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Chapter 6: Instability 

 

Sec. 6.1: Instability 

The ocean-atmosphere system is forced by the solar radiation. This forcing is usually very 

constant. Yet, observations show substantial fluctuations in both the atmosphere and the ocean 

at various time scales, such as the atmospheric cyclones, storms, marine eddies and El Nino. 

This variability occurs because the mean state is physically unstable to infinitesimal 

disturbances.  

The simplest example of instability is the gravitational instability of a ball on a supporting 

surface. In principle, the ball is in an equilibrium state as long as the local supporting surface is 

flat. In practice, however, only the equilibrium state is physically achievable only when the 

nearby supporting surface is a well. In the case when the supporting surface concaves upwards, 

the ball will practically not stay in equilibrium because any infinitesimal perturbation will push 

the ball off the equilibrium position. 

 

 

 

 

The simplest example of fluid instability is the convective instability in a stratified fluid.  

Given a density field as 𝜌 = 𝜌0 + 𝜌𝑠(𝑧) + 𝜌′(𝑡, 𝑧) where 𝜌0 ≫ 𝜌𝑠(𝑧) ≫ 𝜌′(𝑡, 𝑧), the linearized 

vertical momentum and density equations are: 

𝜌0𝜕𝑡𝑤 = −𝑔𝜌′, 𝜕𝑡𝜌
′ + 𝑤𝜕𝑧𝜌𝑠(𝑧) = 0 

That is 

𝜕𝑡𝑡𝑤 = −𝑔𝜕𝑡𝜌
′/𝜌0 = −𝑁2𝑤 

where 𝑁2 = −𝑔𝜕𝑧𝜌𝑠/𝜌0. If 𝑁2 > 0, we have  

𝑤 = exp⁡(±𝑖𝑁𝑡) 

The solution is stable and oscillating at the initial amplitude, with N being the Brunt-Vasara 

frequency. If, however, 𝑁2 < 0, we have 

𝑤 = exp⁡(±|𝑁|𝑡) 

The solution becomes unstable and the amplitude increases exponentially, with |N| being the 

growth rate. This is the convective instability.  

 

 

 

 

 

 

Unstable  

Stable 



GFD-II-Ch.6. Instability.    2019-08-29 2 

 

Intuitively, the convective instability is obvious. When 𝑁2 < 0, the density of the 

background fluid increases upward. A fluid parcel displaced upward (downward) will find itself 

lighter (heavier) than the environment fluid and therefore will continue to rise (descend). From 

the energy viewpoint, the instability occurs because the center of gravity is lowered for the fluid 

such that its available potential energy is released to provide the kinetic energy. 
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Sec. 6.2: Baroclinic Instability: Phillip’s Two-Layer Model. 

 

1. The Two-Layer Model 

We first study baroclinic waves in the simplest system that admits baroclinic instability -- 

the two-layer fluid. The system has two shallow-water layers of densities  and +Δ  with 

Δ<<. For simplicity, the fluid has a rigid lid and a flat bottom at z=2D and z=0, respectively; 

the two layers have an equal depth D and are on a beta-plane.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If h is the departure of the interface depth from its undisturbed position, the potential 

vorticity under QG approximation in each layer is: 
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where n=2 n is the relative vorticity of layer n ( =1, 2 ).  

 

The inviscid shallow water QGPV equations are: 

)2,1(.0),(  nqJq nnnt                                                                               (6.2.1) 
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where qn and n are the QGPV and geostrophic streamfunctions of the two layers. In order to 

close the model, we need to express h in terms of n. At the surface, let 𝑝(𝑥, 𝑦, 2𝐷, 𝑡) =

𝑝𝑇(𝑥, 𝑦, 𝑡). The hydrostatic relation of layer 1 is 𝜕𝑧𝑝1 = −𝑔𝜌, which gives:  

𝑝1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝𝑇 + 𝑔𝜌(2𝐷 − 𝑧) ,                                                                           (6.2.2) 

The geostrophic streamfunction of layer 1 is therefore 

𝜓1 = 𝑝𝑇/𝜌𝑓0 .                                                                                                           (6.2.3) 

The pressure at the interface z=D+h is therefore pI| z=D+h = pT +g(D-h). In the bottom layer, z 

p2 = - g(+Δ). The continuity of pressure across the interface requires that pI| z=D+h =p2| z=D+h. 

