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Ch.2. Shallow Water Rossby Wave Dynamics 

 

Sec. 2.1: Quasi-Geostrophic Equation 

1. Nondimensional Equations 

To focus on low frequency variability, we would like to filter out the high frequency modes 

in the shallow water equations. Mathematically, it will be convenient if we can have a single 

equation in a single variable to govern the variability of large-scale flows. The derivation of a 

simpler set of equations for specific temporal and spatial scales is accomplished usually with 

perturbation method. 

We first nondimensionalize the shallow water equations. Denoting dimensional variables 

with an *, we have 

 (u
*
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*
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where u, v, Bz ,, x, y, t are all O(1) dimensionless variables. The shallow water equations can be 

written in the dimensionless variables as: 
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Assuming a beta-plane f  f0  Ly  f0(1
L

f0
y)and dividing the u- and v-equations by 

f0U, we have the non-dimensional momentum equations 
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      are dimensionless parameters. 

 

Dividing the mass equation by UD/L, we have the nondimensional mass equation 
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We are interested in the flow with: 

1) a slow time scale (relative to 1/f) such that T 1  (small Kneb No.), 

2) a large scale or weak flow such that    << 1  (small Rossby No.) 

3) a weak forcing and dissipation so that G ~ O() <<1     (or G ~ E ,      E  ~  O(1) ). 

In the momentum equations, assumptions (1)-(3) lead to the first order balance between the 

pressure gradient force and the Corilois force, such that LgNUf /~0 . This gives the scale of the 

pressure anomaly in terms of those of velocity and space as  

 

 

Furthermore, we require that the surface elevation is small compared with the total depth.  
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or 

4) F<< O(1/) 

Therefore, the scale can’t be too much larger than the deformation radius. For synoptic 

processes with L ~ LD, this condition is satisfied. With assumptions (1)-(4), we have  

     O()  <<1. 

 

The other condition on the (meridional scale) of the motion is 
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or b ~   with  ~ O(1). This requires that L can’t be global (~ a). Finally, we assume that the 

time scale is comparable with the advective time scale 
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The nondimensional equations can be written as: 
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The variables are expanded as  
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We will collect terms of the same order in (2.1.1) and derive the leading order equations.  

 

2. O(1) Equations 

Collecting terms of order O(1), we have the geostrophic balance 
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                                                                                                   (2.1.2a,b,c) 

This is the same as the low frequency =0 geostrophic mode studied in section 1.5. As 

discussed before, geostrophic balance is degenerated: any pressure field satisfies the equation! The 

deterministic part is at the next order. The balance itself is simply a self consistent diagnostic 

relationship. 

 

Note 1 Why large scale tends to be geostrophic? 

Consider the u-equation, tu  u xu  v yu  fv  gx  A xxu . The only term that is 

independent of spatial scale (at low frequency) is the Coriolis force fv. Therefore, as spatial scale 

increases, all the terms decrease except for the Coriolis force. For large enough L, fv has to be the 

dominant term to balance the pressure gradient force. That is geostrophy! 

 

Note 2 What happens for high topography? 

In the above, we have assumed that the topographic height is low compared with the total 

depth of the fluid 
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3. O() Equations 

At the next order, we have the equations 
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)3.1.2()3.1.2( ab yx    gives the vorticity equation 

 ( )( )         t x y x y x y x y y xu v v u u v v E E       0 0 0 0 1 1 0   

Plug in (2.1.3c) to eliminate the divergence, we have the quasi-geostrophic potential vorticity 

equation (QGPV) 

 

( )  t x yu v curlE  0 0                                                                                         (2.1.4) 

where  
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 is the QGPV. Furthermore, since u0   y0 , v0   x0, , we have a single equation in 0 : 
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In the original dimensional variables, we denote the geostrophic component of the velocity as 

),,(),( 00 vuUvu gg   and define the geostrophic streamfunction as 
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This implies that the streamfunction is related to the surface elevation as 
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The QGPV is written in terms of  as 
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Note 3 Derive QGPV from the SWPV. 

 

 

 

 

 

 

With small surface elevation and bottom topography /D, zB/D <<1, we have 
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For large scale, 1/   f , we therefore have the relation between the SWPV and the 

QGPV as 
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Note 4 Quasi-geostrophy and Geostrophy 

On a f-plane, geostrophy has no divergence and vertical velocity at all. The quasi-geostrophy 

is geostrophy only at the leading order. Ageostrophic effect appears at order O() as u1, v1,1 . 

Indeed, 

   )0(1)()( 0011  butOyvuvugfv yxtx   

The divergence is also reduced because of the cancellation of xu and yv, 
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Accordingly, the vertical velocity is also reduced 
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Thus, rotation suppresses divergence and vertical velocity (by O()). Although small, 

however, the vertical motion is extremely important for the evolution of the system. 

D H D 

zB 

 



GFD-II-Ch.2. Shallow Water Dynamics.    2019-08-29 6 

 

 

 

 

 

 

4. Energetics of a QG System 

Before deriving the energy equation of the QG equation, we first notice the identity 
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The energy equation of the QG model can be derived by multiplying - on the QG equation 

as: 
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This is the conservation of the total energy: 

 t (KE  APE)dA  0
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where the QG KE and QG APE are 
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Therefore KE is comparable with the APE for synoptic scales, LLD, but becomes negligible 

relative to the APE for planetary scales L>>LD. 
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5. Steady Geostrophic Flow 

At steady state, QGPV becomes  

 J(,Q)  0  

That is the flow is along Q-isoline, or  

 Q  Q(). 

 

Example 1: 

On a f-plane, with a bottom topography zB(x,y), 

The streamline will be along the isobar. 

