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Ch.5: Stratified Quasi-Geostrophic Rossby Waves

Sec. 5.1: Quasi-Geostrophic Equation in Stratified Fluid

1. Nondimensional Equations

We’ll use the oceanic equations (4.1.15)

Su+(ueVviu-— fv:—io”xp'+in
0 Po
1.1
ov+(ueVN+ fu=—2,p+—F,
0 Po
Lop-_9 (5.1.1)

Po Po
ou+oN+o,w=0

op +@eV)p' =5,

We choose the scales as

uv~U, X y-~L, W~U2, z~D,t~£
L U

and denote the Rossby number as:
U
e= ——
fL
The density and pressure can be written as
p'(x,y,2,6)(= Pocean — Po) = Ps(2) + p(x,¥,2,t), (5.1.29)
P'(x,y,2,t)(= Pocean — P09%z) = P(2) + p(x,y,2,t) (5.1.2b)

where pocean and Pocean are the total density and pressure, oo is the average density of the ocean,
and
dP

E =-0ps(2)

represents the static part associated with the mean stratification and

a_p:

pe —9p

is the dynamic pressure associated with the horizontal density variations. For large scale flows
with small Rossby number, similar to the shallow water case in section 2.1, the dynamic pressure
iIs also scaled as

p~foLUpo (5.1.3)

such that the pressure gradient force is comparable with the Coriolis force; the source/sink is
1

foUp,

assumed weak, with F=¢G ,and G < O(1); we also use the local B-plane approximation
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AL

T s ye , where r~ 1. Then, we can write the two momentum equations in dimensionless

0

AT 32

variables (subscripted with “*”’) as:

g{?* + (U, o V) — WV — V. = _P- +&G

*

X

N

K

g{i/* + (U, o V)V, + .U +U, =—— + &G

* *

D |

y

The continuity equation is
Al N, oW,

+ + =0
XK HN. A
The scale of p can be derived from the hydrostatic equation
D__
= 9p.
Notice (5.1.3), we have
p f,LU L.,
~ P Do ~ o (—)e=T 5.14
P gD gD Po pO(LD) ( )
where L,* = g—lz is the external deformation radius. We can therefore define p as
p~Tp=* (5.1.43)
where p» ~ O(1). The hydrostatic equation can be written as
P _
a. >

With all these scalings, the thermodynamic equation becomes

Ur . ap. UD  dp,
- + u* v* * +_W*
L tq TWeVIpde Wy

=S,.

Thus,

P (U eV)p}+ UD dps S,

&f W, =
A. fLL  dz f

ap- De dpos S
+ (U. V* 1 W = ° 515
2t ry R (5.1.5)

can be derived at the first order from the adiabatic condition. We can

The scale of dps
z

show from (5.1.5) that
d& > E@ >> @

dz e a

Indeed, for adiabatic flows, the solution is always along isopycnals O(lj—’: = 0. Therefore,

uo,p' = wo, p'. But, we know that QG equations require at the first order non-divergent:
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w D
- < g=
u L

IN

. D
Therefore, the slope of the isopycnal surface must be < gz

@ [P w D
X/l a u L
Since Ps =0, we have é’ﬁ = @ ~ @2 , and therefore
X X & alL
p ﬂ&+mgg
a a
al dz

(5.1.6)

This implies that any horizontal variation of the static stability (since o is the horizontal
variation part) must be small. This is a weak assumption in many cases. (especially in marine

eddies.)

\\_/

p=const

ap <<aps

Using (5.1.4) and (5.1.6), we have the scale

dps _ LR(Z)
dz De¢

where I.(z) <0(2).

The thermodynamic equation becomes

g{?* +(WV)p+WI, =65

*

where &S = % and S <0O(2) such that at the leading order the flow is adiabatic.

0
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Note 1: If we define a buoyancy frequency N(z)

N? = _idﬁ
Py 0z
we have
dps , 5
O(1)>F*(z): dz — N polg :(ij
- T/De (pL’£2/9D)/De | L

where Li>=(ND/f)? is the interior deformation radius.

Therefore,

2
P s o [L] o
a dz L,

This requires the scale to be not too large, similar to the homogeneous case.

The complete set of dimensionless equations is therefore (drop the subscript “*”):

_P_ A eV —
Vv Y g{d+(u Viu-ryv-G,}

_u—%zg{%+(ro)v+ryu—Gy}

W, = g{%+ (UsV)p—S} (5.1.7)

—+—+—=0
X & a

Similar to the shallow water case in Section 2.1, we solve this set of equations by expanding
variables as powers of &:

u=u, +eu, +0(&?%)

V=V, +&v, +O(s%)

p=p,+&p, +0(%) . (5.1.8)
p=p, +&p +0(&?)

wW=Ww, +&w, +0(£?)
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2. O(1) Equation and Dynamics
Substitute (5.1.8) into (5.1.7), at the leading order, we have

w, =0 (5.1.9a-e)

As in the shallow water case, (a), (b), (c) can be used to derive (). Thus, there are only 4
independent equations, but with 5 unknowns. This is the “Geostrophy degeneracy”.

