homogeneous, and may contain regions of polewards Sverdrup flow
balanced by equatorwards flow in boundary currents along the eastern edges of sills
and continents, and the extent to which Sverdrup flow is a leading-order descriptor of
its dynamics is partly a matter of geography.

We cannot in general completely neglect nonconservative frictional terms, on two
counts. First, they are the means whereby kinetic energy is dissipated. Second, if
there is a contour of constant orographic height encircling the domain (i.e., encircling
Antartica) then the form drag will vanish when integrated along it. However, the same
integral of the wind stress will not vanish, and therefore must be balanced by something
else. To see this explicitly, write the vertically integrated vorticity equation, (16.85), in
the form

ˇbv C J.�b; �b/ D curlz�w � curlz�f : (16.86)

If we integrate over an area bounded by a contour of constant orographic height (i.e.,
constant �b) then both terms on the left-hand side vanish, and the wind-stress along that
line must be balanced by friction. In the real ocean there may be no such contour that is
confined to the ACC — rather, any such contour would meander through the rest of the
ocean; indeed, no such confined contour exists in the idealized geometry of Fig. 16.12.

16.6.3 Form drag and baroclinic eddies
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How does the momentum put in at the surface by the wind stress make its way to
the bottom of the ocean where it may be removed by form drag? We saw in section
16.5.1 that one mechanism is by way of a mean meridional overturning circulation,
with an upper branch in the Ferrel cell and a lower branch at the level of the sill, with
no meridional flow between. However, the presence of baroclinic eddies changes things
in two related ways:

(i) Eddy form drag can pass momentum vertically within the fluid
(ii) Eddies can allow a net meridional mass flux.

Momentum dynamics of layers

Let us first model the channel as a finite number of fluid layers, each of constant density
and lying one on top of the other — a ‘stacked shallow water’ model, equivalent to a
model expressed in isopycnal coordinates. The wind provides a stress on the upper layer
which sets it into motion, and this in turn, via the mechanism of form drag, provides a
stress to the layer below, and so on until the bottom is reached. The lowest layer then
equilibrates via form drag with the bottom topography or via Ekman friction, and the
general mechanism is illustrated in Fig. 16.18.

Recalling the results of section 3.5, the form drag at a layer interface is given by

�i D ��i

@pi

@x
D ��0f �ivi (16.87)

where pi is the pressure and �i the displacement at the i ’th interface (i.e., between the
i ’th and i C 1 layer as in Fig. 16.19), and the overbar denotes a zonal average. If we
define the averaged meridional transport in each layer by

Vi D

Z �i�1

�i

�0v dz (16.88)

then, neglecting the meridional momentum flux divergence (as explained in the next
subsection), the time- and zonally-averaged zonal momentum balance for Boussinesq
layers of fluid are:

�f V 1 D �w � �1 D �1

@p1

@x
C �w; (16.89a)

�f V i D �x
i�1 � �i D ��i�1

@pi�1

@x
C �i

@pi

@x
; (16.89b)

�f V N D �N �1 � �N D ��N �1

@pN �1

@x
C �b

@pb

@x
� �f ; (16.89c)

where the subscripts 1, i and N refer to the top layer, an interior layer, and the bottom
layer, respectively. Also, �b is the height of bottom topography and �w is the zonal
stress imparted by the wind which, we assume, is confined to the uppermost layer. The
term �f represents drag at the bottom due to Ekman friction, but we have neglected any
other viscous terms or friction between the layers.
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Fig. 16.18 Eddy fluxes and form drag in a Southern Hemisphere channel,
viewed from the south. In this example, cold (less buoyant) water flows
equatorwards and warm water polewards, so that v0b0 < 0. The pressure
field associated with this flow (dashed lines) provides a form-drag on the
successive layers, Fp, shown. At the ocean bottom the westward form drag
on the fluid arising through its interaction with the orography of the sea-
floor is equal and opposite to that of the eastward wind-stress at the top.
The mass fluxes in each layer are given by v0h0 � �@z .v

0b0=N 2/. If the

magnitude of buoyancy displacement increases with depth then v0h0 < 0,
providing a polewards mass flux that could balance the equatorwards mass
flux in the Ekman layer.

