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Ch.5: Stratified Quasi-Geostrophic Rossby Waves 

 

Sec. 5.1: Quasi-Geostrophic Equation in Stratified Fluid 

 

1. Nondimensional Equations 

We’ll use the oceanic equations (4.1.15) 
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                                                                           (5.1.1) 

We choose the scales as 

u, v ~ U,    x, y ~ L,       w ~ U
D

L
,    z ~ D,  t ~

L

U
 

and denote the Rossby number as: 

=
U

foL
 

The density and pressure can be written as 

𝜌′(𝑥, 𝑦, 𝑧, 𝑡)(= 𝜌𝑂𝑐𝑒𝑎𝑛 − 𝜌0) = 𝜌𝑆(𝑧) + 𝜌(𝑥, 𝑦, 𝑧, 𝑡),                                                (5.1.2a) 

𝑃′(𝑥, 𝑦, 𝑧, 𝑡)(= 𝑃𝑂𝑐𝑒𝑎𝑛 − 𝜌0𝑔𝑧) = 𝑃(𝑧) + 𝑝(𝑥, 𝑦, 𝑧, 𝑡)                                              (5.1.2b) 

where Ocean and POcean are the total density and pressure, 0 is the average density of the ocean, 

and 

)(zg
dz

dP
S  

represents the static part associated with the mean stratification and 

g
z

p





 

is the dynamic pressure associated with the horizontal density variations. For large scale flows 

with small Rossby number, similar to the shallow water case in section 2.1, the dynamic pressure 

is also scaled as  

p ~ foLU0                                                                                                                    (5.1.3) 

such that the pressure gradient force is comparable with the  Coriolis force; the source/sink is 

assumed weak, with GF 



0

1

Ufo

 , and G  O(1); we also use the local -plane approximation   
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of

L
 , where  r~ 1. Then, we can write the two momentum equations in dimensionless 

variables (subscripted with “*”) as: 
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The continuity equation is 
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The scale of  can be derived from the hydrostatic equation 
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Notice (5.1.3), we have 
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                                                                         (5.1.4) 

where LD
2

gD

fo
2

 is the external deformation radius. We can therefore define   as 

 ~ *                                                                                                                        (5.1.4a) 

where * ~ O(1). The hydrostatic equation can be written as 
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With all these scalings, the thermodynamic equation becomes 
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The scale of 
dz

d S  can be derived at the first order from the adiabatic condition. We can 

show from (5.1.5) that  

zzdz

d S














1
 

Indeed, for adiabatic flows, the solution is always along isopycnals .0
'


dt

d
 Therefore, 

''  zx wu  . But, we know that QG equations require at the first order non-divergent: 
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Therefore, the slope of the isopycnal surface must be  
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This implies that any horizontal variation of the static stability (since ’ is the horizontal 

variation part) must be small. This is a weak assumption in many cases. (especially in marine 

eddies.) 

 

 

 

 

 

 

 

 

 

 

Using (5.1.4) and (5.1.6), we have the scale 

)(* z
Ddz
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where )1()(* Oz  . 

The thermodynamic equation becomes 

Sw
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where 



of

S
S 0  and   )1(OS   such that at the leading order the flow is adiabatic. 
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ρ=const 
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Note 1: If we define a buoyancy frequency N(z) 

dz

dg
N S

0

2   

we have  

 

where LI
2=(ND/f)2  is the interior deformation radius. 

Therefore, 
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This requires the scale to be not too large, similar to the homogeneous case. 

 

The complete set of dimensionless equations is therefore (drop the subscript “*”): 
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Similar to the shallow water case in Section 2.1, we solve this set of equations by expanding 

variables as powers of ε: 
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2. O(1) Equation and Dynamics 

Substitute (5.1.8) into (5.1.7), at the leading order, we have 
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                                                                                                   (5.1.9a-e) 

As in the shallow water case, (a), (b), (c) can be used to derive (e). Thus, there are only 4 

independent equations, but with 5 unknowns. This is the “Geostrophy degeneracy”. 