 

 

 

 

 

Example 2: 

On a beta-plane without bottom topography,  

The steady flows are purely zonal. 
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Sec.2.2: QG Rossby Waves  

 

We now study small amplitude motions in the QG system. We will assume a mean flow 

without shear 

  
y
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and a slope bottom topography varying only with latitude 
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The mean QGPV is  
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The total streamfunction is separated into the mean and perturbation parts 

 '    

with  ' . Accordingly, the PV is also separated into two parts 
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in the absence of external source and sink, the linearized QGPV becomes 
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This is a constant coefficient equation and therefore the solution can be assumed of the form 
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where 222 lkK   is the total wave number. For nontrivial solutions, the amplitude remains 

nonzero A0. This gives the dispersion relationship for the Rossby wave as 
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The Rossby wave propagates only in one direction – westward, relative to the mean flow 

advection. This is in contrast to the Inertial-Gravity waves which propagate in all the directions. 

These I-G waves have been filtered out in the QG equation.  Filtering out IG waves also implies 

an infinitely fast geostrophic adjustment time (or the IG wave propagates infinitely fast). As a 

result, the flow is always in geostrophic balance. 

Waves of similar property can be found in the spherical coordinate, earlier by Haurwitz. The 

forced problem can be traced to the study of Laplace on tides about 150 years ago. However, it is 

Rossby who first realized that the beta-effect is the most important  mechanism responsible for all 

the major features of these large scale waves.  

 

1. Dispersion Relationship 

In the simplest case of U=0, =0, we have    . The dispersion relationship (2.2.4) 
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Therefore, the Rossby wave has a low (compared to 1/f) frequency, in contrast to the high 

frequency I-G waves. Indeed, on a f-plane, the Rossby wave is the zero-frequency geostrophic 

mode (see Sec.1.5), in other words, the geostrophic mode becomes Rossby wave when f is not a 

constant. 

 

 

 

 

 

 

 

 

 

 

 

2. Barotropic Limit (Rigid lid approximation) 

When the scale of the waves are much smaller than the deformation radius, L<<LD
2, we have 

the dispersion relationship 

  Uk 
k

K 2
                                                                                                            (2.2.5) 

This is the barotropic limit for Rossby waves, because barotropic Rossby waves have large 

deformation radius (thousands of kilometers). Now the flow is nearly nondivergent, because the 

free surface induced divergence, which is represented by   /LD
2,  is now negligible.  The 

negligence of the free surface, however, does not mean the absence of surface pressure. One can 

imagine this case as a water with vanishing free surface elevation, but finite pressure gradient, or 

the rigid lid approximation.   Since LD
2=gD /f2, the barotropic limit is easily realized in the limit of 

a deep water or strong interface gravity. 

 

3. Mechanism of Rossby Wave Propagation and the “-effect” 

To consider the mechanism of Rossby wave propagation, we consider the simplest case of 

U=0, 0By z , and L<<LD, we have now    and the PV conservation becomes the 

conservation of absolute vorticity 0)(  f
dt

d
. A line of particles at latitude f0 initially are at 

rest and therefore have the initial PV q=f0. A northward perturbation of a particle will generate a 

negative relative vorticity <0, because of the PV conservation such that f+=f0. The induced 

anticyclonic vorticity around this particle induces northward migration of particles to the west and 

therefore the perturbation appears to propagate westward. 

 

k 

I-G wave 

max=-l/(2(l2+LD
-2)) 

Rossby wave 

High frequency >f, 

divergent v/(U/L)O(1), 

strong vertical velocity W/U  D/L, 

propagate in all the directions  

Low frequency <<f, 

quasi-nondivergent v/(U/L)<<1, 

weak vertical velocity W/U<< D/L, 

propagate towards the west only 
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The discussion above also indicates that the restoring mechanism of the Rossby wave, in 

general, depends on the gradient of the background PV or the generalized beta, rather than the 

planetary vorticity alone. For example, bottom topography can generate an equivalent beta effect. 

Assuming 0 , but 0By z , we will have 0/  Hzf Byo , and the induced Rossby 

wave also propagates  westward. Therefore, a northward shallowing topography has the same 

effect as the planetary beta, and therefore can be called the topographic beta.  

 

What do we really mean by “westward” in the case of the generalized Rossby wave? 

In general, the mean PV field q(x, y)  can be of any shape. In the absence of advection, the 

generalized perturbation equation is 

 0),'(  qJqt   

The generalized Rossby wave will propagate “westward” if we assume the mean PV gradient 

Q points towards the “north”.  

 

 

 

 

 

 

 

4. Non-Doppler-Shift Effect 

One interesting and peculiar feature of long Rossby wave is the so called Non-Doppler-shift 

effect. In the presence of advection, the Rossby wave speed is (2.2.5) 

 
22 


DLK

Uc


 

where the first part is the advection effect or the Doppler shift effect, and the 2nd part is the 

generalized beta-effect. In the long wave limit, k LD

2 2  , we have 
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The wave speed is now independent of the mean flow U, the so called non-Doppler-shift 

effect! This apparent non-Doppler shift effect is due to the cancellation of the dual roles of the 

mean flow U that induces advection and mean PV gradient. Take a U>0 as example. On the one 

hand, U advects the wave eastward; on the other hand, U is accompanied by a northward gradient 

of pressure, or a northward decrease of mean layer thickness. The latter enhances the planetary 

beta and therefore induces an additional westward propagation. This additional westward 

propagation cancels the eastward advection such that there is no net effect of the mean flow on the 

wave propagation.  

 

 

 

 

 

 

It should be pointed out that the complete non-Doppler shift occurs here because both the 

flow and wave have the same vertical structure, the barotropic mode structure in the case of the 

shallow water system and the 1st baroclinic mode structure in the case of the 1.5-layer system. In 

the general case when the flow and the wave have different vertical structures, the complete non-

Doppler shift effect does not exist anymore (see Chapter 5).  