The vertically integrated meridional mass transport must vanish, and thus summing
over all the layers (16.89) becomes

0 D �w � �f � �N (16.90)

or, noting that �N D ��b@pb=@x ,

�w D �f � �b

@pb

@x
: (16.91)

Thus, the stress imparted by the wind (�w) may be communicated vertically through
the fluid by form drag, and ultimately balanced by the sum of the bottom form stress
(�N ) and bottom friction (�f ). Note that it is also a type of form drag that leads to the
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momentum balance in the steady model of section 16.5; in that case, the southwards
return flow is nestled against the sill, and the associated Coriolis force is balance by a
pressure force against the sill.

Momentum dynamics in height coordinates

We now look at these same dynamics in height coordinates, using the quasi-geostrophic
TEM formalism (it may be helpful to review section 7.3 before proceeding). We write
the zonally-averaged momentum equation in the form

� f0v
�

D rm �F C
@�

@z
(16.92)

where v� is the residual meridional velocity, � is the zonal component of the kinematic
stress (wind induced and frictional) and F is the Eliasssen-Palm flux, which satisfies

rm �F D �
@

@y
u0v0 C

@

@z

�
f0

N 2
v0b0

�
D v0q0: (16.93)

The stress is typically important only in an Ekman layer at the surface and in a fric-
tional layer at the bottom. Now, if the horizontal velocity and buoyancy perturbations
are related by v0 � b0=N (see chapter 9) then the two terms comprising the potential
vorticity flux scale as

@

@y
u0v0 �

v02

Le

;
@

@z

 
f0

v0b0

bz

!
�
v02

Ld

(16.94)

where Le is the scale of the eddies and Ld is the deformation radius. If the former
is much larger than the latter, as we might expect in a field of developed geostrophic
turbulence (and as is indeed observed in the ACC), then the potential vorticity flux is
dominated by the buoyancy flux [so also justifying the neglect of the lateral momentum
fluxes in (16.89)] and (16.92) becomes

�f0v
�

�
@�

@z
C

@

@z

 
f0

v0b0

bz

!
: (16.95)

If we integrate this equation over the depth of the channel the term on the left-hand side
vanishes and we have

�w D �f �

"
f0

v0b0

bz

#0

�H

; (16.96)

where �w is the wind stress and �f is the frictional stress at the bottom. As we noted
in section 7.4.3, the vertical component of the EP flux is equivalent to a form stress
acting on a fluid layer, and (16.96) expresses essentially the same momentum balance
as (16.91) (where it was assumed that the stress at the top arises from the wind). Thus,
the EP flux expresses the passage of momentum vertically through the water column,
and it is removed at the bottom through frictional stresses and/or form drag with the
orography.
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Fig. 16.19 A schema of the meridional flow in an eddying channel. The
eddying flow may be organized (for example by baroclinic instability) such
that, even though at any given level the Eulerian meridional flow may be
small, there is a net flow in a given isopycnal layer. The residual (v�) and

Eulerian (v) flows are related by v�
D v C v0h0=h; thus, the thickness-

weighted average of the eddying flow on the left gives rise to the residual
flow on the right, where �i denotes the mean elevation of the isopycnal �i .