 

To better understand the O(1) dynamics, we write (5.1.9a,b) in dimensional form as the 

geostrophic balance: 
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                                                                                                (5.1.10) 

where 
oo f

p


   is the geostrophic stream function. The hydrostatic balance (5.1.9c) can be 

written as 
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                                                                                                               (5.1.11) 

Differentiate (5.1.10) with respect to z and use (5.1.11), we have 
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                                                                                               (5.1.12) 

This is the thermal wind relation, a direct result of geostrophy and hydrostatic balance. This 

relation has been used frequently to infer ocean currents from the density field, i.e. the so called 

“dynamic method”. 

 

Note 2: It also represents a balance between the baroclinic vorticity generation and the title of 

planetary vorticity in y- and x- directions. Indeed, the general vorticity equation is: 

2
)(
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For large scale ε<<1, we have )(2 Oa  Ωξ . In addition, zyP<<yzP, which is 

equivalent to the Boussinesq approximation in the ocean.  The x and y component of the vorticity 

equation can therefore be written as 

22
22
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Notice hydrostatic balance:  z p g  , in the steady state 0
dt

d

dt

d ayax


 , we have the  thermal 

wind relationship. On the RHS in the two equations above, the first term is the tilting term while 

the second term is the baroclinic term. The balance can be seen schematically as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

A westerly wind shearzu  0  generates positive vorticity in the x direction 

00   xzu . This vorticity is balanced by the opposite rotation that is forced by the 

northward density gradient 00,0  pp zyzy  . 

 

Note 3: Taylor - Proudman Theorem 

For large scale low frequency processes, we have ,2Ωξ a  and t . The vorticity 

equation, assuming incompressibility, is 

2
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 p
 uΩ  

If furthermore, the fluid is barotropic 0 p , we have 

0)(  uΩ  

or assuming kΩ  , this is 

0 uz  
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zu>0 

x>0 due to tilting 
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or there is no shear of velocity in the vertical direction.  

0 wvu zzz   

The water column therefore behaves like a column of solid body. 

 

 

 

 

 

 

 

Even in stratified case, this still shows the tendency of rotation to constraint fluid motion 

variation along . In other words, rotation tends to couple the flow in the direction of . Thus, 

rotation produces a “stiffening” effect that tends to align the vortex tube in the direction of 

rotation.  This is also why in a layered model we can assume no shear for large scales GFD 

processes. 

 

3. O() Equation and QGPV Equation 

At the next order, we have the equations 
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As in the shallow water case, the evolution of the O(1) variables uo, vo are determined by the O(ε) 

variables. Since  
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Thus, we have the nondimensional QG P.V. equation: 
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or in the dimensional form  

D q Sg q                                                                                                                     (5.1.17a) 
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),( JvuD tygxgtg                                                                       (5.1.17e) 
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The dimensional QGPV equation can be written in terms of ψ as: 

qt SqJq  ),(                                                                                                     (5.1.20a) 
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For unforced, adiabatic flow, q is conserved along the geostrophic flow (which is different from 

the original 3-D flow!) 
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4. The Atmosphere Case 

The QGPV equation in the atmosphere can be derived parallel to the oceanic equation. 

Typical scales are chosen as 

u, v ~ U,    x, y ~ L,  w ~ U
D

L
,    z ~ D,  t ~

U

L
, 

The Rossby number is =
Lf

U

o

, the potential temperature is written as 

(x,y,z,t)=(z)+'(x,y,z,t) 

and the geostrophic potential high as 

(x,y,z,t)=(z)+'(x,y,z,t) 

where 
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For large scale flows, the geopotential height anomaly is scaled as 

’ ~ foLU 

such that the pressure gradient is comparable to the Coriolis force at the first order. 

The source/sink is also weak such that  

G
Ufo




F
1

 ,   where |G|O(1). 