Therefore, 

𝑝2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝1|𝑧=𝐷+ℎ + 𝑔(𝜌 + Δ𝜌)(𝐷 + ℎ − 𝑧) , 

𝑝2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝𝑇 + 𝑔𝜌(2𝐷 − 𝑧) + 𝑔Δ𝜌(𝐷 + ℎ − 𝑧) ; 

The geostrophic streamfunction of layer 2 is: 

𝜓2 = (𝑝𝑇 + 𝑔ℎΔ𝜌)/𝜌𝑓0 .                                                                                           (6.2.4) 

Therefore, the interface is related to the difference of streamfunction as:  

𝜓1 − 𝜓2 = −𝑔ℎΔ𝜌 𝜌𝑓0⁄ = −𝑔′ℎ/𝑓0                                                                         (6.2.5) 

where 𝑔′ = −𝑔Δ𝜌 𝜌⁄  is the reduced gravity. The difference of velocities is 

(𝑢1 − 𝑢2, ⁡𝑣1 − 𝑣2) = (𝜕𝑦, −⁡𝜕𝑥)𝑔
′ℎ/𝑓0 

This is the “thermal wind” relation in the two-layer model, relating the vertical shears to the 

horizontal gradients of the interface height (and therefore to the horizontal gradients of density 

along the mean position of the interface).  

With (6.2.5), the QGPVs can be written in terms of n : 

𝑞𝑛 = 𝑓0 + 𝛽𝑦 + ∇2𝜓𝑛 + (−1)𝑛𝐹(𝜓1 − 𝜓2)                                                             (6.2.6) 

where 𝐹 = 1/𝐿𝐷1
2 ⁡⁡and⁡𝐿𝐷1 = (𝑔′𝐷)1/2/𝑓0⁡ is the deformation radius of the first baroclinic 

mode -- the only baroclinic mode in the two-layer system. Eqns. (6.2.1) and (6.2.6) form a 

closed set of equations for 1 and2. 

 

2. Baroclinic Rossby Waves 

In the absence of mean flows, the perturbation equations are: 

𝜕𝑡[∇
2𝜓1 − 𝐹(𝜓1 − 𝜓2)] + 𝛽𝜕𝑥𝜓1 = 0 

𝜕𝑡[∇
2𝜓2 + 𝐹(𝜓1 − 𝜓2)] + 𝛽𝜕𝑥𝜓2 = 0.                                                                    (6.2.7) 

Define the barotropic and baroclinic streamfunctions as: 

𝜓𝐵 = 𝜓1 + 𝜓2⁡, 𝜓𝐶 = 𝜓1 − 𝜓2 ⁡⁡∝ ⁡−ℎ , 

The summation and subtraction of the two perturbations equations give: 

𝜕𝑡∇
2𝜓𝐵 + 𝛽𝜕𝑥𝜓𝐵 = 0 , 

𝜕𝑡[∇
2𝜓𝐶 − 2𝐹𝜓𝐶] + 𝛽𝜕𝑥𝜓𝐶 = 0 . 
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The barotropic equation is similar to the shallow water QG with the deformation radius set to 

infinity, and the baroclinic equation is the shallow water equation with the deformation radius 

set as the baroclinic deformation radius of the first mode: 𝐿𝐷1
2 = 1/𝐹. Assuming the 

eigenfunctions of the form: 

𝜓𝐵 = 𝐴𝐵𝑒
𝑖(𝑘𝑥+𝑙𝑦−𝜔𝑡)⁡, 𝜓𝐶 = 𝐴𝐶𝑒

𝑖(𝑘𝑥+𝑙𝑦−𝜔𝑡) 

We have the eigenvalue problem form in (6.2.7) as: 

(𝜔𝐾2 + 𝛽𝑘)𝐴𝐵 = 0                                                                                                  (6.2.8a) 

[𝜔(𝐾2 + 2𝐹) + 𝛽𝑘]𝐴𝐶 = 0                                                                                     (6.2.8b) 

where 𝐾2 = 𝑘2 + 𝑙2 is the total wave number. The eigenvalues for the barotropic and baroclinic 

modes are therefore:  

𝜔𝐵 = −𝛽𝑘/𝐾2                                                                                                        (6.2.9a) 