Mass fluxes and thermodynamics

Associated with the form drag is a meridional mass flux, which in the layered model
appears as Vi in each layer. The satisfaction of the momentum balance at a particular
latitude goes hand-in-hand with the satisfaction of the mass balance. Above any topog-
raphy the Eulerian mean momentum equation is (with quasi-geostrophic scaling and
neglecting eddy momentum fluxes),

f0va D � (16.97)

where va is the ageostrophic meridional velocity and � the zonal stress. That is, all
the zonally-averaged meridional flow is ageostrophic and, in this approximation, it is
non-zero only near the surface (i.e., equatorwards Ekman flow) and below the level of
the topography, where it can be supported by friction and/or form drag. Even in an
eddying flow, the Eulerian circulation is primarily confined to the upper Ekman layer
and a frictional or topographically interupted layer at the bottom, as illustrated in Fig.
16.20. This is a perfectly acceptable description of the flow, and is not an artifact in
any way. However, and analogously to the atmospheric Ferrel Cell (section 11.6 and
12.2.2), if the flow is unsteady this circulation does not necessarily represent the flow
of water parcels, nor does it imply that water parcels cross isopycnals, as might be
suggested by the leftmost panel of Fig. 16.20. That flow is better represented by the
residual flow, or the thickness weighted flow, and as sketched in Fig. 16.19 there can be
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Latitude                        Latitude                      Latitude
←to pole

Fig. 16.20 The meridional circulation in the re-entrant channel of an
idealized, eddying numerical model of the ACC (as in Fig. 16.17, but show-
ing only the region south of 40° S). Left panel, the zonally averaged Eule-
rian circulation. Middle panel, the eddy induced circulation. Right panel,
the residual circulation. Solid lines represent a clockwise circulation and
dashed lines, anticlockwise. The faint dotted lines are the mean isopycnals.
Over much of the channel the model ocean is losing buoyancy (heat) to the
atmosphere and so the net, or residual, flow at the surface is polewards.

a net meridional flow in a given layer (i.e., of a given water mass type) even when the
net meridional Eulerian flow at the level of mean height of the layer is zero.

The vertically integrated mass flux must of course vanish, and even though one
component of this — the equatorwards Ekman flow — is determined mechanically, the
overall sense of the residual circulation cannot be determined by the momentum balance
alone: thermodynamic effects play a role. As in (7.93), the thermodynamic equation
may be written in TEM form as

@b

@t
C J. �; b/ D QŒb� (16.98)

where J. �; b/ D .@y 
�/.@zb/ � .@z 

�/.@yb/ D v�@yb C w�@zb,  � is the stream-
function of the residual flow and QŒb� represents heating and cooling, which occurs
mainly at the surface. In the ocean interior and in statistically steady state we therefore
have

J. �; b/ D 0; (16.99)

the general solution of which is  � D G.b/ where G is an arbitrary function. That is,
the residual flow is along isopycnals, and this is approximately satisfied by the numeri-
cal solution shown in Fig. 16.20.

At the surface, however, the flow is generally not adiabatic, because of heat ex-
change with the atmosphere. In the simulations shown there is a net heat flux, and
consequent buoyancy loss, from the ocean to the atmosphere at the polewards edge of
the domain. Heat balance is then achieved by a polewards residual flow of warmer fluid
at the surface and sinking at the the highest latitudes. If there were no surface fluxes,
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and the flow were everywhere adiabatic, then we can expect the residual circulation to
vanish. Note that the sense of the subsurface circulation determines how the form drag
varies with depth; if the residual flow were zero for example then, either from (16.89)
or from (16.95), we see that the form drag must be constant with depth.

16.6.4 † An idealized adiabatic model

We finally consider a simple model of the ACC that, although very idealized, provides
a starting point for understanding more complete numerical models and the system
itself.19 The simplifying assumption we make is that the flow is adiabatic everywhere;
it then follows that the net overturning, as given by the residual circulation, is zero. We
can see this by first noting that in a statistically steady state the flow satisfies (16.99),
implying that the residual flow is along isopycnals. However, if there is a meridional
buoyancy gradient at the surface there can be no surface residual flow (because this
would be cross-isopycnal); it then follows that there can be no net flow along isopycnals
in the interior, because if these outcrop there would be a net fluid source, and hence
diapycnal flow, at the surface. This idealized, and rather unrealistic, limit has thus led
to the ‘vanishing of the Deacon Cell’.