The local -plane is adopted as 

L

fo
   ,   O(r) ~ 1.  

The two momentum equations are represented in dimensionless variables as: 
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The mass equation is 
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where Q 
Qa

fo
 and Q  O(1) is consistent with leading order adiabatic. 

The complete set of dimensionless equations is now (drop *): 
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The variables will be expanded as follows: 
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In dimensional form, the geostrophic balance is: 
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We have the nondimensional QG P.V. equation: 
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, we have the QGPV equation for the atmosphere as: 
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Sec. 5.2: Rossby Waves in Stratified Flows  

 

1. Dispersion Relationship 

As in the shallow water case, we study small perturbations linearized on a mean zonal flow. 

The linearized QGPV equation is: 
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where the mean and perturbation potential vorticity are 
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We have used the atmospheric equation (5.1.21) and the oceanic equation can be recovered 

simply by setting p=p0. The QGPV equation can be written in the perturbation streamfunction  

as 
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We will assume the basic state is slowly varying, that is, the wave length in y, z directions are 

short relative to the scales at which U, N2 and Qy vary. (But, we don't need to assume p(z) slowly 

varying!).  Assuming the solution of the form  
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Therefore, (5.2.1) gives the dispersion relationship as 
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for the atmosphere. For the ocean, we can set H infinitely large (incompressible), so that  
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The relation between the shallow water Rossby waves and the baroclinic Rossby waves here 

are readily seen if we make 
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The dispersion relationship can be put exactly the same form as the shallow water Rossby 

wave 
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The LDm is the deformation radius for baroclinic flows with a vertical wave number m. Since 

mLDm /1~ , the deformation radius increases and the wave speed faster for smaller m (or larger 

vertical scale), and vise versa. For typical atmospheric stratification, we have LD1 ~ 1000 km, 

while for typical oceanic stratification, we have LD1 ~ 50 km.  

 

2. Group Velocity and Vertical Propagation 

For a given k, l, the dispersion relationship gives the vertical wave number  
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When the RHS > 0, m is real, and the Rossby wave propagate vertically; When the RHS < 0, m 

becomes imaginary, and the waves are trapped vertically.  

 

For propagation waves (real m), the group velocity can be calculated as 
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where 
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Note 1: If l is replaced by ,
2

2

m
N

fo we have gyC  the same as gzC . Therefore, mathematically, the y 

direction and z direction are very similar for Rossby waves. However, later, we will see that the 

physical meaning of the group velocity in these two directions differ dramatically.  

In the case of U=0, we have Qy =β>0, we have C
kpx  


0 , so the wave always 

propagates westward. Define the phase velocity as 
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We see from (5.2.2) and (5.2.6) that 

sign(Cpy) sign(l)  ,  but )()( lsignCsign gy   

sign(Cpz)  sign(m)  , but )()( msignCsign gz   

Thus, the phase and group velocity are in the opposite directions. 

It should be pointed out that in the atmosphere, even if m is real (when the basic state 

allows),  does not vary with height simply as eimz; instead, its amplitude increases with height as  

H

z

imzee 2~  

or the energy increases with height as 

||2 ~ ez/H  ~ 1/p 

The amplification of the streamfunction with height is caused by the reduction of atmospheric 

pressure.  

 

 

 

 

 

 

 

Finally, for stationary forcing (topography or large scale heating/cooling) c=0. Eqn.(5.2.5) 

shows that only those largest scale waves (smaller k, l) can propagate vertically in the westerly 

wind (U>0) (real m). This has been used to explain the observed stratosphere. Stratosphere 

disturbances are believed to originate from the troposphere. Observations show that the mid- and 

high latitude stratosphere is dominated by disturbances at planetary scales (wave number 1, 2 3), 

although the most energetic disturbances in the troposphere are at higher wave numbers (6 and 7). 