 

5. Wave structure 

In general, the QG Rossby waves are transverse waves, because its velocity field is 

perpendicular to the direction of the wave vector (or phase propagation). With 

 xy vu '''' ,   , 

we have '',''  ikvilu  , and therefore 

 0),(),(),()','(~'  lkkllkvuku  

 

 

 

 

 

 

 

 

 

U 

 

gy= -fU 

’max 
C, K 

’min 
u’=0 

’max 

u’=0 

u’=0 Phase lines 

u’,v’ ’, 

’=const 
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Therefore, there is no self-advection 

  0)(')(  kuvlukqvu yx   

Thus, a plane wave is also an exact solution to the full nonlinear equation because now 

  0''' '  qQuqUqq
Dt

D
xxt u  

(This is not true in the cases (i) on a sphere, (ii) with superimposition of plane waves and for 

iii) waves in shear and dissipation) 
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Sec. 2.3: Group Velocity and Energy Propagation of Rossby Waves 

The most important reason that we study waves is that wave propagation is one of the two 

means by which fluid carries energy from one place to another (the other is advection). In the case 

of the geostrophic adjustment, it is the I-G wave that takes the ageostrophic part of energy away 

and therefore achieves the geostrophic balance. (see Sec. 1.6.) 

 

1. Group Velocity of Rossby Waves 

Each single plane wave is valid only for a disturbance of infinite long wave patch. The phase 

speed for each plane wave only represents the speed of the phase. The energy of the wave, 

however, is represented by its amplitude, not its phase. In other words, the amplitude is 

represented by the envelop of the wave. The energy propagation speed therefore is the speed of the 

wave envelope, which could be different from the phase speed. The speed of energy propagation 

will be called the group velocity Cg. The group velocity can be derived as 

 𝐶𝑔𝑥 = 𝜕𝜔 𝜕𝑘⁄ ,     𝐶𝑔𝑦 = 𝜕𝜔 𝜕𝑙⁄  

In the case of the Rossby wave, take the case of U=0 as example, we have now 

 
222 




DLlk

k
  

 

 

 

 

 

 

 

 

 

 

For a given l, the maximum frequency occurs at KM

2
 l

2
 LD

2
 with mK2/|| max   . 

The absolute maximum frequency (for all l) occurs at l=0 with ,2/|| max DL   and 
1 Dm Lk . Therefore, the group velocity of the Rossby wave is westward for long waves, but 

eastward for short waves (although the phase velocity is always westward!). In addition, the 

maximum group velocity is 8 times faster towards the west than towards the east.  This east/west 

asymmetry of group velocity has important implications to the general ocean circulation, which 

also has a strong east/west asymmetry (see Chapter 3). 

 

Cg 

C 

Propagation of a wave packet 
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At the long wave limit, kLD

2  , we therefore have the group velocity the same as the 

phase velocity, c
k

L
k

D 





 2 . The long Rossby waves are therefore nondispersive waves. 

The wave packet propagates without changing its shape, because all the single wave components 

propagate at the same speed. In general, 

 
k

c
kc

k

ck

k 












)(
. 

Therefore, the wave is nondispersive only when 0
k

c




. For a general dispersive wave, 

different wave component travels at different speed and therefore the initial wave packet will 

change shape and disperse. Notice that each single wave component extends into infinity, the 

shape of their summation is therefore virtually unpredictable after the initial time if the different 

component travels at different speed. 

 

k 

= -kLD
2 

long wave limit 

LD 

l=0 

l=1 

l=2 
Cg=/ k<0 

Cg=/ k>0 

LD/2 

 

Rossby wave dispersion relationship 

k 

Cgx 

-/(l2+LD
-2) 

/8(l2+LD
-2) 

Long waves 

Short waves 

Rossby wave group velocity 
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2. Energy Propagation Diagram 

There is a convenient way to judge the propagation direction of Rossby waves. On the one 

hand, for a fixed frequency, the wave vectors falls on a circle in the (k,l) plane, 
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On the other hand, one can show the group velocity of a wave packet is parallel to the radius 

vector on this circle (pointing outward for k>0 and vise versa): 
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The dispersion diagram is very convenient for judging the direction of wave energy 

propagation based on the information of the wave phase. 

nondispersive 

dispersive 

l 

k 
Cg 

K 

[/(-2), 0] (a, 0) 

Rossby wave dispersion diagram 

 

where a=/(-2)-[(/(-2))2-LD
-2]1/2 
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Case 1:  

 

 

 

 

 

Case 2:  
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Fig.2.1  Oceanic Rossby wave propagation (Jacobs et al. 1994, Nature, Vol.370, P360-363) 
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Sea Surface Height Anomaly 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.2  Propagation of a Rossby wave packet 
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Fig.2.3  Rossby wave refraction (beta-dispersion) 
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Sec.2.4: Rossby Wave Reflection and Normal Mode 

Here we study the reflection of a plane Rossby wave on a solid wall. Furthermore, we will 

study the wave field in a channel.   

 

1. Reflection on y=const 

First, we study the reflection on a zonal wall 

 

 

 

 

 

 

 

 

 

 

 

Assuming an incident wave of the form: 

 }Re{
)(

11
111 tylxki

eA
 

  

The energy of the incident wave propagates southward (Cgy<0, l1<0) on the wall at y=Y. 