To better understand the O(1) dynamics, we write (5.1.9a,b) in dimensional form as the
geostrophic balance:

st
of ' > (5.1.10)
Uy =————=-0,¢
fope &
where y = Lf is the geostrophic stream function. The hydrostatic balance (5.1.9c) can be
Polo
written as
f
P __toy (5.1.11)
Po 9 a
Differentiate (5.1.10) with respect to z and use (5.1.11), we have
X _ o'y _ 9 o
a &a  f,p, &
oP (5.1.12)

A __ o'y __9 p
a  da fp, oy
This is the thermal wind relation, a direct result of geostrophy and hydrostatic balance. This

relation has been used frequently to infer ocean currents from the density field, i.e. the so called
“dynamic method”.

Note 2: It also represents a balance between the baroclinic vorticity generation and the title of
planetary vorticity in y- and x- directions. Indeed, the general vorticity equation is:

A v svy_E Ve
E_(ga V)U &av u-+

VoxVp

2
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For large scale e<<1, we have &, =2Q+ O(¢). In addition, apdP<<gpaP, which is
equivalent to the Boussinesq approximation in the ocean. The x and y component of the vorticity
equation can therefore be written as

o,p0,p—070, 00 o, p0
%zZQé’Zu+ PP Zpypzzgazw yP% P
dt p2 pZ
dé, ,po,p—E,p0 8. pd
iyzZQOZV'F zp xp 2xp ZpZZQO’)ZV— szzp
yo,

d
Notice hydrostatic balance: & p =—-pg, in the steady state di”‘* = jtay =0 , we have the thermal

wind relationship. On the RHS in the two equations above, the first term is the tilting term while
the second term is the baroclinic term. The balance can be seen schematically as follows:

Cx>0 due tg tilting

X denser

lig h'tér /

A westerly wind shear Ju > 0 generates positive vorticity in the x direction
Qo,u>0= 2, >0. This vorticity is balanced by the opposite rotation that is forced by the

northward density gradient &, >0,0,p<0=2,p0,p <0,

Note 3: Taylor - Proudman Theorem
For large scale low frequency processes, we have &, = 2Q, and g, < 2. The vorticity
equation, assuming incompressibility, is
(2Qev)u=YLXVP
Y2,

If furthermore, the fluid is barotropic VpxVp =0, we have
(QeV)u=0
or assuming Q = Qk, this is
QI,u=0
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or there is no shear of velocity in the vertical direction.
oUu=0N=0,w=0

The water column therefore behaves like a column of solid body.

P ——

Water column

i —

Taylor Column

Even in stratified case, this still shows the tendency of rotation to constraint fluid motion
variation along Q. In other words, rotation tends to couple the flow in the direction of Q. Thus,
rotation produces a “stiffening” effect that tends to align the vortex tube in the direction of

rotation. This is also why in a layered model we can assume no shear for large scales GFD
processes.

3. O(g) Equation and OGPV Equation

At the next order, we have the equations

4)1 D*g
vV, ——=—U, — -G
1 O’X Dt o] ryvo X
—ul—@ v, +ryu, -G,
& D
r D-g S (5.1.13)
_W = — — L.
1 Dt po
Ay Ay A
X & a
D*g é) 0” é’ . - . .
where — = —+u, — +V, — . (This becomes a horizontal total derivative because w, =0). The
Dt A& X 12
vorticity equation is therefore:
Ay Ay Doy By Ay Dy
X O dt "X o X
D.
Here, we used:ﬁ(— i u,) = gt(a/O éUO)ﬂ% X, )(% &).
& dt ay dt XK ¥y XK XK G

Thus,
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gt(a’ s i) _%+curlG (5.1.14)

&

As in the shallow water case, the evolution of the O(1) variables uo, Vo are determined by the O(e)
variables. Since

1 S Por S
B T o
2 Py
oW, =— —a =
z7'1 [0,z 1_, ( )

Thus, we have the nondimensional QG P.V. equation:

N, A, I p
° curlG + 2, 5.1.16
Do {ry + X &( k= (*) ( )
or in the dimensional form
D,q=S5, (5.1.173)
where
=f,+py+<+7, 5.1.17b
Py+¢+,( ap / & ) ( )
1 f,Q
S,=—k-VxF+7, ° 5.1.17c
o=k VxF o) (5.1.17c)
=0V, -0, =Viay (5.1.17d)
D, =0, +u,0,+v,0, =0, +I(y, ) (5.1.17¢)
Since now
Pofs Oy
- & 5.1.18
P — ( )
2 g do
N2 =—L s (5.1.19)
po dz
We have
p __t oy
_dp, N* a
dz
The dimensional QGPV equation can be written in terms of y as:
J4q+3(y,q) =S, (5.1.20a)
2 5!//
=f,+py+V ) (5.1.20b)

For unforced, adiabatic flow, g is conserved along the geostrophic flow (which is different from
the original 3-D flow!)
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4. The Atmosphere Case

The QGPV equation in the atmosphere can be derived parallel to the oceanic equation.
Typical scales are chosen as

uv~U, xy-~L, W~U2, z~D, t~£,
L U

The Rossby number is sz%, the potential temperature is written as

[¢]

AX,y,z,t)=Xz2)+E(x,y,z,t)
and the geostrophic potential high as

Hxy.z)=D2)+ ¢ (xy.2.1)

where
ae _ 0(2)
= o
dp @
iz 9%

S
For large scale flows, the geopotential height anomaly is scaled as
¢’ ~ LU
such that the pressure gradient is comparable to the Coriolis force at the first order.

The source/sink is also weak such that

1 F=¢G , where |G|<O(1).
fUp
The local B-plane is adopted as
L
pL =ye, O(r)~1.
A

The two momentum equations are represented in dimensionless variables as:

A, op.
& +(U. oV U — WV} — V. =— + &G
{01 ( JU. — .V, } &

* 3

X

y

* *

g{a/* + (U, o V)V, + .U} +U, =— Y. +&G
a ¥

The mass equation is
., A 1 0

— +—— ) =0
& & pa
The scale of @’ is estimated from the hydrostatic equation
P _°
a %9

)

This gives
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0>~ ﬁes ~ MQS NQ(i)%:r
gDh gb L,
where L, = g_e is the external deformation radius Thus,
0 ~ e where &<~ O(1),
and the hydrostatic balance is
0.
_¢ — 6.
124
With these scaling, the thermodynamic equation becomes
ur oo. Uub de
— +(U. eV, )0}+—wW,.— =
C { ry ( )60.} P Q.
= P s evyoy+ U0, 99 Q
A. f,L  dz f,T
- .. dO 170 o0 N
The scale of a9 can be anticipate to satisfy — >—-— >>— For adiabatic flows, the
dz dz ¢ & 14

solution is always along isentropics, ?j—f = 0. Since QG equations require < gz , the slope of

. . D
the isentropic surface must be < gz

20 /20
X/ 01z

1N

D
asfe—
L

Since s =0, we have
X

and therefore
a0' 2(0+0") <.

a a
 20)
a a
Thus, we are led to the scale of
doe r
— =—1T. where T,(2)<0(1).
= — L) (2<0Q)
If we define a buoyancy frequency N(z), then
N = £ d_®
O, dz

The thermodynamic equation becomes

b,
&
{ a

+ (U V.)E+ Wl = Q

*
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where &0 = er and Q < (1) is consistent with leading order adiabatic.

o

The complete set of dimensionless equations is now (drop *):

g eIy -
vo— =l rUeViu-nyw -G}
—u—%:g{%-l-(u.V)V-i-ryU—Gy}
W = o7 (UeV)O-Q)

D _p-0

a

a & 10 _
(=0

The variables will be expanded as follows:
u=u,+ su + 0(&%)
v=v, + e+ 0(&)
p=¢,+e4 +0(&)
0=0 +:e0, +0()

w=w, +éew, +0(&)

The O(1) equations are

Voz%i uoz_%, Wo:O’ @:90
2 &

éUO +%+1£(pwo):o

X & pa

In dimensional form, the geostrophic balance is:
109
:——Ea
o] fo @( XW
109
g __f_E:_ y

where v = ?4 is the geostrophy stream function. The hydrostatic equation is % =6" or
g = %2—(// . This leads to the thermal wind relationship

S

Ay 52'/’_9@ Ay __ g

a aa 16, & a ga 16,4

At the next order, we have

% _D.