This is because only those very long waves can propagate into the stratosphere according to 

(5.2.2). 

z 

ez/H 
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Fig.5.1  Vertical propagation of atmospheric waves 

 

 

 

Fig.5.2  Geopotential height anomaly in the stratosphere 
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Sec. 5.3: Vertical Normal Modes 

 

1. Vertical Modes in the Ocean 

Consider an ocean with U=0 and N uniform. The mean PV gradient is therefore Qy   . 

The linearized QGPV equation is: 

0][
2

2

  xzz
o

yyxxt
N

f
    (5.3.1) 

On the bottom (assume flat) 

w(x,y,0,t) = 0                                          (5.3.2) 

At the top z=D+(x,y,t) 

We have a rigid lid  

w(x,y,D,t) = 0.                                                                                                                (5.3.3) 

To write the vertical boundary condition in terms of , we resort to the thermodynamic 

equation: 

0' ' 
dz

d
w s

t


  

The hydrostatic balance gives: 

0

'
-









of

g

z
                                                                                                                     (5.3.4) 

We then have 
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o

s

o

s
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f

zt

dz

d
g

f

dz

d
w

2

2

0 -
'

                                                                            (5.3.5) 

Thus, the vertical boundary conditions (5.3.2) and (5.3.3) become 

0 tz     at z=0, D                                                                                                       (5.3.6) 

returning to the QGPV equation. We look for separable solutions of the form 

tieyxz   ),()(  

Substitute this into the QGPV equation, we have the equation for the vertical structure as 


 2

2

2

)(














dz

d

zN

f

dz

d o                                                                                                   (5.3.7) 

and the equation for the horizontal structure as 

  02 



x

i yyxx



                                                                              (5.3.8) 

The vertical boundary conditions (5.3.6) becomes 

d

dz
 0   on z=0,D                                                                                                         (5.3.9) 

D 

z 

D 

0 
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Therefore, (5.3.7) and (5.3.9) form an eigenvalue problem. The eigenvalues are real. Indeed, 

notice (5.3.9),  
D

of

N

0 2

2

)7.3.5(  gives 

.

2

0

2

0
0

0

2

0 2

2

0

2

2

2
2

dz
dz

d
dz

dz

d
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d

dz
dz

d

dz

d

dz

d
dz

dz

d
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f

N

DD
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DDD

o































































 

Therefore, the eigenvalue is 

0

0

2

2

2

2

0
2 
















dz
f

N

dz
dz

d

D

o

D





  

In the case of a uniform N, the eigenfunctions and eigenvalues can be easily solved as  

  









 z

f

N
z m

o

m  cos                                                                                                    (5.3.10) 

,2,1,0,  m
D

m

f

N
m

o


                                                                                    (5.3.11) 

Substitute them into (5.3.8), we have the dispersion relationship 

2

2

2

022 )(
D

m

N

f
lk

k









  

Thus, for each vertical mode, m, the dispersion relationship is exactly the same as that for the 

shallow water Rossby wave, provided that we replace the effective deformation radius for each 

mode as: 

 

 2

2

2

mf

ND
L

o

Dm  .                                                                                                          (5.3.12) 

The deformation radius vanishes, with an increasing m. 

The correspondence of the deformation radius in (5.3.12) with that in the 1.5-layer model 

(1.5.4) can be readily seen below. Since  

D
g

D
g

dz

dg
N

o

s

o

11
~2 









, 

We have 

    22222
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2 '1''
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D

D

g
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where 

Dm 
D

m 2  
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is the equivalent depth. Thus, each baroclinic mode propagate exactly as a 1.5 layer model Rossby 

wave with an equivalent depth of Dm. (Some people also use the expression of 
2

2
ˆ

o

m
Dm

f

Dg
L  , such 

that the equivalent depth is mm DD



ˆ ) 

The LDm is called the internal (baroclinic) deformation radius. This gives a close analogy 

between shallow water dynamics and the stratified dynamics. In the ocean, 11 







Do

D

L

L
.  