The wave field 1 itself does not satisfy the solid wall condition (no normal flow). Therefore, 

when it hits the boundary, it excites a reflected wave 2 such that the total velocity field satisfy the 

boundary condition  

  1   2 |yY  0 .                                                                                                  (2.4.1) 

Since this condition is satisfied for all x and t, it is obvious that the frequency and along-shore 

wave number of the reflected wave are the same as the incident wave 

k2=k1,  2=1.                                                                                                              (2.4.2) 

Therefore, the boundary condition (2.4.1) reduces to 

A2e
il2Y  A1e

il1Y  0                                                                                                        (2.4.3) 

Since both waves are free Rossby waves, they both satisfy the dispersion relationship, such 

that 

22

2

2

1

1
2122
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 
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DD Llk
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Llk

k 
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
                                                                   (2.4.4) 

This gives 
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reflected 
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 l2  l1  0  

The final choice of l2 depends on the energy radiation condition. The reflected wave has to 

propagate energy away from the wall, Cgy>0, opposite to the incident wave, to keep the total 

energy flux zero across the wall. Thus, we should have 

l2  l1  0                                                                                                                    (2.4.5) 

and the amplitude of the reflected wave is derived from (2.4.3) as 

A2  A1e
2il1Y                                                                                                                   (2.4.6) 

The reflected wave is therefore 

  
2 1

21 1 1 1   Re{ }( )A e ei k x l y t il Y  

The total flow field is then  

         Re{ } Re{ }sin( ( ))( ) ( )A e e e A e e l y Yi k x t il y il y il Y il Y i k x t

1

2

1 1
1 1 1 1 1 1 1 12                  (2.4.7) 

Now, the boundary y=Y is a node point.  

 

2. Zonal Channel 

With two parallel walls, or in a zonal channel, the solution can be derived using the solution 

of a single wall reflection solution (2.4.7). 

 

 

 

 

 

 

Taking the form of the solution (2.4.7), we have  

   Ae
i(kxt )

sin( ly)  

to satisfy the boundary condition at Y=0, and 

   Ae
il Ly

e
i(kxt )

sin[ l(y  LY)] 

to satisfy the boundary condition at Y=Ly. Since they have to be the same total wave field, which 

satisfy both boundary conditions simultaneously, we have 

 e
il Ly
sin[ l(y  LY )]  sin ly , 

 e
il Ly

e
il (yLy )  e

 il( yL y )  e
il y
 e

il y
                  e

ilL y  

This leads to 

 
)()( yy LyilLyil

ee


  

 e
2il Ly  1 

y=Ly 

y=0 
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i.e. 

 0)2sin(,1)2cos(  yy lLlL  

 

Therefore, the meridional wave number are quantitized as 

l  ln 
n

Ly

,                 n=1, 2,                                                                                     (2.4.8) 

The total streamfunction is then 

 .sin}Re )( ylAe n

tkxi                                                                                                  (2.4.9) 

Compared with the half-plane solution (2.4.7), the solution (2.4.9) has two node points on the 

two walls. Furthermore, the cross-channel wave number is quantitized. Therefore, the wave forms 

normal modes in the y-direction. The normal modes are formed after many reflections on the two 

parallel walls.  The key for the formation of the normal mode is that the wave energy has to be 

trapped between two boundaries. 

 

3. Periodic in X 

The channel condition is similar to a periodic condition as shown below. 

 

 

 

 

 

Assuming the flow field is periodic in x with a length of Lx, that is )()( xLxx  . The 

solution therefore satisfies 

 
)( xLxikikx ee


  

Therefore, 

 1
kiLxe  

or 

 cos(kLx )  1, sin( kLx)  0 . 

Therefore, the zonal wave number is also quantitized as 

 
x

m
L

m
k

2
  

The periodicity condition guarantees the total energy conservation (energy flux out on one 

boundary is compensated by energy flux in from another boundary). This is similar to the case of a 

channel. Finally, in a zonal channel which is periodic in the y direction, the corresponding free 

mode (normal mode) has quantitized frequencies: 

y=0 

y=Ly 
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   m, n   (km, ln ) ,   m, n=1, 2, … 

 

4. Reflection on a x Boundary 

 

 

 

 

 

 

 

 

 

An incident wave   
1 1

1 1 1  A ei k x l y t( )  impinges on the eastern boundary x=X, the reflected 

wave is assumed of the form  
2 2

2 2 2  A ei k x l y t( ) . The solid wall reflection boundary condition 

requires =0 on x=X for all the y and t. Thus, the meridional wave number and frequency of the 

reflected wave have to be the same as the incident wave 

 1212 ,   ll  

This leads to the zonal wave number of the reflected wave as: 
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where “+” is for the short wave and “-“ for the long wave. Since the incident wave k1 has the 

group velocity eastward (short wave), the reflected wave must have a group velocity westward and 

therefore is a long wave, which has cgx  0 . This is necessary to oppose the eastward ( cgx  0 ) 

incident wave energy flux. 

 

5. Basin Mode 

One can further discuss the Rossby wave modes within a basin. In principle, the presence of 

both the zonal and meridional channel walls quantitized the wave number in both the x and y 

directions 

 

x=X, 

Eastern boundary 

K1 

K2 

K2 
K1 



GFD-II-Ch.2. Shallow Water Dynamics.    2019-08-29 25 

 

 

 

 

 

The net energy flux is zero in any direction.  The reflection in both directions quantitized the 

wave number in both directions as. 
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One can find the basin mode as:  
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The wave has a peculiar feature: it has westward phase propagation, but no net energy flux. 
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Sec.2.5: Forced Rossby Waves 

In general, observed atmospheric and oceanic variability are caused either by external forcing 

or internal flow instability. The flow instability are caused by the shear of flows and the energy 

exchange with the mean flow. This will be discussed in chapter 6. Here we will focus on 

variability excited by external forcing such as wind stress and topography et al.. We will see that 

the free waves that we studied before are of critical importance in helping us understand these 

forced responses. In other words, the forced response can be understood in terms of free Rossby 

waves. 

We consider two types of forced responses, all caused by a steady flow over mountains. The 

first type involves the flow over an isolated mountain while the second type over periodic 

mountain. The former concerns with the excitation of free waves and wave energy radiation into 

the far field, while the latter concerns with the resonance. 

 

We first introduce the concept of stationary wave number. The general dispersion relationship 

of the Rossby wave (2.2.5) can be written as: 

c  U 


K2  LD

2


U(K
2
 Ks

2
)

K2  LD

2
                                                                              (2.5.1) 

where, in the absence of a mean topography, 

ULU
K

D

s




2

2 1
                                                                                                       (2.5.2) 

is the stationary wave number. With a typical wind of U=10m/s, the corresponding wavelength is 

about 5000km A general Rossby wave propagates in different directions according to its wave 

length relative to that of the stationary wave. 

 long wave,                        K
2
 Ks

2
 c  0 ,  westward propagation, 

 stationary wave                K
2
 Ks

2
 c  0,  stationary 

 short wave                       K
2
 Ks

2
 c  0 ,   eastward propagation.  