=—9%y, -1y, -G
& Dt o e

1
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D.
—ul—%:—g’vo +ryu, -G,
& Dt
—w,I, _—*590 -Q
@—9:0
a
a, & 1(pw,)
X & p a
where —% = = +u, — +V, — . The vorticity equation can be derived as:
Dt & X 12
N, A 170 =
0 0 =——/(pw,) +curlG
Do (- gy +1y) pﬁz(p ;)
Since
1 Q %\, Q
W, = _F_* D*gtgo +_* = _D*gt (_*) 1_,_
1 10,.Q
Eé’z(pwl)?Dgt[——(p O)] _E( r_)
We have the nondimensional QG P.V. equation:
D fry+ Yo Mo 1O (IO )} = curlG + = &, (pQ)
X & pa P
In the dimensional form
D,q=35,
where
f
q=f,+py+¢+— o”(dp(l;a lk~V><F 3®Qa
/z p /z
=0y, -3, =V, D, =3 +U 3 +V,3,
Now, with
g,zﬁf Wy NZ_&d_@
g a 6 dz
£, ﬁl//
and therefore
de
/ @
J9+J(y,q) =S, (5.1.21a)

q=f, +py+Vu pf &//)

(5.1.21b)

12
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Sec. 5.2: Rossby Waves in Stratified Flows

1. Dispersion Relationship

As in the shallow water case, we study small perturbations linearized on a mean zonal flow.
The linearized QGPV equation is:

(6, +Ud,)q+v'Q, =0

where the mean and perturbation potential vorticity are

1 | pf%
Qyzﬂ_ayyu_gaz NZ aZLJ !

2
q=a,u+ é’wl//+%0’{ pfg 5_‘/’}

N2 &

We have used the atmospheric equation (5.1.21) and the oceanic equation can be recovered
simply by setting p=po. The QGPV equation can be written in the perturbation streamfunction y
as

2
(6, +U8, 0w +5WW+%52[ ';’\1;3 azw}}Jr G4, =0 (5.2.1)

We will assume the basic state is slowly varying, that is, the wave length iny, z directions are
short relative to the scales at which U, N? and Qy vary. (But, we don't need to assume p(z) slowly
varying!). Assuming the solution of the form

w(x,y,z,t)= Re{‘P(y, z)emzﬂ

where

0 =K(x—ct) + Iyl(y')dy'+rm(z')dz'

We have approximately

Ou =K'y, Oy =~y
and
fo 1

1 . ,pf?
ZO0 ()22 =5 (pd
) Z(Nz W) N7 ,(pPo,y)

Therefore, (5.2.1) gives the dispersion relationship as
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/s 1
(U—c)[k2+lz+ﬁ(m2+m)]—Qy= 0.
That is
c=U- szy (5.2.2)
K+ +N_02(m2 + 4H2)

for the atmosphere. For the ocean, we can set H infinitely large (incompressible), so that
o
£

K+ +25m

c=U-

(5.2.3)

The relation between the shallow water Rossby waves and the baroclinic Rossby waves here
are readily seen if we make
N2
Lon = ———— (5.2.4)
S m? +——)

4H?

The dispersion relationship can be put exactly the same form as the shallow water Rossby
wave

C=U—%
K*+1°+Lg,

The Lom is the deformation radius for baroclinic flows with a vertical wave number m. Since
Ly, ~1/m, the deformation radius increases and the wave speed faster for smaller m (or larger

vertical scale), and vise versa. For typical atmospheric stratification, we have Lp1 ~ 1000 km,
while for typical oceanic stratification, we have Lp1 ~ 50 km.

2. Group Velocity and Vertical Propagation

For a given k, |, the dispersion relationship gives the vertical wave number
2
1
mzz%r& kz lz—|_ -
I LU—C J 4H
When the RHS > 0, m is real, and the Rossby wave propagate vertically; When the RHS <0, m
becomes imaginary, and the waves are trapped vertically.

(5.2.5)

For propagation waves (real m), the group velocity can be calculated as

C —a—a)—U+A[k2—I2—f—°2(m2+ 1 ]
% ok N 2 4H?2
ow
C, = a3 2kIA (5.2.6)
2
ngza—“’:zf"zkm
om N

where
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[ilozz (m2 + 1 )]—2 — (U _C)z

A=Q,[k*+I1*+
QL 4H2 Q,

. f2 :
Note 1: If I is replaced by —-m, we have C, the same asC , . Therefore, mathematically, the y
N
direction and z direction are very similar for Rossby waves. However, later, we will see that the
physical meaning of the group velocity in these two directions differ dramatically.

(4

In the case of U=0, we have Qy =4>0, we have C "

< 0, so the wave always

propagates westward. Define the phase velocity as

O W
Cp :(prpr'sz)E(?vTia)

We see from (5.2.2) and (5.2.6) that
sign(C, )= —sign(l) , but sign(C,,) = +sign(l)

sign(C,,) = —sign(m) , but sign(C,) = +sign(m)

Thus, the phase and group velocity are in the opposite directions.