The zonal momentum equation in this limit follows from (16.95), which with v�
D

0 gives
@�

@z
� �

@

@z

 
f0

v0b0

bz

!
; (16.100)

In this balance the equatorwards flow in the Ekman layer is balanced by a polewards
eddy mass flux, and in the ocean interior where the stress is small the meridional buoy-
ancy flux is constant with height. This situation is unlikely to hold in reality, but Fig.
16.20 shows that in a numerical simulation the residual flow is weaker than either the
Eulerian or the eddy-induced flow.

Integrating (16.100) from the surface (where � D �w) to a stress-free level in the
interior gives

�w D f0

v0b0

bz

; (16.101)

if the bouyancy flux at the surface is small. If we are now willing to parameterize the
eddy fluxes in terms of the mean flow, then we can predict the stratification. Thus, let
v0b0 D ��@b=@y , and noting that s D �by=bz is the slope of the isopycnals, or using
thermal wind balance, we find

�w D �f0s � �
f 2

0

N 2

@u

@z
(16.102)

Thus, given �, we can predict the isopcynal slope and, potentially, the total transport of
the ACC as a function of the wind stress. Further progress then depends on making a
specific choice for �, as described in chapter 10, but our reach has already exceeded our
grasp. In a more realistic diabatic model, the sense of the residual circulation can be
inferred if the diabatic fluxes at the surface are known, but at the same time these fluxes
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depend in a complicated way on both the lateral eddy fluxes and the general circulation
itself.

16.6.5 Form stress and Ekman stress at the ocean bottom

Earlier, we noted that the stress at the ocean bottom is observed to be dominated by
form stress, rather than Ekman friction. A simple scaling argument helps understand
why this should be. The form stress scales like

�form � �b

@pb

@x
� �bVf ; (16.103)

where V is a scaling for the horizontal velocity. The frictional stress due to an Ekman
layer scales like

�Ekman � A
@u

@z
�

AV

d
� dVf (16.104)

where A is a coefficient of viscosity and d D
p

A=f is the Ekman layer thickness. The
ratio of these two stresses thus scales as

�form

�Ekman
�
�b

d
: (16.105)

We therefore expect the form stress to dominate the Ekman stress if the variations in
topography are greater than the Ekman layer thickness, and if the flow goes over the
topography rather than around it. In the ACC, and indeed in many regions of the ocean,
the topography is hundreds or even thousands of meters high whereas the bottom Ekman
layer may be of order tens of meters, and furthermore the predominantly westward flow
must (unlike the siutation in gyre circulations) go over the topography. Thus, form
stress dominates the frictional, Ekman layer, stress at the bottom of the ocean.

16.6.6 Differences between gyres and channels

In the dynamics of the ACC, the wind stress itself seems to play an important role,
whereas in our discussion of gyres in chapter 14 the wind stress curl was dominant.
What is the root of this difference?20 Suppose that we change the wind stress, but not
its curl, in a closed basin. The vertically integrated gyral flow, as given for example
by the Stommel solution (14.39) or its two-gyre counterpart, does not change at all.
However, the vertical structure of this flow will in general change; for example, if the
wind is made uniformly more eastward, there will be a corresponding increase in the
equatorward flux in the Ekman layer that must return polewards at depth (note that the
western boundary current balances only the Sverdrup flow). At the same time, the added
force from the wind must be balanced by a increased pressure difference between the
western and eastern boundaries. This may be achieved if the the sea-surface tilts upward
to the east, so producing a net (vertically integrated) northwards geostrophic flow. The
subsurface isopycnal slopes must then adjust in order to reduce this southwards flow to
near zero in the abyss. This added force provided by the by the basin walls on the fluid
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in the basin is a kind of form drag (rather like the force provided by the sill in section
16.5), and integrated around the basin this force must be equal and opposite to the force
supplied by the wind. In a channel, adding a constant wind produces a direct change in
its zonal transport. This is because the wind-stress is balanced by form drag and bottom
friction (with the former likely dominating), and both of these, in practice, depend on
the zonal flow at the channel bottom.