𝜔𝐶 = −𝛽𝑘/(𝐾2 + 2𝐹)                                                                                          (6.2.9b) 

Substitute (6.2.9a) into (6.2.8b), we have the eigenfunction:  

𝐴𝐶 = 0 ,                                                                                                                (6.2.10a) 

or 𝜓1 − 𝜓2 = 0. Therefore, there is no vertical shear for the barotropic mode. In contrast, for the 

baroclinic mode, plug in (6.2.9b) into (6.2.8a), we have the eigenfunction: 

𝐴𝐵 = 0 ,                                                                                                               (6.2.10b) 

or 𝜓1 + 𝜓2 = 0. The baroclinic mode has no vertically integrated transport. These eigenfunction 

structures are consistent with the continuously stratified case in Section 5.3. 

 

 

 

 

 

 

 

 

 

3. Baroclinic Instability 

In the presence of mean flow shear, the eigenvalue problem is complicated dramatically. 

In particular, we may have unstable waves. Consider a basic state of equal and opposite zonal 

flows in the two layers (𝑈1, 𝑉1) = (𝑈, 0) and (𝑈2, 𝑉2) = (−𝑈, 0) where U is a constant. The 

basic state streamfunctions are: 𝛹1 = −𝑈𝑦, 𝛹2 = 𝑈𝑦 and the interface shape is 𝐻 = −𝑆𝑦 where 

𝑆 = 2𝑓0𝑈/𝑔′. Separate the streamfunction into the mean and perturbation parts: 

𝜓𝑛 = 𝛹𝑛 + 𝜓′𝑛  

the linearized perturbation QGPV equations can be derived from (6.2.1) as: 

(𝜕𝑡 + 𝑈𝜕𝑥)𝑞′1 + 𝜕𝑦𝑄1𝜕𝑥𝜓′1 = 0 , 

u1 

u2 

Baroclinic mode 

u1 

u2 

Barotropic mode 



GFD-II-Ch.6. Instability.    2019-08-29 6 

(𝜕𝑡 − 𝑈𝜕𝑥)𝑞′2 + 𝜕𝑦𝑄2𝜕𝑥𝜓′2 = 0 . 

Where 𝑞′𝑛⁡𝑎𝑛𝑑⁡𝑄𝑛 are derived from (6.2.6) as the perturbation and mean PVs in layer n. Since 

the basic state PV gradients are: 

[𝜕𝑦𝑄1, ⁡𝜕𝑦𝑄2] = [𝛽 + 2𝐹𝑈, 𝛽 − 2𝐹𝑈] .                                                                   (6.2.11) 

We have: 

(𝜕𝑡 + 𝑈𝜕𝑥)[∇
2𝜓1 − 𝐹(𝜓′

1
− 𝜓′

2
)] + (𝛽 + 2𝐹𝑈)𝜕𝑥𝜓′1 = 0 

(𝜕𝑡 − 𝑈𝜕𝑥)[∇
2𝜓2 + 𝐹(𝜓′

1
− 𝜓′

2
)] + (𝛽 − 2𝐹𝑈)𝜕𝑥𝜓′2 = 0                                 (6.2.12) 

Searching for the normal mode solutions of the form: 

𝜓′𝑛 = 𝑅𝑒[𝐴𝑛𝑒
𝑖𝑘(𝑥−𝑐𝑡)+𝑖𝑙𝑦] 

we have  

[𝛽 + 2𝐹𝑈 − (𝐾2 + 𝐹)(𝑈 − 𝑐]𝐴1 + 𝐹(𝑈 − 𝑐)𝐴2 = 0 

𝐹(𝑈 + 𝑐)𝐴1 + [2𝐹𝑈 − 𝛽 − (𝐾2 + 𝐹)(𝑈 + 𝑐]𝐴2 = 0 .                                           (6.2.13) 

These equations have non-trivial solution if the determinant of the coefficients vanishes, 

leading to the eigenvalues of 

𝑐 = {−𝛽(𝐾2 + 𝐹) ± [𝛽2𝐹2 − 𝐾4𝑈2(4𝐹2 − 𝐾4)]
1

2}/[𝐾2(𝐾2 + 2𝐹)]                    (6.2.14) 

One can show that the case of U=0 recovers the two solutions (6.2.8a,b). In particular, both 

modes are neutral modes and there is no instability. However, when U≠0, instability may occur. 