 

1. Flow over isolated mountain  

Consider an infinite beta-plane, a uniform mean current U passes over an isolated mountain 

T. It is straightforward that the flow field locally near the mountain has to be distorted. The most 

interesting question here is if the mountain can also generate remote responses away from the 

mountain. 
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Except inside the isolated T, zB=0, the response, if available, is simply free Rossby waves of 

the form: 

ikctlykxie  )(ˆRe( )                                                                                           (2.5.3) 

with )/()( 2222  Ds LKKKUc  

Since c=0 (stationary) for the fixed mountain, we have the wave length of the forced response 

as 

)(2222 UKlkK s .                                                                                      (2.5.4) 

The remote response depends on the stationary wave number or in turn the mean flow 

conditions. 

 

(i) Easterly wind, U<0: 

Under an easterly wind, we have from (2.5.2) ,02 sK .  The forced response (2.5.3) has an 

imaginary wave number. Since the wave energy originates from the mountain, the forced response 

can’t be infinitely large away from the mountain. The only possibility is that the forced response 

decays away from the mountain. Therefore, the response is an evanescent solution with only 

localized responses. The flow  decays with distance from T. In other words, under the easterly 

wind, no free waves exist to match the stationary wave number. So there is no wave energy 

radiating away from the mountain. The response in the far field is weak. 

 

 

 

 

 

 

(ii) U>0 

With a mean westerly wind, Ks

2
 0  according to (2.5.2). The forced response has a real 

wave number, corresponding to propagating solutions. This free Rossby wave radiates energy into 

the far field and produces strong response there.  The conclusion that only westerly wind can 

generate downstream response can also be understood from the handwaving argument in terms of 

the conservation of potential vorticity (see Holton, Figs.4.9,4.10). 
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The example above demonstrates a general principle. For an isolated disturbance ei(kx-t), if the 

forcing frequency  can excite free wave (with real wave numbers), the disturbance can be 

radiated away to the far field. Otherwise, the response is trapped near the wave maker. 

 

The direction of the wave energy propagation can be further studied in the case of Ks
2>0.  

From the dispersion relation (2.5.1), c  U
K
2
 Ks

2

K2  LD

2
, we have the group velocity for 

stationary waves (c=0) as: 

 cgx  k  c  k
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 k
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2 )2
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Thus, wave energy always radiates to the east of the mountain.  

 

 

 

 

Furthermore, we have 
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Therefore, the group velocity can be written as 
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(This is obvious if one notices in (2.5.1) that c=c(K2) ). That is: the group velocity of the 

stationary Rossby wave is in the same direction as the wave vector K ! 
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The dominant direction of the propagation depends on k/l, which will be determined by the 

shape of the mountain, or more precisely its dominant projection on ei(kx+ly). For a mountain like 

the Rocky Mountain, the dominant projection has k>>l, because of its dominant north/south 

elongated shape. Therefore, the dominant stationary wave response is eastward downstream. 

 

 

 

 

 

 

 

The Alpes is the opposite, with l>>k, because of its dominant east/west elongated shape. The 

dominant response therefore is north/south. 

 

 

 

 

 

 

 

 

 

The Tibet is more rounded with k comparable with l. The resulted response therefore tends to 

radiate in the northeast and southeast directions. 
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Note 1. Stationary Rossby wave propagation on a sphere and Teleconnection: 

The propagation of stationary Rossby waves plays a critical role in climate study. At the 

climate time scale, we can treat the Rossby waves virtually as stationary. Its propagation can relate 

the climate in one part of the world to that in the other part. This is called atmospheric 

“teleconnection”.  The atmospheric teleconnection becomes particular complex on a sphere. For a 

simple mean flow, one can show that the planetary wave propagates along a great circle (Hoskins 

and Karoly, 1981).  

 

 

 

 

 

 

 

 

An important observational evidence of the atmospheric teleconnection is the PNA 

(Pacific/North America Pattern).  This atmospheric teleconnection pattern enables the eastern 

equatorial Pacific SST anomaly, as occurred during the El Nino years, to affect the climate in the 

North America. Here, the forcing is a local thermal anomaly.  

 

 

 

 

 

 

 

 

 

 

Several things need to be kept in mind. First, cross-equator propagation is usually prohibited 

by the dominant easterly wind there. Second, if dissipation is strong enough, the waves will be 

damped heavily before it propagates far away. Third, similar wave radiation can be found in the 

ocean, such as the Gulf Stream eddy radiation. 

2. Flow over sinusoidal topography 

Now, we consider a mean zonal flow over a periodic mountain within zonal channel. 

+ 

 

+ 

EQ 
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The bottom topography can be represented as 

 kxlyyxzB cossin),(  ,      l 


L
, 

where the amplitude of the mountain has been assumed small relative to the total depth 

 


D
 1   

such that the dominant flow climbs over the topography (instead of circling the topography) and 

represents a weak linear response. Thus, the basic state has no topography  0Bz   and the mean 

PV field is simply 

 q  f0  y 
Uy

LD

2
 

 q y   
U
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2
   

The topography affects the perturbation PV 
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Assuming the dissipation is a Rayleigh damping,  
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The linearized PV equation for the perturbation is  

  2)(  vqU xt  

or in terms of the streamfunction as 
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2
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)((                                                 (2.4.6) 

For convenience, we write the topography as 

  lyez ikx

B sinRe   , 

the forced response will take the form of 

  lyeikx sinˆRe  . 