The vertical structure of the normal modes is further discussed below. The m=0 mode is the 

barotropic mode or external mode (deformation radius infinitely large in the absence of free 

surface elevation here).  The velocity does not have shear in the vertical direction and there is no 

density perturbation for this mode.   

The m  1 mode is the mth baroclinic mode or internal mode. These modes have m node 

points in the velocity field and are all accompanied with density perturbations. For all the 

baroclinic modes, the vertically integrated net transport vanishes.  

This can be shown directly from (5.3.7)  

and (5.3.9). Integrate (5.3.7) from  

z=0 to D gives   0''
0

2  dzz
D

mm    

and therefore   ,0''
0

 dzz
D

m  if m  0 . 

 

 

Note 1: Equivalent particle examples of external and internal modes. Consider two balls connected 

by a spring. There are two possible normal modes. The first has both balls moving in the same 

direction, as if there is only one ball. This is the ”barotropic mode”. The second has the two balls 

always moving in the opposite directions. This is the “baroclinic mode”. 

 

 

 

 

 

 

When more balls are added, there are more freedoms and more “modes”. 

 

In reality, N(z) is not uniform at all (Fig.5.3). Analytical solution becomes usually 

impossible. Nevertheless, for slowly varying N(z), we can still use the WKB method such that, 

with U=0, (5.2.5) becomes: 

“barotropic mode” “baroclinic mode” 

z 
 

m=0 
m=1,2,3 
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m
2
 

N
2
(z)

f 2
(


C
 k

2
 l

2
) 

for the oceanic case. If m is real at any height, it is real at all height, although N(z) may change. So 

there is no internal reflection. The normal mode is caused by reflection at the top and bottom 

boundaries.  

 

 

 

 

 

 

 

 

After a couple of reflections, normal mode is established in the z direction. The 

establishment of the normal mode is similar to the normal mode in the case of horizontal 

boundaries. The key is that the wave energy is trapped within a finite region. 

The most dramatic change of N is in the oceanic thermocline. The WKB solution shows that 

m(z) changes, small for small N, but large for large N. (Fig.5.4).  

Indeed, for a general N(z), the vertical eigenvalue problem (5.3.7) and (5.3.9) can be solved 

numerically to give m. Then, the horizontal structure satisfies (5.3.8), which is the same as the 

shallow water Rossby wave, except for replacing the deformation radius by LD
2=m

-2. The Rossby 

wave of the mth mode has the dispersion relationship 

222

mlk

k









 . 

 

2. Atmospheric Case  

The normal mode in the atmosphere is much more complicated, because of the lack of a 

upper boundary. It turns out that the normal mode usually doesn't exist in the atmosphere. This is 

not hard to imagine, because, in the absence of a reflective top boundary, a normal mode can't be 

established. 

 

 

 

 

 

 

 

z 

z 
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Mathematically, one can see this crudely here. If the vertical mode equation allows the solution 

imzimz BeAe ~  

The absence of an energy source from above requires that the wave energy radiates upward only. 

This selects B=0. Furthermore, at the bottom, 0 z  determines that 0A . Therefore, there is 

no normal mode.  However, normal modes may exist when a strong shear of U(z) produces 

internal reflections.  
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Fig.5.3  Vertical profiles of N in the atmosphere and ocean 

 

 

 

Fig.5.4  Normal modes in the presence of realistic oceanic stratification. 
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Sec 5.4: The Eliassem-Palm Theorem 

 

1. E-P theorem: 

The shallow water E-P theorem in section 2.6 can be generalized to the stratified fluid. The 

QGPV equation of the atmosphere is 

D q u v q Sg t x y q   ( )    

Consider a basic state 

U U y z ( , ) ,   ( )z ,   ( , )y z , )z()z,y(fo    

where 

)z,y(U
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dz
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and the mean temperature field 
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z
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p
zyTzzyTT k   

where the basic state satisfies the thermal wind relationship 
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The mean QGPV is therefore: 
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and the mean PV gradient is 
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Write 