 

Case I: =0 

In the simpler case of =0, the eigenvalues in (6.2.14) become: 

𝑐 = ±[−𝐾4𝑈2(4𝐹2 − 𝐾4)]
1

2}/[𝐾2(𝐾2 + 2𝐹)]                                                       (6.2.15) 

Thus, instability occurs with Im(c ) = ci >0 when the wave number satisfies: 

𝐾2 < 2𝐹                                                                                                                   (6.2.16) 

The solution grows exponentially with time as 𝑒𝑖𝑘(−𝑖𝑐𝑖𝑡) = 𝑒𝑘𝑐𝑖𝑡, and initial disturbances of 

infinitesimal amplitude amplifies rapidly. The instability condition (6.2.16) indicates that 

baroclinic instability has a short wave cut off, that is the instability does not occur for short 

waves of 𝐾−1 < 0.707𝐿𝐷1 . 

 

Case II: General case: U0, 0  

In the general case, in addition to (6.2.16), unstable waves must also satisfy 

𝑈2 > 𝛽2𝐹2/[𝐾4(4𝐹2 − 𝐾4)] ≡ 𝑈𝑐
2 .                                                                     (6.2.17) 

The  effect is therefore a stabilizing effect, because it imposes a critical shear Uc. This critical 

shear Uc is a function of K2/2F, as shown in the following figure. Furthermore, for 𝐾2 < 2𝐹, 𝑈𝑐
2 

has the minimum value of 𝛽2/(2𝐹)2⁡𝑎𝑡⁡𝐾2 = 21/2𝐹 . The unstable modes occur only for 

|𝑈| > 𝛽/2𝐹 .                                                                                                           (6.2.18) 
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This is precisely the condition that the mean PV gradients in (6.2.11) have the opposite 

signs in the two layers: 

𝜕𝑦𝑄1 = 𝛽 + 2𝐹𝑈 > 0,⁡⁡⁡⁡⁡𝜕𝑦𝑄2 = 𝛽 − 2𝐹𝑈 < 0,⁡ for eastward shear flow 𝑈 > 𝛽 2𝐹⁄ > 0 

Or 

𝜕𝑦𝑄1 = 𝛽 + 2𝐹𝑈 < 0,⁡⁡⁡⁡⁡𝜕𝑦𝑄2 = 𝛽 − 2𝐹𝑈 > 0,⁡ for westward shear flow 𝑈 < −𝛽 2𝐹⁄ < 0 

This reversal of PV gradients can be shown as a necessary condition for instability (Charney-

Stern theorem, Section 6.4). Here, in the 2-layer model, it is also the sufficient condition. The 

second figure shows the real and imaginary parts of c when U is twice this critical value (see 

Pedlosky, Fig.7.11.2). 

 

3. Mechanism of Instability  

The baroclinic instability can be interpreted using the vorticity argument of Bretherton 

(1966). The instability can be thought to occur in two steps.  Start with an initial baroclinic 

vorticity disturbance in panel (a). First, the mean shear flow converts the baroclinic vorticity 

component to the barotropic vorticity component, as shown in panel (b). Here, the mean shear is 

necessary to for the coupling of the barotropic and baroclinic modes.  Second, the perturbation 

meridional velocity of the barotropic component, due to opposite sign of mean PV gradients, 

produces opposite (or baroclinic) vorticity tendencies in the two layers. This reinforces the 

initial baroclinic anomaly, forming a positive feedback or baroclinic instability.  It is seen that 

both the mean shear and the reversal of the mean PV gradient are critical for baroclinic 

instability. Later, the role of the mean shear can also be seen in Section 6.3 from the energy 

conversion viewpoint, while the role of the reversed PV gradient can be seen in Section 6.4 in 

the Charney-Stearn theorem. The shortwave cut-off can be understood as follows: due to the 

finite thickness of each layer, very short waves can’t feel the reversal of the mean PV gradients 

and therefore are stable. 

Finally, the coupling between the baroclinic and barotropic modes (which is possible 

only with mean shear) is critical, as seen in the dispersion diagram (Fig.6.1). Instability occurs 

when both modes have the same speed. This also explains the absence of very long wave 

baroclinic instability in the two-layer model, or the long wave cut off. In the long wave limit, the 

barotropic wave is infinitely fast while the baroclinic wave remains finite. It is impossible for 

the two modes to have comparable speed and therefore the two modes can’t couple with each. 