zB 

U 

H L U 
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Substitute these into the equation, we have 
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This gives the amplitude of the forced response as 
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The corresponding surface elevation is therefore: 
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Without friction,   0 , we have the amplitude as 

)(
ˆ

222

SD KKL 


                                                                                                          (2.4.8) 

When the forcing wave number is the same as the stationary wave number K=KS , the 

amplitude of the response is infinite and the phase has an abrupt change across Ks. This is the 

resonance response. In general, with dissipation, the response amplitude is finite. The maximum 

amplitude depends on the ratio of the dissipation and advective time scales. The larger the 

dissipation time scale, the larger the response amplitude. In the case of weak dissipation,  

 

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
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the amplitude is finite and the phase still shifts abruptly across the resonant wave number.  
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In contrast to the isolated mountain case, now if the forcing structure fits the free wave, it 

generates resonant responses. This is also a general principle when the forcing is applied onto 

every point of the flow field. In the former case, the forcing is applied to an isolated region and the 

response, when free wave is excited, appears as remote responses in the far field, but with finite 

amplitude. In the latter case, the forcing is applied everywhere on the fluid, and the response, 

when free wave is excited, exhibits an amplified amplitude. In both cases, the understanding of the 

free wave is of critical importance for us to predict the response for a given forcing. 
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Fig.2.4  Stationary Rossby wave response and atmospheric teleconnection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.5  Stationary Rossby wave on the sphere and E-P flux 
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*Section 2.6: Non-plane Waves  

We have so far been studying plane waves. These waves only exist on an infinite domain and 

in homogenous medium.  In a more general domain and medium, a wave can be represented as the 

summation of various plane waves: 

}),(ˆRe{ )(


 dkdlelk tlykxi                                                                                      (2.6.1) 

The plane-wave case is the special case with the spectrum̂  being a -function:  

),(ˆ
00 llkk   ,                                                                                                     (2.6.2) 

the general wave (2.6.1) reduces to a single wave  

}Re{
)( 00 tylxki

e
 

                                                                                                      (2.6.3) 

Such plane waves are rarely seen in reality because it requires homogeneous medium and an 

infinite domain. For more general cases, the wave group is a wave packet, which consists of 

waves at many wavelengths and we are most concerned with the propagation of the wave packet 

in an inhomogeneous medium.  

 

 

 

 

 

 

 

You may think that the energy of the wave packet is conserved during the propagation. This 

is not true if the mean flow has shear, so there is wave-mean flow interaction.  A more general 

conservation quantity, however, is the wave activity.  

 

1. Conservation of Wave Activity 

Consider a basic state of )( y , the mean flow is 0),( 


 VyU
dy

d
U . The background 

QGPV is:  
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For a small disturbance ’, we have the streamfunction 

 ),,(' tyx   

where '  and the flow  

 u  U  u  
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where 
u 

U
 <<1 (more precisely 

u 

U  c
 <<1). 

For later convenience, we first rewrite the northward QGPV flux v q  in the convergence 

form. 
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                                 (2.6.4) 

we can write the PV flux as 
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Defining the E-P flux vector F as  
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the PV flux can be written as the divergence of the E-P flux 

FqvD 0                                                                                                            (2.6.7) 

Now, we return to the linearized QGPV equation. 
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Therefore, we have:  

At SA  FU )(                                                                                        (2.6.8) 

where  

yQ

q
DA

2

0
2

1 
                                                                                                              (2.6.9) 

is the wave activity density per unit area.  Since  0 U  for QG flows, we can rewrite (2.6.8) 

as: 

At SAA  )( FU                                                                                          (2.6.10) 

 

This is the wave activity equation. It is important to realized that the equation is valid as long 

as '  and there is no restriction on ’ being a plane wave at all.  This equation is also 

generalized Eliassen-Palm equation. The flux FU A is the wave activity flux, the first part is due 

to advection by the mean flow, while the second part due to wave radiation relative to the mean 

flow.  

Since A and F are of quadratic form of the perturbation, they will have a higher 

harmonic/frequency component. In practice, A and F are made more manageable by some kind of 

average (depending on the problem), such as the x-average, t-average or average over a wave 

length. (This kind of average makes no sense to a variable that is of linear on the perturbation, 

because it is always zero). Here, we take the zonal average, as in most cases.  

 (p) 
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P(x, y, t)dx  P (y, t)

L

L

 . 

Assuming either the disturbance vanishes at infinity, or the system is periodic in x such that 

P(-L)=P(L), we have 
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Averaging the wave activity equation (2.6.10), we have 

t A  y (F y )  S A                                                                                                   (2.6.11) 

This is the shallow water version of the Eliassen-Palm equation, where the wave activity is 

yQ

q
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2
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1 
                                                                                                              (2.6.12) 

and the E-P flux is 

)(0 vuDFy
  .                                                                                                         (2.6.13) 

If further there is no source and sink, SA=0, we have the conservation of wave activity as 

0)(  yyt FA                                                                                                           (2.6.14) 
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or t A  y (F y ) . This states that the accumulation of wave activity depends on the convergence 

of the E-P flux.  

 

One important application of the wave activity equation is the wave-mean flow interaction. 

We can easily show that the E-P flux also affects the mean flow. In the QG context, the zonal 

momentum equation 

 tu  x (
u
2

2
)  y(uv)  fv  Px  

can be zonally averaged to give 

 0 vuu yt   

where we have used 0  xv  using the QG approximation. Notice (2.6.13), the equation 

above can be written as 

00  Fyt uD                                                                                                        (2.6.15) 

or with (2.6.14), 

00  AuD tt  .                                                                                                      (2.6.16) 

This suggests that the wave activity and mean flow exchange with each other. The wave-

mean flow interaction occurs through the E-P flux convergence. (This can also be understood from 

the instability view later in Chapter 6: shear flow produces instability and the unstable wave 

feedbacks on the mean flow).  