It should be pointed out that in the atmosphere, even if m is real (when the basic state
allows), y does not vary with height simply as "™?; instead, its amplitude increases with height as

W~ eimzeﬁ
or the energy increases with height as
|V’|2 ~ ez/H - 1/p

The amplification of the streamfunction with height is caused by the reduction of atmospheric
pressure.
-~ Z

Finally, for stationary forcing (topography or large scale heating/cooling) c=0. Egn.(5.2.5)
shows that only those largest scale waves (smaller k, 1) can propagate vertically in the westerly
wind (U>0) (real m). This has been used to explain the observed stratosphere. Stratosphere
disturbances are believed to originate from the troposphere. Observations show that the mid- and
high latitude stratosphere is dominated by disturbances at planetary scales (wave number 1, 2 3),
although the most energetic disturbances in the troposphere are at higher wave numbers (6 and 7).
This is because only those very long waves can propagate into the stratosphere according to
(5.2.2).
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HEIGHT (KM)

o - .
Zlgo® o 90° 180°
LONGITUDE

Fig. TL13.  Longitude—height section of the meridional velocity perturbation at the equator as found by
Holton 11972, Fig. 9} for an antisymmetric source of diabatic heating that oscillates with an amplitude exceeding
4K day ! inside the heavy line. Contours areat 2ms™ ! intervals. The waves produced are mainly mixed planetary—
gravity waves. The mean wind varies with height with a maximum eastward velocity of 8 m 57! at 21 km. zero
velocity at 25 km, and westward velocity above that level.

Fig.5.1 Vertical propagation of atmospheric waves
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Fig.5.2 Geopotential height anomaly in the stratosphere

16
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Sec. 5.3: Vertical Normal Modes

1. Vertical Modes in the Ocean

Consider an ocean with U=0 and N uniform. The mean PV gradient is therefore O, = 3.

The linearized QGPV equation is:
2

A0n+ 0y + 205 0u W + POy =0 (B31) :

2

On the bottom (assume flat)
w(x,y,0,t) =0 (5.3.2) D
At the top z=D+n(x,y,t)

We have a rigid lid
w(x,y,D,t) = 0. 10.3.3)

To write the vertical boundary condition in terms of y, we resort to the thermodynamic
equation:

dp
op+wW—=0
1P dz
The hydrostatic balance gives:
ﬁ 1
7 - -fipﬂ (5.3.4)
0 0
We then have
at/oI fopo é’ZW fo 5 3 5
W:_%: %d&:_NzatzW ()
dz dz

Thus, the vertical boundary conditions (5.3.2) and (5.3.3) become
J,w=0 atz=0,D (5.3.6)

returning to the QGPYV equation. We look for separable solutions of the form
= p(2)¥P(x y)e ™

Substitute this into the QGPV equation, we have the equation for the vertical structure as

d fo2 d_¢ _ _ 12
E{N(z)? dz}_ ~e (531

and the equation for the horizontal structure as
—io|o, ¥+ 0, W - W]+ ﬂ% =0 (5.3.8)

The vertical boundary conditions (5.3.6) becomes

? =0 onz=0,D (5.3.9)

z
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Therefore, (5.3.7) and (5.3.9) form an eigenvalue problem. The eigenvalues are real. Indeed,
N 2

notice (5.3.9), _[OD¢?>< (5.3.7) gives

(o]

2PN ey PP, e d(,dd) (dg)
A '[0 f02¢ dz_'[o ¢d22dz_j0 {dz(qjdzj [dz} }dz

_ 9810 _o(dgY  __o(de)
ol e e LlE)

Therefore, the eigenvalue is

()

>0

In the case of a uniform N, the eigenfunctions and eigenvalues can be easily solved as

¢.(2)= cos(fﬂ/lmzj (5.3.10)
Ny % o012 (5.3.11)
f D

Substitute them into (5.3.8), we have the dispersion relationship
- pK
f2 mrz
K212+ -2 (—5)°
NZ( D )

w =

Thus, for each vertical mode, m, the dispersion relationship is exactly the same as that for the
shallow water Rossby wave, provided that we replace the effective deformation radius for each
mode as:

(NDY

(e (5.3.12)

2 _
I-Dm_

The deformation radius vanishes, with an increasing m.

The correspondence of the deformation radius in (5.3.12) with that in the 1.5-layer model
(1.5.4) can be readily seen below. Since

sz_i%—ygA_pl !

