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Ch.3: Forced General Circulation 

 

Sec. 3.1: Atmospheric Circulation 

On the horizontal plane (or isobar, isotropic surface), the atmospheric circulation is 

relatively simple. At the leading order, it consists mainly of zonal flows. At the next order, the 

zonal flow is distorted by stationary waves that are forced by localized surface heating (due to 

land-sea contrast) and topography. (see Figs.3.1, 3.2). One may think that the reason for the first 

order flow to be dominantly zonal U(y) is due to the solar radiation that is zonally uniform. This is 

only half true. 

The other fundamental reason for the presence of a dominant zonal flow U(y) is the rotation, 

or more precisely the beta effect. The rotation of the earth restrains the fluid to flow along constant 

potential vorticity lines (latitude circle) in the absence of strong damping and diabatic heating. 

Furthermore, the absence of meridional boundaries allows the U(y) flow to be free modes in the 

atmosphere (of zero frequency). These “free modes”, when forced by the zonally uniform heating, 

becomes dominant due to resonant excitation.    

The effect of beta can be seen easily in the context of the QG equation. The PV conservation 

gives the equation for the steady state circulation as: 

J(, Q)=0,                                                                                                                    (3.1.1) 

or 

= (Q) 

At the first order, the potential vorticity is Q=y. Thus, we have  

= (y) =G(y).                                                                                                           (3.1.2) 

This is a zonal flow, a free mode of the equation of motion.  

 

 

 

 

 

 

 

 

At the next order, the effect of localized topography or land-sea contrast enters and the zonal 

flow is distorted. The distortion is the strongest in the surface layer (Fig.3.3), because of the strong 

dissipation and therefore the less efficient excitation of the zonal flow free mode. 
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Fig.3.1  Atmospheric circulation in the middle and upper levels. 
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Fig.3.2  Atmospheric circulation on the 200mb 
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Fig.3.3  Atmospheric circulation near the surface 
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Sec. 3.2: Ekman Flow, Ekman Layer and Ekman Pumping 

In comparison to the atmosphere, the general circulation is much more complex in the 

ocean. Most importantly, the circulation is no longer dominated by a zonal flow. Instead, it 

consists of huge gyres with flows comparable in both the zonal and the meridional directions. The 

most important reason for the difference of the circulations of the atmosphere and ocean is the 

presence of meridional boundaries. These meridional boundaries block the mean PV isoline 

(which is mostly around the latitude circle). As a result, the zonal flow (3.1.2), although satisfying 

the equation (3.1.1), does not satisfy the boundary condition anymore; they are no longer free 

modes and therefore can’t be excited resonantly as in the atmosphere. In the ocean, therefore, the 

circulation at the leading order is forced by a strong momentum and buoyancy flux forcing. In the 

following, we first study how the surface ocean is forced by the wind stress. 

 

1. Mixing and Friction  

The wind stress forces the ocean through momentum mixing at the surface  In  general, fluid 

layers with different velocity have interfacial momentum exchanges due to  cross-interface 

turbulences. These turbulence exchange heat and other water properties. The turbulences are 

usually strong near the boundary layer where the shear or gradient is the strongest. We will take 

the stress and the associated momentum flux as an example. 

(1) Stress and momentum flux 

Consider two layers of fluid with different mean velocities, say, faster in the upper layer  

 

 

 

 

 

 

Because of random turbulent mixing of water parcels across the interface, the lower layer 

transports slower water parcels to the upper layer. These slower parcels slow down the upper layer 

and therefore appears as an interfacial drag stress that decelerates the upper layer. To conserve 

mass, the upper layer transports the same amount of parcels that are faster than the lower layer 

back to the lower layer. These faster parcels increase the mean velocity in the lower layer and 

therefore act as a driving stress (such as the wind stress). This interfacial stress is the Reynold’s 

stress. Denoting nm as the stress of layer n on layer m, we have 
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The simplest way to parameterize the stress is to realize that the interfacial stress is usually 

proportional to the shear of the mean velocity 
z

U




  . Thus at the lowest order, the stress is 

parameterized, in the so called K theory, as 

z

U
kwu



 12                                                                                                      (3.2.1) 