 

The above equations can be used to understand the negative viscosity. Consider a tilted wave 

in a sheared westerly jet,  

 

 

 

 

 

 

 

 

In the middle of the jet, we have -yFy<0 and therefore a decreasing wave activity tA<0. The 

decayed wave energy is converted to increase the mean jet, i.e. tu > 0 (in other words, because of 

the convergence of the Reynold stress). Therefore, in this case, the disturbance acts as a “negative 

viscosity” to the mean flow (Starr, 1950). 

 

x 

y Fy = -u’v’>0 

Fy = -u’v’<0 
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2. Wave activity for almost plane waves 

(1) Almost Plane Wave 

As discussed in (2.6.2), a plane wave has a spectrum of a delta function. Now suppose the 

wave spectrum is finite but of a narrow band width, 

k
k0

 1                     l l0
 1                                                                              (2.6.17) 

we have from (2.6.1) that 
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Thus,   is slowly varying in x, y, t. The wave packet  

]),,(Re['  ietyx                                                                                                   (2.6.18) 

is called an almost-plane wave, with the slowly varying part  as its envelope. 

 

(2) WKB approximation: (Wentzel, Kramers, Brillouin) (or WKBJ: with Jeffreys) 

Now, consider an almost plane wave,  

  ietyx ),,(Re'      where   tlykx    

 

 

 

 

 

 

 

 

 

1/k 

1/k

C 

k 

l 

l 

k 

l0 

k0 

Power spectrum of 

an almost-plane wave 



GFD-II-Ch.2. Shallow Water Dynamics.    2019-08-29 40 
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The linearized QGPV and its derivatives at the leading order is:  
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The dispersion relationship is therefore approximately  
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This is similar to the plane wave case, BUT, valid even in an inhomogeneous background 

flow )(),( yQQyUU yy  . The price, however, is that the relationship is no longer exact. In 

general, )(ykk  , so wave number is locally determined at y and could vary with y. To be 

consistent with slowly varying nature of k, we need U and Qy to be slowly varying in the sense 

that  
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Or U and yQ  may vary on the scale of the wave packet 1/k   (WKB approximation) which is 

much larger than the wave scale 1/k. We can also define a slowly varying local group velocity as:  
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(3) Wave-activity of almost-plane waves:To derive the equation for the evolution of the wave 

packet, we could expand x, y, t in fast and slow variables (Pedlosky, Sec. 3.20). Here, instead, 

we use the more general wave activity equation (2.6.10): At SAA  )( FU  

First, we define the phase average <> such that  0 ie . This is the average in the wave 

length scale, which is still much smaller than the wave packet scale. For example, 
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tA=tA0+Re(tA2 -2i A2)e 2i, 

 AAAA tttt  00 . 

The wave activity equation can be written as 
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In general, for two complex variables (a, b)=Re [(A, B) e i], we have <ab>=Re(A,B*)/2. 

Therefore, we have 
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This reminds us of the local group velocity (2.6.20),  

)( UCF  gA                                                                                                    (2.6.21) 

The wave activity flux is the wave activity density transported by the group velocity relative 

to the mean flow! 

 

Finally, for an almost-plane wave, the wave activity equation (2.6.10) becomes: 

   Agt SAA C                                                                                  (2.6.22) 

 

If Cg is slowly varying, we further have 

 Agt SAA C  

This demonstrates that wave activity is transported by the group velocity speed. The concept 

of group velocity is the special case of almost plane waves. For more general cases, including 

those where the almost-plane wave concept fails, the corresponding concept of wave activity flux 

is always valid! This enables us to diagnose the wave activity flux in observations, which has 

complex variability and often violate the conditions for the almost-plane waves. 

 

(4) Wave Activity and Wave Energy 

What is the relation between the wave activity and wave energy? As in Section 2.1, the 

energy of a general perturbation is  
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For the wave packet, the wave energy for almost-plane waves is therefore  
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                                                                    (2.6.23) 

The wave activity equation for the almost plane wave (2.6.22) can be put in different forms.  

 

(i) Conservation of wave action: 

Since k is independent of y, multiplying 1/k in (2.2.22), we have 
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where we have used (2.6.23) and the variable 

kU

E






 

is called the wave action. The equation above therefore represents the conservation of wave 

action, which is the conservation of wave activity in the special case of almost-plane waves. 

 

(ii) Wave energy equation: 

Multiplying (2.6.23) by U-c, we have the wave energy equation 

  



 A

g

gt ScUE
cU

EE )(
UC

C                                       (2.6.25) 

Therefore, wave energy is conserved ONLY IF the mean flow U is uniform or has no shear 

(relative to the direction of Cg). In the presence of shear, there is energy exchange between the 

mean and the wave. The wave energy is no longer conserved! However, wave activity is still 

conserved, because it has already taken into account of wave-mean interaction. 

 

 

(iii) Uniform basic state 

If U and Qy are uniform, k and Cg are uniform, so that 

 Agt SAA C  

In a uniform medium, wave activity (wave action and wave energy) of an almost plane wave 

packet all propagate at the group velocity. The wave packet will propagate without changing its 

shape. With an inhomogeneous medium, however, wave activity or wave action is a much more 

useful concept than the wave energy, the former tends to be conserved while the latter not.  

 

 

 

 

 

 

 

(iv) Dissipation 

With a dissipation, say a Rayleigh damping, uF   , we have 
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For an almost -plane wave (2.6.18), we have 

 ieKcurlF Re2 ,  
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Thus, the wave activity equation (2.6.22) can be written as: 
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The effective damping rate is therefore:  
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Exercises for Chapter 2 

 

E2.1: (Rossby wave pattern) (a) The perturbation streamfunction of the Rossby wave is  

’(x,t)=cos(kx-t). What is the wave pattern? (b) The mean zonal flow is U=const. What is the 

pattern of the total streamfunction (x,y,t) = -Uy+ ’(x,t)? 