1
p, 0z p05=g D'
We have
Lf) zg' D? gD 1 g'D,
"TDRmaf 7 (maf £
where
D - D
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is the equivalent depth. Thus, each baroclinic mode propagate exactly as a 1.5 layer model Rossby
gDy,

f2

, such

wave with an equivalent depth of Dm. (Some people also use the expression of L% =
. N Ap
that the equivalent depthis D,, =——D,,)
Yo

The Lom is called the internal (baroclinic) deformation radius. This gives a close analogy

. - : L A
between shallow water dynamics and the stratified dynamics. In the ocean, —2* = 2P .

I-Do ,0
The vertical structure of the normal modes is further discussed below. The m=0 mode is the
barotropic mode or external mode (deformation radius infinitely large in the absence of free
surface elevation here). The velocity does not have shear in the vertical direction and there is no
density perturbation for this mode.

The m >1 mode is the m™ baroclinic mode or internal mode. These modes have m node
points in the velocity field and are all accompanied with density perturbations. For all the
baroclinic modes, the vertically integrated net transport vanishes.

This can be shown directly from (5.3.7)
and (5.3.9). Integrate (5.3.7) from

z=0to D gives 4> .[OD(;Sm (z')dz'=0 m=1,2,3

D
and therefore JO ¢, (2)z'=0,if 4, # 0.

Note 1: Equivalent particle examples of external and internal modes. Consider two balls connected
by a spring. There are two possible normal modes. The first has both balls moving in the same
direction, as if there is only one ball. This is the "’barotropic mode”. The second has the two balls
always moving in the opposite directions. This is the “baroclinic mode”.

“barotropic mode” “baroclinic mode”
-« - — <+
ANy 0NN 0 A ANy 0NN 0 NN
—_— — - —

When more balls are added, there are more freedoms and more “modes”.

In reality, N(z) is not uniform at all (Fig.5.3). Analytical solution becomes usually
impossible. Nevertheless, for slowly varying N(z), we can still use the WKB method such that,
with U=0, (5.2.5) becomes:
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2 NZ(Z)
m =-"75"
A

for the oceanic case. If m is real at any height, it is real at all height, although N(z) may change. So
there is no internal reflection. The normal mode is caused by reflection at the top and bottom

R

After a couple of reflections, normal mode is established in the z direction. The
establishment of the normal mode is similar to the normal mode in the case of horizontal
boundaries. The key is that the wave energy is trapped within a finite region.

(ngk2 +1)

The most dramatic change of N is in the oceanic thermocline. The WKB solution shows that
m(z) changes, small for small N, but large for large N. (Fig.5.4).

Indeed, for a general N(z), the vertical eigenvalue problem (5.3.7) and (5.3.9) can be solved
numerically to give Am. Then, the horizontal structure satisfies (5.3.8), which is the same as the
shallow water Rosshy wave, except for replacing the deformation radius by Lo?=An"2. The Rossby
wave of the m™ mode has the dispersion relationship

- X

nw=——"-.
2
K> +17+ 4

2. Atmospheric Case

The normal mode in the atmosphere is much more complicated, because of the lack of a
upper boundary. It turns out that the normal mode usually doesn't exist in the atmosphere. This is
not hard to imagine, because, in the absence of a reflective top boundary, a normal mode can't be
established.

| T
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Mathematically, one can see this crudely here. If the vertical mode equation allows the solution
¢ - Aeimz + Be—imz
The absence of an energy source from above requires that the wave energy radiates upward only.

This selects B=0. Furthermore, at the bottom, &,¢ =0 determines that A=0. Therefore, there is

no normal mode. However, normal modes may exist when a strong shear of U(z) produces
internal reflections.
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FIGURE8.16. Vertical profiles of the global-mean density in kg m * *and two measures of the mean static stability (see the text) in 10 * *kgm ~ *(a),

and a vertical profile of the global mean Brunt-Viisili frequency squared (b) in 10~ ®rad’s

2

Fig.5.3 Vertical profiles of N in the atmosphere and ocean
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Figure 6.12.1 (a) The barotropic and first three baroclinic modes, as calculated by
Kundu. Allen. and Smith (1975) for (b) the distribution of N observed at ocean
station Carnation, off the Oregon coast.

Fig.5.4 Normal modes in the presence of realistic oceanic stratification.
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Sec 5.4: The Eliassem-Palm Theorem

1. E-P theorem:

The shallow water E-P theorem in section 2.6 can be generalized to the stratified fluid. The
QGPV equation of the atmosphere is

D,q=(4 +ud, +v4,)q =S,
Consider a basic state

U=U(y,2), ®=0(z2), ¥Y=Y(y,2), o=, P(y,2)+D(z)
where

¥ d® _gT(z) _ g P

A U(y.z), @ T Ts(p*) <

and the mean temperature field

T=T(y,2)+T(z)=T(y,z)+ (pﬂ)k@)(z)

where the basic state satisfies the thermal wind relationship
9a_ AN
T8 °a
The mean QGPV is therefore:

&‘P 1§pf
po’ZNo“z

QWy,2)=f, +py+ s

and the mean PV gradient is

Qy(y,z)=ﬂ—iyiﬁ—%§(p,j—z )
Write

w =Yy, ) +y'(X,y,2,1)
where y'<< W, is a small perturbation. The QGPV equation can be linearized as

(q+Ug)q+v'Q, =85, (5.4.1)

Multiplying the equation by pq'/Qy, we have

(5.4.2)

I2
(6, +Us) X
2Q,
Since

2
Vi=oy', q'= 5xxw'+ﬁyy'//'+%é’z ( p%é’zw')

1 1 1 1
Vo= l0w)]
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] ] ] 1 1 1\ 2
v ﬁyyl// = ay [axl// ay!// ]_Eé)x [(ay!// ) ]

vt a1 opteayou- o
0,2 pN2 zl// - Yz pNg xl// zl// le/j

 pf,”
N2

v

2

f 1
° Sw'ow'l-=0
D W'l > W[

pf,”
N 2

=a,lp @)1

pv’q’ can be written in the form of flux divergence
pv'ig'=V-F (5.4.3)

Here, the flux F is the generalized E-P flux

_p "\2 "\2 fo2 12 | _E u'z_v'z_ Ni 2 |
RS0 -0 =2 @) |5l Niea)
F=|F, |= pow' o' = —fpu"v: (5.4.4)
F, pfoz o pf.v'é
] NI A |1 do/dz
and
de . & N°

N 2 _ 9% W= ——
Tt doe
0, dz f Az

The perturbation PV equation (5.4.2) can be written in the wave activity equation:

(6, +Ud,)A+V-F=S (5.4.5)
where
gqrz
A= Q— (5.4.6)
y

is the wave activity, and S =S pq'/Q, . The conventional E-P equation is the zonal mean of the
generalized E-P equation.

OA+V-F=C (5.4.7)
where
_ p—q_' _[TE - IOEV'
Q | P Ge/d

This gives the Elliassn - Palm Theorem.

For (i) steady amplitude & A = 0, and (ii) conservative S = 0, the E-P flux F is non-divergent.
(Therefore, F can’t originate from nowhere and end in nowhere, like the mass flux of an
incompressible fluid)
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Note 1: For the ocean:

o ' f? 17T 2 2 P 2
2 2 _ Yo 2 u'“—v'“<— N——
R |00 =) -7 () N . a2’
F=F |= oy oy’ = _U.IV'.
= 2 fVvp
T NZOV oY I dps /dz |

2. Wave Activity Flux and Group Velocity

For almost-plane waves, under the WKB assumption, the solution can be assumed of the
form

w'(X, Y, z,t) = Re{‘lj(y, z)emz'*}
where 6 =k(x —ct) + J'yl(y')dy'+jZ m(z')dz'. We can derive the wave activity as
P~z 1 2
A=Pq?i0 = 1w
54 Q, A | V|
where we have used

' k2+I2+fL2 m?+—2 |y
1 N2 )

Similarly, the flux is

_
Fy=pdyoy’ zEkI|‘~I’|2

F, = p‘ia 2 wlszRe k¥ (im+ijly * ~£fi2km|‘1’|2 (5.4.9)
z N2 xlr// zl// 2 N2 2H 2 2 o

_ = = f,?

F:(Fnyz):|:2k|A, Zﬁkm}A:(ng'ng)A

3 Vertical Propagation and Meridional Heat Transport
The vertical component of the E-P flux is directly related to the meridional heat flux

Foplo gm0 N G5 o GG wkm|wp (5.4.10)

F TNV Y T e/ dz -

An upward E-P flux (F_Z > 0) corresponds to a northward heat transport, and vise versa. In

the atmosphere, Rossby waves are usually forced from the surface and propagate upward (Ez >0).
This corresponds to a westward tilt (km >0) and should transport heat poleward. In addition,
waves are also caused by baroclinic instability (Chapter 6). The unstable waves also tilt westward
and transport heat poleward.
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6=0 6=0 6=0 6=0

MfN, 1

(k,,
9 k, x

\_/

The northward heat transport by Rossby waves contributes to the major part of the
atmospheric poleward heat transport in the midlatitude region. Interestingly, in the ocean, the wind

forces Rosshy waves at the surface and therefore downward. These waves will transport heat
equatorward, against the mean gradient.