(An example is in Section. 2.6 on the negative viscosity associated with  u v ) 

 

(2) Net Effect  

The net effect of the stress on a body of fluid is determined by the shear of the stress. In the 

figure, the net effect is: 

 

z
u

t
 12  23 

 

or in the limit of infinitesimal z 
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t z
                                                                                                                      (3.2.2) 

Using the K-theory parameterization, we have the effect of the stress as 

)(...........)(
1

...... uduk
t

u
zzzz 




                                                                     (3.2.

3) 

where d=k/ is the kinematic diffusivity.  In the simplest case of a constant , ( 3.2.3) reduces to 

the standard diffusive equation 

udu zzt                                                                                                                       (3.2.4) 

Similar idea can be applied to other directions and give the more general diffusive equation

tu  k1 xxu  kz yyu k3 zzu . Furthermore, similar idea can be applied to other water properties 

such as the temperature, resulting in the diffusive equation for temperature as tT  kzzT . 

 

 

2. Ekman flow 

Now, we consider how the wind stress forces the ocean. In a very thin layer at the air-sea 

interface, zz  is very large where the wind stress is very important by directly inputting momentum 

flux into the ocean. For large scale, low frequency flow, we have 
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There are two forcing here, the pressure gradient force and the wind stress force. To focus 

on the wind driven flow, we only consider the net wind driven flow 

gE vvv


  

where v


g  (gy, g x)  is the geostrophic flow. 

Notice zvg=0, we have 
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The boundary conditions are: 











yyxx FF
 ,                at z = 0                                                                       (3.2.6a) 

0,0 


yx FF
                  at z→-                                                                     (3.2.6b) 

where ( yx  , ) are the surface wind stress .  

Before solving the equation, we consider the vertically integrated flow (transport) 

V  vdz


0

  

Vertical integration of (3.2.5) gives  
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 ),(),(                                                                               (3.2.7) 

The wind driven flow is always to the right of the wind! This is called the Ekman flow or 

Ekman transport.  
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One can think of the spin-up process similar to the geostrophic adjustment process, except to 

replace the pressure gradient force by the wind stress. In this sense, Ekman flow and geostrophic 

flow are the same, but for different driving force.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Ekman Layer 

In spite of the simplicity of the vertically integrated flow, the current is more complex within 

the thin boundary layer, or the so called Ekman layer. Using the K-theory of parameterization 
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, ,                                                                                       (3.2.8) 

and the boundary conditions (3.2.6), the solution to eqns. (3.2.5) can be solved explicitly in the 

case of a constant d. With a wind stress of  0,τ , the Ekman layer velocity can be written as:  
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The surface current is o45  to the right of the wind stress. The velocity field rotates 

clockwise with depth in the northern hemisphere. The e-folding decay scale with depth is 

m
f

d
e 50~

2
  in the ocean and 500m in the atmosphere. 
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It is important to realize that although the detailed structure of the Ekman layer depends on 

the mixing parameter (3.2.8), the vertically integrated Ekman transport EV  in (3.2.7) is 

independent of mixing parameterization. This is the beauty of the Ekman theory! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.4  Observed Oceanic Ekman layer 
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4. Atmospheric Ekman Flow 

In the atmosphere, there is also an Ekman flow in the opposite direction as the oceanic 

Ekman flow. This is because, when the wind stress forces the ocean, the ocean exerts an opposite 

stress on the atmosphere. This ocean-to-atmosphere stress is the retarding stress that makes 

atmosphere wind aloft vanish on the sea surface. 