 

E2.2: (Wave envelop and group velocity) Two plane Rossby waves have similar wave numbers 

such that the streamfunctions are 1=cos(kx-t) and2=cos[(k+k)x-(+)t], where k<<k. 

(a) Show that the total streamfunction =1+2 consists of a Rossby wave of wave number close 

to k and an wave envelope with the wave number k. (b) What is the propagation speed of the 

each individual wave crest (phase speed)? (c) What is the propagation speed of the wave envelope 

(group velocity)? 

 

E2.3: (Propagation of planetary wave) For a Rossby wave whose wave length is much longer than 

the deformation radius (planetary wave), relative vorticity is negligible such that the potential 

vorticity is approximately q=f/h. In this case, why does the planetary wave propagate westward? 

Illustrate the propagation mechanism based on the principle of PV conservation. 

 

E2.4: (Dispersion diagram) In the absence of mean flow and bottom topography, (a) Calculate the 

group velocity of the Rossby wave Cg=(Cgx,Cgy). (b) Verify the Rossby wave dispersion diagram 

in Sec.2.3.  

 

E2.5: (Group velocity) Given the dispersion relationship =-k/(k2+l2+LD
-2) and a specific 

meridional wave number l, find the maximum eastward and westward group velocities as well as 

the wave number at which each maximum is achieved.  
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E2.6: (Rossby wave reflection) An incident Rossby wave 1=A1exp[i(k1x+l1y-1t)] impinges on a 

tilted eastern boundary xE(y)=y/a, where a is a constant. Identify the incident and reflected waves 

on the dispersion diagram. 

 

 

 

 

 

 

 

E2.7: (Coastal Kelvin wave) On a half-plane x>0, shallow water disturbances satisfy 

tu-fv = -gx, tv+fu = -gy, t+H(x u+y v) = 0, 

in x > 0. The flow has to satisfy the solid wall boundary condition u|x=0 =0. In addition, there is no 

energy source from the infinity, so the energy radiation condition requires finite u, v,  at x+. 

 

 

 

 

 

 

 

Assume this is an f-plane, find the linear wave solution.(Hint: set u=0 as part of the solution). 

 

E2.8: (Radiating Rossby wave): A wavemaker on the eastern boundary x=0 has a frequency  and 

a meridional wave number l, such that the surface elevation on x=0 satisfies =0cos(ly- t). The 

wavelength is sufficiently long (large scale) and the frequency is sufficiently low such that quasi-

geostrophic dynamics can be applied. Find the Rossby waves generated by this wavemaker. (Hint: 

find the Rossby wave that satisfies the eastern boundary condition =0 cos(ly- t) at x=0, where 

0=g0/f0 . 

  

x=0 
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E2.9. (Radiating gravity wave) On a nonrotating tank, the shallow water waves satisfy the 

equations:  ∂tu=-g∂xh-ru,  ∂th+H∂xu=-rh, where r is the damping rate. There is a wavemaker on 

the eastern boundary x=0, such that the coastal sea level is forced to oscillate as 

h(x=0,t)=h0cos(ωt). Find the sea level response in the interior ocean for two cases. (a) No 

damping such that r=0, (b) finite damping with r>0. In each case, discuss the physics of the 

solution. 

 

 

 

 

 

 

 

E2.10. (Transient resonant solution): A forced swing set satisfies the equation  

dA/dt-iA=Fexp(it), where A is the position of the swing and  is the frequency of the free 

oscillation,   is the forcing frequency and F is the forcing amplitude. The forcing amplitude F is 

applied at t=0. Derive the forced solution that satisfies the initial condition: A(t=0)=0 for (a)  

and (b) =. [Hint for b): try the solution of the form A=C1exp(it)+C2t exp(it) and determine 

the coefficients C1 and C2]. 

 

E2.11: (Rossby wave energy flux) A free Rossby wave has the form =Re[A e i(kx+ly-t) ] 

and the dispersion relationship=-k/(k2+l2+LD
-2). 

a) Prove that the wave energy (averaged within a wave length) is: 

E=<{x
2+y

2+(/LD) 
2}/2 >= |A|2(k2+l2+LD

-2)/4 

b) Prove that the group velocity can be written as: 

(Cgx, Cgy)=[k+/(2),  l](-2)/(k2+l2+LD
-2). 

x=0 

h0cos(ωt) 

x 

y 

 0 cos(ly- t) 

x=0 

? 
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The energy flux of a wave packet F=(Fx, Fy) is the wave energy multiplied by the group velocity 

F=E (Cgx, Cgy)=  -2|A|2(k+/2,  l).  

c) If this wave is reflected on an eastern boundary y=ax (see E2.6), prove that the reflected wave 

=Re[B e i(mx+ny-t) ] has the same alongshore energy flux as the incident wave, that is G(1, a) = 

F(1, a), where G = (Gx, Gy) is the energy flux of the reflected wave.  

d) Are the alongshore group velocities the same for the incident and reflected waves? 

e) Prove that the incident angle i is 

 

f) A similar expression can be derived for the reflection angle. Is the incident angle the same as the 

reflection angle?  

 

 

 

 

 

 

 

 

E2.12 (Topographic Rossby Wave): On a f-plane with homogeneous fluid, a Northern 

Hemisphere ocean basin (Fig.E2.12.1: a. top view, b. side view) has a continental slope of several 

hundred kilometers wide. For large scale, low frequency disturbances,   

a) What kind of low frequency waves will be produced in the basin? Which direction does it 

propagate?  State clearly the physical mechanism for this wave and how it propagates in the 

direction you proposed. What will be the equation that controls the basic dynamics of this wave? 

b) What will happen if this basin is in the Southern Hemisphere (Fig.E2.12.2)? 

c) What happens around a large scale seamount in the Northern Hemisphere (Fig.2.12.3)? 
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Fig.E2.12.2: SH basin with continental slope, f<0 
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Fig.2.12.1: NH basin with continental slope, f>0 
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Fig.E2.12.3: NH Seamount, f>0 