(In the continuously stratified case in Section 6.5, the long wave cut off disappears).  
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Fig.6.1: Eigenvalues of the 2-layer baroclinic model 
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Sec. 6.3: Energetics 

The instability can also be understood from the energy exchange between the wave and 

the mean flow. We will derive the energy equations for the wave and the mean. 

 

1. Total QG Energy Equation 

In the absence of forcing and dissipation, the QGPV 𝑞 = 𝛽𝑦 + ∇2𝜓 + (
1

𝑝
) 𝜕𝑧 (

𝑝𝑓0
2

𝑁2𝜓𝑧
) 

satisfies the equation: 

𝜕𝑡𝑞 + 𝐽(𝜓, 𝑞) = 0 .                                                                                                  (6.3.1) 

The energy equation can be derived similar to the shallow water case in section 2.1. 

Multiply (6.3.1) by -, and integrate the equation, we have:  

∭−𝜓[𝜕𝑡𝑞 + 𝐽(𝜓, 𝑞)] = 0 . 

Notice  

−𝜓𝜕𝑡𝜕𝑧[𝑝𝑓0
2/𝑁2𝜕𝑧𝜓] = −𝜓𝜕𝑧[𝑝𝑓0

2/𝑁2𝜕𝑡𝑧𝜓] = 𝜕𝑧[−𝜓𝑝𝑓0
2/𝑁2𝜕𝑡𝑧𝜓] + 𝜕𝑧𝜓𝑝𝑓0

2/𝑁2𝜕𝑡𝑧𝜓   

= 𝜕𝑧[−𝜓𝑝𝑓0
2/𝑁2𝜕𝑡𝑧𝜓] + 𝜕𝑡[(𝜕𝑧𝜓)

2𝑝𝑓0
2/2𝑁2], 

−𝜓𝜕𝑡𝜓𝑥𝑥 = 𝜕𝑥[𝜓𝜕𝑡𝑥𝜓] + 𝜕𝑡[(𝜕𝑥𝜓)
2/2], 

−𝜓𝜕𝑡𝜓𝑦𝑦 = 𝜕𝑦[𝜓𝜕𝑡𝑦𝜓] + 𝜕𝑡[(𝜕𝑦𝜓)
2/2], 

We have 
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If the boundary conditions are periodic or solid wall in x, y, the first two terms on the 

RHS vanish. The last term also vanishes because we have from the hydrostatic equation 𝜃~𝜕𝑧𝜓. 

On the top and bottom boundaries w=0, we have from the thermodynamic equation −𝜓[𝜕𝑡𝜃 +

𝐽(𝜓, 𝜃)] = 0, and therefore 

∬𝑑𝑥𝑑𝑦𝜓𝜕𝑡𝑧𝜓 ∝ ∬𝑑𝑥𝑑𝑦𝜓𝜕𝑡𝜃 =∬𝑑𝑥𝑑𝑦𝜓𝐽(𝜓, 𝜃) = ∬𝑑𝑥𝑑𝑦𝐽(𝜓2/2, 𝜃) = 0, 

Thus, we have the total energy conservation: 

𝜕𝑡(𝐾𝐸 + 𝐴𝑃𝐸) = 0,                                                                                                   (6.3.2) 

where the total kinetic energy and available potential energy are: 

𝐾𝐸 =∭𝑝[(𝜕𝑥𝜓)
2 + (𝜕𝑦𝜓)

2]/2,      AP𝐸 =∭𝑝(𝜕𝑧𝜓)
2𝑓0

2/2𝑁2                         (6.3.3) 

 

2. Mean and Perturbation Energy Equations: 

The QGPV equation. (6.3.1) can be rewritten as: 

𝜕𝑡𝑞 + ∇ ∙ (𝒖𝒈𝑞) = 0,                                                                                                 (6.3.4) 
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because ug = 0. Now, we derive the energy equation for the zonal mean flow. We will denote 

a variable as a = A + a’ where A=<a> is the zonal average and a’ is the perturbation. Notice the 

definition of the E-P flux in (5.4.3), the zonal mean QGPV equation is: 