4. Applications

Case 1: Wave-mean flow interaction in vertically sheared flow. Assuming a westerly wind with a
maximum speed in the middle level. In the lower half, the westward tilting trough produces an
upward E-P flux. The accompanied northward heat transport is down the mean temperature
gradient (Ty<0 for U.>0) and therefore tends to reduce the mean temperature gradient. The
perturbation grows by extracting APE from the mean APE. Similar discussions show that the
perturbation in the upper half is also unstable. Alternatively, the E-P flux converges, increasing
the wave activity at the expense of the mean flow strength. (6tA increases and otU decreases).

y
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Case 2: Vertical propagation of the atmospheric Rossby waves (see the end of last section).

The amplitude increases for a vertically propagation wave with height inversely proportional
to pressure. For a wave packet originate at the surface (1000mb) propagating into the stratosphere
(10mb), its amplitude increases by 10 times. This can be seen using the E-P theorem. For steady,
conservation waves,

Ve.F =0.

For plane waves, Fy is independent of y, so that

ﬁzlfz =—§ylfy =0,
or
f2 ——
ﬁz[f;‘; wxwz}o (5.4.11)
If N is constant,
oo, v, |=0 (5.4.12)
Now, if

y'=Re[I'(y,2)e"]
where T' = We2H . We have J,p'= Re(ikI'e'?), 4,p'= Re[(im +%)1‘ei‘9] . Therefore,
o' o,y = %km |T|?. Thus, (5.4.12) gives

2.(p|T[)=0

In reality, the amplitude can be changed by dissipation, nonlinearity, wave refraction, etc.
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Questions for Chapter 5

Exercises for Chapter 5

E5.1. (Vertical Rossby wave propagation diagram) The basic state is motionless and has a
constant Brunt-Vasara frequency N. Baroclinic Rossby waves have the form of e i(x+ly+mz)

a) Discuss the mathematical similarity between the vertical propagation of stratified baroclinic
Rossby waves and the meridional propagation of shallow water Rossby waves. Plot the wave
vector and direction of the group velocity in the wave number (k,m) plane (or the dispersion
diagram circle).

b) In light of (a), consider an upward/westward propagating baroclinic Rossby wave that is
incident on a vertical wall (or tall mountain). What will be the direction of the reflected Rossby
wave? What will be the wave phase pattern?

i(kx+ly+mz)

(c) If a baroclinic system tilts westward with height, what is the direction of Rossby wave energy
propagation?

06=0 06=0 06=0 06=0
emax emin emax emin
H L L
warm cold warm cold
Low high Low high

What kind of weather synoptic system does this correspond to? Which direction does this system
transport heat flux? What is the direction of the E-P flux in the vertical direction? (For simplicity,
you can assume an infinite scale height, or incompressibility).
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E5.2. (Wind forced stratified ocean) A stratified linear ocean is forced by a spatially uniform
Ekman pumping on the surface with a frequency o. The ocean basin has a zonal scale L (such that
the wave number is k=27/L) that is much longer than the internal deformation radius:

(@) Find the direction of the downward group velocity.

(b) What is the direction of the group velocity when the forcing frequency approaches zero (the
limit of steady forcing)?

(¢) Inlight of (b), is it possible to have subsurface motion under a steady wind forcing?
(d) Is Sverdrup relation valid in the limit of a steady wind?

(e) What is the implication of (c) and (d)?

E5.3 (Non-Doppler shift effect) In a stratified ocean, we will consider planetary scale
perturbations that are governed by the potential vorticity equation

f," oy
N? &

a{@( )}ﬂﬁxwﬂ[wﬁz(niﬂ—w)}o-

N° a

We project the streamfunction on vertical modes: v = Z‘{’m (%, y,t)é. (z) where the m™ vertical

m=0

mode ¢m is determined by the eigenvalue equation (5.3.7) as

d { £, dg,(2)

dz| N(z)2 dz

} =1 0 (2).

(a) If the flow is projected only on a single vertical mode m=M, what is the advection term in the
potential vorticity equation.

(b) In light of (a), how do you interpret the perfect non-Doppler-shift effect of the planetary
Rossby wave in the shallow water or the 1.5-layer model?

(c) If the flow is projected on more than one vertical modes, show that the m” mode of the flow
only advects the part of the stretching vorticity that excludes mode m.

(d) Based on (¢), under what condition, Rossby waves will be advected by mean flow (or Doppler-
shift occurs) in a general continuously stratified ocean?
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E5.4: (Wave-mean flow interaction of baroclinic waves). Based on the wave activity equation and

E-P flux (5.4.7) and (5.4.8), discuss the wave-mean flow interaction of the following disturbances
in a westerly shear flow.

- U(2) Z e

(@) Will the disturbance grow or decay? Will the mean flow intensify or weaken?

(b) Discuss the difference and similarity from the corresponding barotropic case (in section 2.6) of
negative viscosity.