 

 

 

 

 

 

 

 

 

Thus the Ekman flow in the atmosphere is 
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Therefore, the mass flux is the same in both Ekman layers. Since the atmospheric density is 

about 1000 times smaller than that of the ocean, the velocity of the Ekman flow must be about 

1000 times faster in the atmosphere than that in the ocean. 
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This states that the meridional heat transport is about four times larger in the ocean than in 

the atmosphere. This is comparable with the observational estimation in the low latitude, where 
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both Vae  and Voe  are the main heat transport mechanisms. (in the mid- and high latitudes,  

atmospheric eddies and ocean boundary currents could play critical roles). 

 

In addition, in the meteorological convention, AEV  is always down the pressure gradient of 

the geostrophic wind field. 

 

 

 

 

 

 

 

 

This is because in the boundary layer, the friction effect balances part of pressure gradient 

force. This atmospheric Ekman flow can be understood as the atmospheric response to the oceanic 

stress on the atmosphere. The latter is the opposite to the atmospheric wind stress on the ocean. 

 

5. Ekman Pumping 

If the wind stress forces Ekman flow only within the Ekman layer, does this mean the wind 

stress only drives the ocean current within the surface Ekman layer (aboute ~50m)? A similar 

question in the atmosphere is that, if the Ekman flow is confined to e , does this mean the bottom 

friction has no effect on the air above e ? The answer is: No! 

Although the direct momentum mixing due to wind is limited within e , the Ekman flow 

may produce vertical motion that penetrates deep into the subsurface ocean. For example, in a 

subtropical gyre, 

 

 

 

 

 

 

 

 

 

 

L 

Vg 

VAE 

 O->A 

Westerly 

we=w(-e) 

-P  Vg 

Easterly 

VE 



GFD-II-Ch.3. Forced Circulation.    2019-08-29 

 

12 

The convergence of the Ekman flow produces a downward mass pumping into the 

subsurface ocean. The vertical motion distorts the subsurface pressure field to produce horizontal 

pressure gradient in the subsurface. The resulting pressure gradient force then forces geostrophic 

current through the geostrophic adjustment process.  Therefore, the wind can force the subsurface 

flow, albeit indirectly. The vertical motion produced is called the Ekman Pumping. 

The magnitude of the Ekman pumping can be obtained by integrating on the continuity 

equation in the Ekman layer as follows. 

The continuity equation 

 xu   yv   zw  0  

can be written as  

 xue   yve   zw  0  

because the geostrophic flow is non-divergent. Integrating this in the Ekman layer 

0)0(

0

 eeyex wwVUdz

e




                                                                              (3.2.9) 

where  ee ww   is the Ekman pumping velocity. 

 

Example 1: Oceanic wind driven circulation:  

Using a surface rigid lid w(0)=0, the Ekman pumping velocity is 
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In the subtropics, we  0, and in the subpolar region we  0, subsurface geostrophic currents will 

be generated.  

 

Example 2: Atmospheric Spin-Down 
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A cyclonic circulation (>0) produces a convergent Ekman flow, which generates an Ekman 

upwelling 0ew . This compresses the water column above H  and reduces the relative initial 

cyclonic vorticity   , and therefore acts as a spin down forcing due to the  bottom friction. 

More specifically, since guτ ~ , 2τcurl  .  Thus, on the RHS of the vorticity equation, the 

curl of the bottom stress appears as a damping 
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This indicates that 
1

r
 is the spin down scale. 

 

Example 3: Coastal Upwelling 

Near the coastal region, even in the absence of Ekman pumping, an along shore wind can 

still generate coastal Ekman upwelling. First, the along shore wind (as shown below in the 

Southern Hemisphere) forces an off-shore Ekman flow. Mass compensation requires subsurface 

water to upwelling along the cast. This generates an Ekman upwelling. This process is important 

for coastal fishery and El Nino.  