APPENDIX: MISCELLANEOUS RELATIONSHIPS IN A LAYERED MODEL

Here for convenience we collect various expressions relating pressure, density and ve-
locity in a geostrophic and Boussinesq layered model. The layers and the interfaces are
numbered, increasing downwards, as in Fig. 16.21, and the bottom layer is stationary.

16.A.1 Hydrostatic balance

Hydrostatic balance is:
@p

@z
D ��g (16A.1)

Thus, in each layer we can represent the velocity as

pn D ��ngz C p0
n.x;y/ (16A.2)

and
pn�1 D ��n�1gz C p0

n�1.x;y/ (16A.3)

Since pressure is continuous, at z D zn�1 these two expressions are equal so that

� �ngzn�1 C p0
n D pn�1 D ��n�1gzn�1 C p0

n�1 (16A.4)

whence
.�n � �n�1/gzn�1 D p0

n � p0
n�1: (16A.5)

or
g0

n�1zn�1 D
1

�0

.p0
n � p0

n�1/ (16A.6)

where g0
n D g.�nC1 � �n/=�0 is the reduced gravity, and �0 is the constant, reference,

value of the density used in the Boussinesq approximation.

16.A.2 Geostrophic and thermal wind balance

Geostrophic balance is:
�0f un D k � rpn (16A.7)

where we use a constant value of the density, consistent with the Boussinesq approxi-
mation. Using this with (16A.6) gives

unC1 � un D
g0

n

f
k � rzn (16A.8)
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Fig. 16.21 Structure and notational conventions used here for a multi-
layered model.

which is the appropriate form of thermal wind balance for this system.
Let us suppose that at sufficient depth there is no motion, and in particular that layer

N C1 is stationary and contains no pressure gradients. That is, p0
N C1

D 0 and so, from
(16A.5),

p0
N D �.�N C1 � �N /gzN D �g0

N �0zN : (16A.9)

Integrating upwards we obtain the pressure in each layer,

p0
n D ��0

iDNX
iDn

g0
izi (16A.10)

where n � N . Thus, the geostrophic velocities in each layer are given by

f un D �k � r

 
iDNX
iDn

g0
izi

!
: (16A.11)

The quantity in brackets on the right-hand side is not, strictly, a streamfunction because
it is f un, and not un that is given by its curl. Nevertheless, the velocity is normal to its
gradient, and therefore its isolines define streamlines.

The upper surface of the ocean is assumed to be fixed; this is the ’rigid-lid’ approx-
imation. Thus, z0 D 0 and h1 D �z1. More generally, the layer thicknesses and the
interfaces between the layers are related by

zn D �

iDnX
iDM

hi (16A.12)
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where M is the index of the uppermost layer, and n � M . If there is no outcropping,
then M D 1.

The geostrophic velocity in the lowest moving layer is given by

f uN D �g0
N k � rzN D g0

N k � rh: (16A.13)

This means that lines of constant depth of the lowest layer are also streamlines; the
velocity moves parallel to the depth contours. The vertical velocity at the base of the
lowest layer is given by

w.z D �h/ D uN � rh D
1

f
g0

N .k � rh/ � rh D 0: (16A.14)

That is, there is no vertical motion at the base of the moving layers if the flow is steady.

16.A.3 Explicit cases

A one-layer reduced-gravity model

The perturbation pressure in the moving layer (layer 1) is

p0
1 D ��0g0

1z1 D �0g0
1h1 (16A.15)

The geostrophic velocity is given by

f u1 D
1

�0

k � rp0
1 D g0

1k � rh1: (16A.16)

(In a single layer model, the subscripts are often omitted.)