),,,('),( tzyxzy    

where ,'   is a small perturbation. The QGPV equation can be linearized as 

( ) ' ' ' t x y qU q v Q S                                                                                                  (5.4.1) 

Multiplying the equation by pq'/Qy, we have 
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Since 

''  xv  , )'(
1

'''
2

2

0  zzyyxx
N

f
p

p
q   

])'[(
2

1
'' 2 xxxxv   



GFD-II-Ch.5. Stratified Quasi-Geostrophic Rossby Waves.    2019-08-29 24 

])'[(
2

1
]''['' 2 yxyxyyyv   

'']''[]'['
2

2

2

2

2

2

2





z

o
xzzx

o
zz

o

N

pf

N

f
p

N

f
p

z
v   

     ])'([
2

1
]''[ 2

2

2

2

2

 z
o

xzx
o

z
N

pf

N

f
p   

pv’q’ can be written in the form of flux divergence  

F''qpv                                                                                                                   (5.4.3) 

 

Here, the flux F is the generalized E-P flux 
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F                (5.4.4) 

and 
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The perturbation PV equation (5.4.2) can be written in the wave activity equation: 

SAU xt  F)(                                                                                                  (5.4.5) 

where 

yQ

q
p

A

2

2


                                                                                                                    (5.4.6) 

is the wave activity, and yq QpqSS /' . The conventional E-P equation is the zonal mean of the 

generalized E-P equation. 

CAt  F                                                                                                             (5.4.7) 
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F                                                                         (5.4.8) 

This gives the Elliassn - Palm Theorem. 

For (i) steady amplitude t A = 0, and (ii) conservative S = 0, the E-P flux F is non-divergent. 

(Therefore, F can’t originate from nowhere and end in nowhere, like the mass flux of an 

incompressible fluid) 
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Note 1: For the ocean: 
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2. Wave Activity Flux and Group Velocity 

For almost-plane waves, under the WKB assumption, the solution can be assumed of the 

form  
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Similarly, the flux is 
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3 Vertical Propagation and Meridional Heat Transport 

The vertical component of the E-P flux is directly related to the meridional heat flux  

2
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o
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                                     (5.4.10) 

An upward E-P flux ( 0zF ) corresponds to a northward heat transport, and vise versa. In 

the atmosphere, Rossby waves are usually forced from the surface and propagate upward ( 0zF ). 

This corresponds to a westward tilt (km >0) and should transport heat poleward. In addition, 

waves are also caused by baroclinic instability (Chapter 6). The unstable waves also tilt westward 

and transport heat poleward. 

 



GFD-II-Ch.5. Stratified Quasi-Geostrophic Rossby Waves.    2019-08-29 26 

 

 

 

 

 

 

 

 

 

 

 

 

 

The northward heat transport by Rossby waves contributes to the major part of the 

atmospheric poleward heat transport in the midlatitude region. Interestingly, in the ocean, the wind 

forces Rossby waves at the surface and therefore downward. These waves will transport heat 

equatorward, against the mean gradient. 

 

4. Applications 

Case 1: Wave-mean flow interaction in vertically sheared flow. Assuming a westerly wind with a 

maximum speed in the middle level. In the lower half, the westward tilting trough produces an 

upward E-P flux. The accompanied northward heat transport is down the mean temperature 

gradient (Ty<0 for Uz>0) and therefore tends to reduce the mean temperature gradient. The 

perturbation grows by extracting APE from the mean APE. Similar discussions show that the 

perturbation in the upper half is also unstable. Alternatively, the E-P flux converges, increasing 

the wave activity at the expense of the mean flow strength. (tA increases  and tU decreases). 
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Case 2: Vertical propagation of the atmospheric Rossby waves (see the end of last section). 

The amplitude increases for a vertically propagation wave with height inversely proportional 

to pressure. For a wave packet originate at the surface (1000mb) propagating into the stratosphere 

(10mb), its amplitude increases by 10 times. This can be seen using the E-P theorem. For steady, 

conservation waves,  

.F =0.  