 

 

 

 

 

 

 

Example 4: Equatorial Upwelling 

Equator also provides a natural boundary for the Ekman flow because f0. So even under a 

uniform easterly wind, a divergent surface Ekman flow is produced, which is accompanied by an 

equatorial upwelling. This upwelling is of critical importance to El Nino process. Indeed, it is this 

upwelling that cools the SST on the equator. Consequently, the warmest surface water in the 

central-eastern tropical Pacific occurs off the equator, rather than right on the Equator (Fig.3.5), 

even through the solar radiation forcing is the strongest on the equator.  
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Fig.3.5  World Ocean annual mean SST 
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Sec 3.3: Sverdrup Flow 

 

1. The Sverdrup Flow 

We consider how a downward Ekman Pumping, as in the subtropics, drives the ocean 

circulation. 

 

 

 

 

 

 

 

 

Since we are considering large scales, relative vorticity is negligible. The potential vorticity 

is therefore q 
f  
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H
. Since a downward Ekman pumping 0ew  compresses the water 

column, H decreases. The conservation of potential vorticity requires that f also decreases, that is 

the water column must move southward.  

This can be shown directly from the QGPV equation.  
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Thus, we have 

βvgH=f0we,                                                                                                                   (3.3.1) 

In the subtropical gyre, 0ew , the current is southward and in the subpolar gyre, we > 0 the 

current is northward. Eqn. (3.3.1) is the so called Sverdrup flow (in the context of the QG model). 
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N1: Sverdrup flow in the Planetary Geostrophic Model 

More precisely, the Sverdrup relation can be derived directly from the PG equations which 

allows  1O
f

f



. In the PG equations, the subsurface geostrophic flow is governed by 
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                                                                                                  (3.3.2) 

Substitute the geostrophic flows from the first two equations into the continuity equation 
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Integrate the water column beneath the Ekman layer 
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 is the total geostrophic transport of the water column. Therefore,

 
βVg=f we                                                                                                                     (3.3.3) 

The transport of the total geostrophic flow beneath the Ekman Layer is determined by the Ekman 

pumping forcing.  

The total flow is the sum of the geostrophic flow beneath the Ekman layer and the Ekman 

transport within the Ekman layer 
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This is the true Sverdrup relationship. Notice that the Sverdrup flow consists of two parts, the 

surface Ekman flow and the subsurface geostrophic flow. The ratio of the two parts is: 
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in the mid-latitude. With the QG approximation, 
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fcurlfwe  and the Sverdrup 

relation (3.3.4) degenerates to (3.3.1). 

 

2. The problems with Sverdrup Flow 

At the first sight, it seems that the ocean circulation problem is solved. This turns out to be 

not the case. In the following two figures, both flows are consistent with the Sverdrup flow (3.3.4) 

in the interior ocean. Yet, we could not decide which one is the correct one. Mathematically, this 

occurs because the Sverdrup flow (3.3.4) can’t satisfy the no normal flow boundary condition on 

both the eastern and western boundaries simultaneously. 

 

 

 

 

 

 

 

 

 

Indeed if we solve the Sverdrup flow in the QGPV equation, we see this problem more 

clearly. 
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A general solution to this equation is 
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                           (3.3.6) 

where x’ is a fixed x position.  

A proper solution should satisfy the no normal flow boundary condition on both the xe  and 

xw : 

0
,


we XX


                                                                                                                   (3.3.7) 

This assures the absence of a net meridional mass flux across the basin, as is required in the 

steady state solution. If we choose to satisfy the eastern boundary condition, we can set exx ' , so 

Satisfy the eastern B.C. 

XW XE XW XE 

τ 

Satisfy the western B.C. 
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dx
H
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x
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To further satisfy the western boundary condition, we need 
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This is too strong a constraint on the wind stress and is unlikely to hold in the general cases. 

For example, if  yττ  , we have      0 we

x

xxcurldxcurl
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 . Therefore, one can satisfy 

either the eastern boundary condition with: dx
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curl
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τ
 or the western boundary condition with 



x

wx
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τ
, but not both!  