𝜕𝑡𝑄 = −〈∇ ∙ (𝒖𝒈𝑞)〉 = −𝜕𝑦(〈𝒖𝒈〉〈𝑞〉) − 𝜕𝑦(〈𝑢′𝑔𝑞′〉) 

= −𝜕𝑦(〈𝒖𝒈〉〈𝑞〉) − 𝜕𝑦〈∇ ∙ 𝑭〉 

Multiplying the equation by - and integrate it as we did for the total energy equation (6.3.2), 

we have: 

𝜕𝑡(𝐾𝑚 + 𝐴𝑚) = ∭Ψ𝜕𝑦∇ ∙ 𝑭 =∭𝑈∇ ∙ 𝑭 .                                                            (6.3.5) 

where the kinetic and available potential energy for the mean flow are: 

𝐾𝑚 =∭𝑝(𝜕𝑦Ψ)
2/2,         𝐴𝑚 =∭𝑝(𝜕𝑧Ψ)

2𝑓0
2/2𝑁2,                                          (6.3.6) 

Notice that 〈𝜓2〉 = 〈(Ψ + 𝜓′)2〉 = 〈Ψ2〉 + 〈𝜓′2〉, the total KE and APE are the sum of the mean 

and perturbation, i.e. 

𝐾𝐸 = 𝐾𝑚 + 𝐾′,⁡⁡⁡⁡⁡⁡⁡𝐴𝑃𝐸 = 𝐴𝑚 + 𝐴′                                                                         (6.3.7) 

where the perturbation energy is 

𝐾′ =∭𝑝[(𝜕𝑥𝜓′)
2 + (𝜕𝑦𝜓′)

2]/2,      A′ =∭𝑝(𝜕𝑧𝜓′)
2𝑓0

2/2𝑁2                           (6.3.8) 

The conservation of the total energy and the energy for the mean flow gives the energy 

equation for the perturbation flow as 

𝜕𝑡(𝐾′ + 𝐴′) = −∭𝑈∇ ∙ 𝑭 = −𝜕𝑡(𝐾𝑚 + 𝐴𝑚) .                                                       (6.3.9) 

Thus, the convergence of the E-P flux also represents the conversion of energy between the 

perturbation and the mean flow. The conversion term can be rewritten as: 

𝜕𝑡(𝐾′ + 𝐴′) = −∭𝑈(𝑦, 𝑧, 𝑡)∇ ∙ 𝑭 = −∬𝑑𝑦𝑑𝑧𝑈 ∇ ∙ 𝑭  

= −∬𝑑𝑦𝑑𝑧𝑈𝜕𝑦𝐹𝑦 −∬𝑑𝑦𝑑𝑧𝑈𝜕𝑧𝐹𝑧  

=⁡⁡⁡∬𝑑𝑦𝑑𝑧𝐹𝑦𝜕𝑦 𝑈 +∬𝑑𝑦𝑑𝑧𝐹𝑧𝜕𝑧𝑈                                                 (6.3.10) 

The last step has used the E-P flux vanishes on the y and z boundaries. On the RHS, the 

first term is the barotropic conversion term, which involves the horizontal shear of the mean 

flow and the conversion of the mean and the perturbation kinetic energy; the second term is the 

baroclinic conversion term, which involves the vertical shear (horizontal temperature gradient) 

and the conversion of the mean and perturbation APE.  

First, the shear of the mean flow is necessary for the energy conversion and in turn 

instability. The instability associated with the horizontal and vertical shear is called the 

barotropic and baroclinic instability, respectively. 

Second, the structure of the perturbation is also important for instability. For example, for 

baroclinic instability, in a westerly shear flow zU > 0 in the midlatitude (or y T < 0), the 

unstable waves need to have a upward E-P flux: 

𝐹𝑧⁡~⁡〈𝑣′𝜃′〉 ⁡⁡> ⁡0, 

Therefore, the unstable waves transport heat towards the pole, reducing the mean temperature 

gradient and releasing the mean APE to the perturbation APE. The unstable wave also 

propagates upward and tilts westward with height (⁡〈𝑣′𝜃′〉 ∝ 〈𝜕𝑥𝜓
′𝜕𝑧𝜓

′〉 ⁡⁡∝ 𝑘𝑚|Ψ|2). 
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In the case of barotropic instability, for a mean flow of yU > 0, the unstable disturbance 

will have 

𝐹𝑦⁡~ −⁡〈𝑢′𝑣′〉 ⁡⁡> ⁡0, 

Now, the energy is released from the mean kinetic energy to the perturbation kinetic 

energy.  