A two-layer model

The perturbation pressure in the upper and lower moving layers are given by

p1 D ��0.g
0
2z2 C g0

1z1/ D �0.g
0
2h C g0

1h1/ (16A.17a)

p0
2 D ��0g0

2z2 D �0g0
2.h1 C h2/ D �0g0

2h (16A.17b)

(c.f. (16A.9)), where h D h1 C h2 D �z2.
The corresponding geostrophic velocities are

f u1 D k � r.g0
2h C g0

1h1/ (16A.18a)

f u2 D k � r.g0
2h/: (16A.18b)
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A three-layer model

The perturbation pressures in the three moving layers are

p1 D ��0Œg
0
3z3 C g0

2z2 C g0
1z1�

D �0Œg
0
3h C g0

2.h1 C h2/C g0
1h1� (16A.19a)

p2 D ��0Œg
0
2z2 C g0

3z3� D �0Œg
0
2.h1 C h2/C g0

3h� (16A.19b)

p3 D ��0g0
3z3 D �0g0

3h: (16A.19c)

where h D h1 C h2 C h3 D �z3. The corresponding geostrophic velocities are:

f u1 D k � rŒg0
3h C g0

2.h1 C h2/C g0
1h1� (16A.20a)

f u2 D k � rŒg0
2.h1 C h2/C g0

3h� (16A.20b)

f u3 D k � rŒg0
3h�: (16A.20c)

Notes

1 For measurements of the diapycnal diffusivity in various parts of the worlds oceans,
see (among others) Gregg (1998), Toole et al. (1994), Polzin et al. (1997), Ledwell
et al. (1998).

2 For estimates of the strength of the overturning circulation in the ocean, and its
relation to diapycnal diffusivity and the observed stratification, see Munk (1966),
revisited by Munk and Wunsch (1998). See also Huang (1999) and, for a review,
Wunsch and Ferrari (2004).

3 Vallis (2000).

4 The modern development of the theory of the thermocline began with two back-
to-back papers in 1959 in the journal Tellus. Welander (1959) suggested an adi-
abatic model, based on the ideal-fluid thermocline equations (i.e., the planetary
geostrophic equations, with no diffusion terms in the buoyancy equation), whereas
Robinson and Stommel (1959) proposed a model that is intrinsically diffusive. In
this model [developed further by Stommel and Webster (1963), Salmon (1990),
and others] the thermocline is an internal boundary layer or front that forms at the
convergence of two different homogeneous water types, warm surface fluid above
and cold abyssal fluid below. Meanwhile, the adiabatic model continued its own
development (see Veronis 1969), culminating in the ventilated thermocline model
of Luyten et al. (1983) and its continuous extensions (e.g., Huang 1988). As time
passed, Welander (1971b) and Colin De Verdiere (1989) realized that the diffusion
might become important below an adiabatic near-surface flow, and Samelson and
Vallis (1997) suggested a model in which the upper thermocline is adiabatic, as in
the ventilated thermocline model, but has a diffusive base, constituting an internal
boundary layer. The role of mesoscale eddies in all of this is still unclear. However,
numerical simulations do suggest they do play a role in determining the structure
of the thermocline, at least in its diffusive base and perhaps everywhere. Further,
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the fact that the some of the deep overturning circulation may be wind-driven, and
inter-hemispheric, will also affect the dynamics of the diffusive layer, so the story
is not over.

5 Welander (1971a).

6 Drawing from Salmon (1990).

7 Newton’s method is an iterative way to numerically solve certain types of differen-
tial equations. The solutions here are obtained using about 1000 uniformly spaced
grid points to span the domain, taking just a few seconds of computer time. Be-
cause of the boundary layer structure of the solutions employing a nonuniform grid
would be still more efficient for this problem, but there is little point in designing
a streamlined hat to reduce the effort of walking.

8 Samelson (1999b).

9 Adapted from Samelson and Vallis (1997).

10 Following Luyten et al. (1983).

11 That the eastern boundary depth is undetermined is perhaps the main incomplete
aspect of the theory. It may be that the depth is determined by global thermody-
namic and/or mass constraints. For example, there must be a given polewards
transport across the boundary of the subtropical-subpolar gyre to balance the
equatorward transport in the Ekman layer and that of the meridional overturning
circulation.