 

Mathematically, the failure of the Sverdrup flow to satisfy both boundary conditions is 

obvious: the Sverdrup relation (3.3.6) has a first order derivative in x, so it can’t satisfy the two 

meridional boundary conditions (3.3.7) at the same time. Selecting the boundary condition 

therefore requires higher order dynamics such as diffusion and nonlinearity, as will be discussed 

in the next section. 

Physically, we can also understand why the ocean circulation solution is no longer a zonal 

flow. The meridional boundary blocks the PV contour such that, at the lowest order, the ocean 

circulation is not zonal flow (except in Antarctic Circumpolar Current, where no meridional 

boundary exists.).  
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Sec 3.4: Rossby Wave Adjustment, Ocean Circulation and Western Boundary 

Current 

 

Here, we will examine how the steady Sverdrup flow is established, or the spin-up problem 

under a wind forcing. The general linear time-dependent QG equation can be written as: 

t  (2  -  /LD
2) + x   =  curl   - d 2   ,                                                          (3.4.1) 

where a bottom friction (or linear drag Rayleigh friction) has been used.  After the sudden onset of 

a wind curl (for convenience, =(y) is zonally uniform), the initial response is a forced zonal flow 

in the interior ocean governed by 

t  ( yy  - /LD
2)  =  curl        for t<X/C                                                                   (3.4.2) 

where X is the distance of the point of consideration from the eastern boundary, and C= - LD
2 is 

the planetary wave speed. This forced zonal flow u= -y   intensifies linearly with time, similar to 

the initial stage of a resonant response 

yy  - /LD
2  =  t curl  . 

However, this zonal flow satisfies neither the eastern nor the western boundary condition. 

Rossby waves are generated on the boundaries. The long waves, which satisfy 

t  ( - /LD
2) + x   =  0,                                                                                            (3.4.3) 

propagate westward from the eastern boundary at a group velocity  C that is much faster than  that 

of the short waves from the western boundary.  After the passing of the long waves of the point of 

consideration, the flow reaches a steady state, as a forced planetary wave response: 

x   =  curl .      for  t>X/C                                                                                      (3.4.4) 

This is the Sverdrup flow, which is seen now as the superimposition of a forced and a free Rossby 

wave, as shown in (3.4.3) and (3.4.2), respectively. After the planetary wave across the basin 

width L ( t>L/C ), the Sverdrup flow is established in the entire basin.  

 

  



GFD-II-Ch.3. Forced Circulation.    2019-08-29 

 

20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The initial short Rossby waves are reinforced by the reflection of the long waves that cross 

the basin. All the short waves, however, have very slow eastward group velocity. Furthermore, 

these short waves are slow and of small scales, and therefore are subject to strong damping. 

Therefore, the short wave energy is trapped within the western boundary by friction and rapidly 

reaches the steady state: 

x   =   -d2  ,                                                                                                       (3.4.5) 

This produces the Stommel’s western boundary layer, whose width can be derived from the 

scaling analysis as 

S=d /  .                                                                                                                       (3.4.6) 

This boundary layer scale can also be seen from the Rossby wave viewpoint. The eastward 

group velocity of short Rossby waves is: 

Cgs= / k2.  

The bottom friction time scale is: 

TB=1/d. 

i) Initial response: 

 Forced zonal flow 

 X 

 X 

ii) Planetary wave 

adjustment, 
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The distance at which the waves are trapped by dissipation is therefore: 

lB= Cgs TB = / dk2  .  

Since the waves are short waves trapped within this friction distance, their wavelengths can’t be 

much longer than lB. Thus, we have 1/k  lB .  Substitute it into the equation above for lB, we 

recover the Stommel’s boundary layer width lB= d/ =S . The discussion above suggest that the 

beta effect and the friction are critical for the selection of the boundary layer in the west: the beta 

effect creates an east/west asymmetry associated with the Rossby wave, while the friction captures 

energy within a narrow boundary layer. The friction here is the higher order dynamics on the 

Sverdrup flow and enables us to establish the basin-wide steady circulation.  