For plane waves, Fy is independent of y, so that  

0 yyzz FF  , 

or 

0''
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                                                                                                        (5.4.11) 

If N is constant,  

  0'' zyz p                                                                                                               (5.4.12) 

Now, if 
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In reality, the amplitude can be changed by dissipation, nonlinearity, wave refraction, etc. 
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Questions for Chapter 5 

 

Exercises for Chapter 5 

E5.1. (Vertical Rossby wave propagation diagram) The basic state is motionless and has a 

constant Brunt-Vasara frequency N. Baroclinic Rossby waves have the form of e i(kx+ly+mz) 

a) Discuss the mathematical similarity between the vertical propagation of stratified baroclinic 

Rossby waves and the meridional propagation of shallow water Rossby waves.  Plot the wave 

vector and direction of the group velocity in the wave number (k,m) plane  (or the dispersion 

diagram circle).  

b) In light of (a), consider an upward/westward propagating baroclinic Rossby wave that is 

incident on a vertical wall (or tall mountain). What will be the direction of the reflected Rossby 

wave?  What will be the wave phase pattern?  

 

 

 

 

 

 

 

(c) If a baroclinic system tilts westward with height, what is the direction of Rossby wave energy 

propagation? 

 

 

 

 

 

 

 

 

 

 

What kind of weather synoptic system does this correspond to?  Which direction does this system 

transport heat flux?  What is the direction of the E-P flux in the vertical direction? (For simplicity, 

you can assume an infinite scale height, or incompressibility). 
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Cg 

(k,m) 

Z 

X 

max

H 

max 

H 

min 

L 

min 

L 

warm cold warm cold 

=0  =0 =0 =0 

Low Low high high 



GFD-II-Ch.5. Stratified Quasi-Geostrophic Rossby Waves.    2019-08-29 29 

E5.2. (Wind forced stratified ocean) A stratified linear ocean is forced by a spatially uniform 

Ekman pumping on the surface with a frequency . The ocean basin has a zonal scale L (such that 

the wave number is k=2/L) that is much longer than the internal deformation radius:  

(a)  Find the direction of the downward group velocity.  

(b)  What is the direction of the group velocity when the forcing frequency approaches zero (the 

limit of steady forcing)? 

(c)  In light of (b), is it possible to have subsurface motion under a steady wind forcing? 

(d)  Is Sverdrup relation valid in the limit of a steady wind?  

(e)  What is the implication of (c) and (d)? 

 

 

 

 

 

 

 

 

E5.3 (Non-Doppler shift effect) In a stratified ocean, we will consider planetary scale 

perturbations that are governed by the potential vorticity equation 
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We project the streamfunction on vertical modes: 
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mm ztyx  where the mth vertical 

mode m is determined by the eigenvalue equation (5.3.7) as 
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. 

(a) If the flow is projected only on a single vertical mode m=M, what is the advection term in the 

potential vorticity equation.  

(b) In light of (a), how do you interpret the perfect non-Doppler-shift effect of the planetary 

Rossby wave in the shallow water or the 1.5-layer model?  

(c) If the flow is projected on more than one vertical modes, show that the mth mode of the flow 

only advects the part of the stretching vorticity that excludes mode m.  

(d) Based on (c), under what condition, Rossby waves will be advected by mean flow (or Doppler-

shift occurs) in a general continuously stratified ocean? 
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E5.4: (Wave-mean flow interaction of baroclinic waves). Based on the wave activity equation and 

E-P flux (5.4.7) and (5.4.8), discuss the wave-mean flow interaction of the following disturbances 

in a westerly shear flow. 

 

 

 

 

 

 

 

 

(a) Will the disturbance grow or decay? Will the mean flow intensify or weaken? 

(b) Discuss the difference and similarity from the corresponding barotropic case (in section 2.6) of 

negative viscosity. 
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