12 Dewar et al. (2005). This paper also discusses the nature of discontinuities at the
pool boundaries, and their treatment via shock conditions.

In the shadow zone, layer-2 fluid also has no direct surface source, so one may
wonder why is this not also expunged. However, the shadow zone is not a recir-
culating regime and the Ekman induced displacement will be much less efficient.
More directly, the eastern boundary condition h1.x D xe/ D 0 precludes the van-
ishing of layer-2 water there, and this boundary condition is propagated westward
into the interior.

13 Drawing from the numerical and conceptual models of Toggweiler and Samuels
(1995, 1998), Döös and Coward (1997), Vallis (2000), Webb and Suginohara (2001),
Nof (2003) and simplifying the analytic model of Samelson (1999a, 2004).

14 From Rintoul et al. (2001).

15 See Rintoul et al. (2001) and Olbers et al. (2004) for reviews.

16 These simulations, described in Henning and Vallis (2005), solve the primitive
equations in a domain similar to Fig. 16.12. The wind forcing produces a pole-
wards Ekman drift across the channel, as well as a subtropical gyre, and there is
a meridional temperature gradient across the whole domain, so giving rise to a
subtropical thermocline.

17 Adapted from Henning and Vallis (2005).

18 Munk and Palmén (1951), Gille (1997), Stevens and Ivchenko (1997).

19 Models if the ilk derive from Johnson and Bryden (1989). Straub (1993), Hallberg
and Gnanadesikan (2001), Karsten et al. (2002), Marshall and Radko (2003), Hen-
ning and Vallis (2005), and others, consider related issues and extensions.
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20 See also Warren et al. (1996) and Hughes (2002).

Further Reading

Siedler, G., Church, J. and Gould, J. 2001. Ocean Circulation and Climate.
A comprehensive collection of review articles, with a general emphasis on observa-
tions and modelling of the large-scale circulation and its role in the climate system.

Problems

16.1 Show that the height of the upper layer in a model of the ventilated thermocline
is continuous at the edge of the shadow zone, although the gradient normal to
the shadow zone boundary need not be. [Hint: In the ventilated region h1 D

.1 � f=f2/h, and in the shadow zone g0
1
=g0

2
h2

1
D D2

0
: Show that these lead to a

shadow zone boundary that is the same as (16.69).]

16.2 Obtain an expression for the boundary of the western pool in a two-layer model of
the ventilated thermocline.

16.3 � A one-dimensional equation similar to (16.27) was put forward by Stommel and
Webster (1963) as a simple model of the thermocline. The equation is�

2W � z
@W

@z

�
@3W

@z3
D �

@4W

@z4
: (P16.1)

Perform a boundary layer analysis on this equation, and show that if the downwards
vertical velocity at the surface z D 0 is non-zero then the thickness of an internal
boundary layer scales as �1=2. How does the vertical velocity scale with � in this
case? Why do these differ from the corresponding scalings for (16.27)? How does
the boundary layer thickness scale if it is at the surface (z D 0)?

16.4 Construct a one-dimensional thermocline boundary layer equation by simply ignor-
ing the variations in x and y in A, so by substituting A.x;y; �/ D B.�/ in (16.41).
Show that this leads to an equation of the form

C
dB

d�
d3B

d�3
D

�

ı2

d4B

d�4
; (P16.2)

where C depends on ˇ; f; hx and T0. If C were independent of x and y, show that
this equation is essentially the same as the boundary layer equation that emerges
from (P16.1). Is C in fact constant (i.e., not a function of x) in general?

16.5 If the Ekman pumping velocity at the surface, WE , is zero then we cannot use it to
non-dimensionalize W in (16.27). In this case what would be an appropriate choice
for the scaling value of W , WS ? Does this choice affect whether y� is ‘small’ and yW

is O.1/ in (16.27)?
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