 

N1: We have seen another analogy of wave adjustment to an equilibrium state. We can compare 

the three types of adjustment in the following table. They share many similar features and in 

essence all represent the adjustment from one equilibrium to another. 

 

Equilibrium State Transient Waves Adjustment 

Processes 

Rotation Effect 

Rest state, 

Flat surface 

Gravity waves Gravity wave 

adjustment 

f=0 

Geostrophic 

balance  

Inertial-Gravity 

waves 

Geostrophic 

adjustment 

f0 

Sverdrup flow 

and WBC 

Rossby waves Circulation spin-up 0 

 

N2: The effect of stratification. 

The Sverdrup flow is the vertically integrated transport and is independent of stratification (in the 

absence of bottom topography, as seen from the derivation of general Sverdrup relation  (3.2.4) 

from the planetary geostrophic model. Therefore, the Sverdrup relationship remains valid in the 

stratified ocean, as long as there is no bottom topography. The Sverdrup relation, however, does 

not tell the vertical structure of the flow. In the case of a stratified ocean, we can show that there is 

no flow in the subsurface ocean at the final steady state. This follows because the linearized 

density equation becomes now: 

wz  = 0  

and therefore  

w=0 

if the stratification does not vanish z0. With the meridional boundary, continuity equation 

further shows that u=v=0 beneath the Ekman layer. Therefore, the Sverdrup flow transport has to 

be trapped singularly beneath the Ekman layer as a delta function. 
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Appendix: Rossby wave adjustment in a 1.5-layer QG model: 

 

  ∂tq+β∂xψ=we(t) 

where the PV is  

  q=∂xxψ+∂yyψ-ψ/L2
D. 

The equation is nondimensionalized such that β=1, L2
D=1, The variables are nondimensionlized 

with ψ by βL2
D, x by LD and t by 1/ βL2

D,. 

Case 1: Initial value problem: initial short wave case 

Case 2: Initial value problem: initial long wave case 

Case 3: forced wave radiation, fast forcing (σ=2), 

Case 4: forced wave radiation, slow forcing (σ=0.5), 

Case 5: forced wave radiation, ultra-slow forcing (σ=0.1), 

Case 6: spin-up forcing, Sverdrup flow and the western boundary current 

  



GFD-II-Ch.3. Forced Circulation.    2019-08-29 

 

24 

 

 

 

 

Case 1 

 



GFD-II-Ch.3. Forced Circulation.    2019-08-29 

 

25 

 

 

 

 

Case 2 

 

 



GFD-II-Ch.3. Forced Circulation.    2019-08-29 

 

26 

 

 

 

 

Case 3 

 



GFD-II-Ch.3. Forced Circulation.    2019-08-29 

 

27 

 

 

 

 

Case 4 

 



GFD-II-Ch.3. Forced Circulation.    2019-08-29 

 

28 

 

 

 

 

Case 5 
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Questions for Chapter 3 

 

Q3.1. What happens to the western boundary layer when beta is reduced? Does the western 

boundary layer still exist when beta vanishes? Why? 

Q3.2. Can the atmosphere have western boundary intensification and western boundary current? 

Where do you think it most likely to occur? 

Q3.3. An island exists in a northern hemisphere ocean basin. Suppose a uniform westerly wind 

stress is switched on at t=0, how would the ocean response? Would there be a circulation at its 

final state? 

 

 

 

 

 

 

 

Island 
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Exercises for Chapter 3 

 

E3.1. (Ekman Spiral) Suppose the Ekman layer is governed by -fv=Azzu,  fu=Azzv, where the 

viscosity A is a constant. For a given wind stress in y direction, Azv|z=0 =/, verify that the 

Ekman layer solution satisfies 

u=V0cos[/4 + z/DE]exp(z/DE),  v=V0sin[/4 + z/DE]exp(z/DE). 

where V0=21/2/( DEf), and  DE =(2A/f)1/2. Discuss the structure of the Ekman spiral. 

 

E3.2. (Ocean circulation in the presence of topography) A homogeneous ocean in a Northern 

Hemisphere ocean basin is forced by a negative wind curl. The ocean floor has a slope that 

shallows towards the east. Suppose the linear QG dynamics applies and the friction is bottom 

friction (or Raleigh friction) such that the flow is governed by 

J(,  y+h) = curl  - r 2 

where h = f0hB/H and hB = ax is the bottom topography with  a>0.  The wind curl is negative 

within the basin curl  <0 everywhere. (a) Find the interior ocean circulation,   (b) draw 

schematically the basin circulation and describe the location of the boundary layers. 

 

 

 

 

 

 

 

 

 

 

 

E3.3. (Advective-diffusive boundary layer) In a 1-D pipe 0≤x≤1, the temperature of the fluid is 

governed by the steady advective-diffusive equation   uxT= A xx T, where u is a constant velocity 

and A>0 is a constant diffusivity. The boundary conditions are:  T(x=0)=0,  and T(x=1)=1.  

(a) Find the exact solution analytically, for the three cases: u>0, u=0 and u<0.  

(b) Under what conditions, there exists a boundary layer? Where is it? 

(c) Do you see a similarity of the above result with the Stommel’s boundary layer in a wind-driven 

gyre.  

 

X=0 X=1 

Y=1 

Y=0 

z 

x 

hB 
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E3.4: (Wind forced oceanic response) An open upper ocean is governed by the 1.5-layer QG 

model 
H

wf

L

E
x

D

t
0

2
)(  


, where the Ekman pumping forcing has the form wE(t)=w0 

cos(σt). (a) What is the forced oceanic response if the ocean is unbounded in x?  What happens 

when the forcing frequency σ approaches zero? (b) What is the forced oceanic response if the 

ocean is bounded by an eastern boundary at x=0?  What happens when the forcing frequency σ 

approaches zero? (c) In the solution of (b), if we only consider the oceanic response east of xw 

(<0), what happens when the forcing frequency σ approaches zero?  

 

E3.5: (Wind forced oceanic response) Repeat E3.4, but keep the relative vorticity such that the 

equation is 
H

wf

L

E
x

D

t
0

2

2 )(  


 .  

 

E3.6: (Planetary wave basin mode) In a rectangular basin ,0,0 YyXx    find the baroclinic 

planetary wave basin modes that satisfy the eastern boundary condition and basin wide mass 

conservation condition. In the QG context, the planetary wave equation is 0  xt C , where 

C=LD
2 =g’D/f0

2; the eastern boundary condition of no normal flow is equivalent to 

)(| toXx   (NOT necessarily 0!) and  the basin wide mass conservation becomes 

.0
sin

  dxdy
Ba

t   The basin normal mode can be assumed of the form ),( yxGe t  .  (a) To 

satisfy the equation and the eastern boundary condition, show that the solution has the form 

)(
C

x
t

Ae





 , where A is a constant. (b) To satisfy the mass conservation condition, show that the 

eigenvalues are =2ni/T  (n=1, 2, 3….) where T=X/C is the transient time of the Rossby wave 

across the basin  (c) Plot the eigenfunction of mode 1 and 2 at the phases t=0, i/2, i and i3/2. 

(d) How does the eastern boundary change with time? (e) Interpret the formation process of the 

planetary wave normal mode, in light of the basin adjustment study of Liu et al., 1999 (JPO, 29, 

p2383-p2404).  (f) If the planetary wave speed varies with latitude (that is C=g’D/f2 and 

f=f0+y), would the basin mode still be neutral modes? 

 