 

 

 

 

 

 

 

 

The study of the energetics gives necessary conditions of instability and is valid for any 

type of small disturbance. It however should be realized that, this approach, although powerful 

and insightful, does not provide sufficient conditions for instability. 

 

3. Energetics of Baroclinic Instability  

The energetics of baroclinic instability can also be understood from parcel displacements. 

First, take the convective instability as an example. For a perturbation parcel to gain kinetic 

energy, the mean state has to release the mean APE. This can be achieved if the parcels transport 

heat upward 〈𝑤′𝜃′〉 > 0, which warms up upper layers and therefore lowers the center for 

gravity. In a density profile that increases upward (or 𝜕𝑧Θ < 0), any parcel trajectory satisfy the 

upward heat transport 〈𝑤′𝜃′〉 > 0. This is because an upward parcel 𝑤′ > 0 is warmer than its 

environment and therefore has 𝜃′ > 0, while a downward parcel 𝑤′ < 0 is cooler than its 

environment and therefore has 𝜃′ < 0.  On the other hand, if the density increases downward, no 

parcel trajectory produces an upward heat transport. Therefore, the convective instability is 

Growing mode 

U(z) 

x 

z 

km>0 

H L 

km<0 

H L 

Decaying mode 

y 

U(y) Unstable, 

 

〈𝑢′𝑣′〉 < 0 
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independent of the structure of the perturbation (as seen in section 6.1). This will not be the case 

for baroclinic instability.  

 

 

 

 

 

 

 

 

 

 

 

 

Assume the mean stratification is convectively stable (𝜕𝑧Θ > 0) for parcels moving in the 

vertical direction, but the mean isothermal slopes with latitude (𝜕𝑦Θ < 0). Now, the parcel must 

lie within the “instability wedge” (see the figure above) to transport heat upward 𝑤′𝜃′ > 0. In 

other words, the parcel must travel in tilted trajectories. Therefore, baroclinic instability is also 

called tilted convection. In the mean time, the tilted convection also has 𝑣′ > 0 in the wedge of 

𝑤′ > 0, 𝜃′ > 0 (and 𝑣′ < 0 in the wedge of 𝑤′ < 0, 𝜃′ < 0). The instability wedge 𝑤′𝜃′ > 0 

also produces northward heat flux 𝑣′𝜃′ > 0, reducing the mean equatorward temperature 

gradient and in turn the mean APE.  

 

These energy conversions from the mean APE to perturbation APE to the perturbation KE 

can be seen explicitly if we derive the equation for the perturbation APE. The perturbation 

thermodynamic equation is: 

(𝜕𝑡 + 𝑈𝜕𝑥)𝜃
′ + 𝑣′𝜕𝑦Θ + 𝑤′𝑑Θ/𝑑𝑧 = 0 , 

Or 

(𝜕𝑡 + 𝑈𝜕𝑥)𝜃
′ = −𝐯′ ∙ ∇Θ , 

Multiply the equation by 𝑝𝑔𝜃′/(Θs𝑑Θ/𝑑𝑧), and integrate the equation lead to the equation for 

the wave APE as 

𝜕𝑡𝐴′ ≡ 𝜕𝑡∭𝑝𝑔𝜃′
2
/(2Θs𝑑 Θ/𝑑𝑧) = −∭𝑝𝑔/(Θs𝑑 Θ/𝑑𝑧)𝐯′𝜃′ ∙ ∇Θ  

= −∭𝑣′𝜃′𝜕𝑦Θ𝑝𝑔/(Θs𝑑 Θ/𝑑𝑧) −∭𝑤′𝜃′𝜕𝑧Θs𝑝𝑔/(Θs𝑑 Θ/𝑑𝑧)  
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The first term converts the mean APE to the perturbation APE, while the second term 

converts the perturbation APE to perturbation KE. Therefore, in the instability wedge when 

𝐯′𝜃′ ∙ ∇Θ < 0, there is an energy release from mean APE to the perturbation APE and finally the 

perturbation KE. This is the energy cycle of the baroclinic waves: 

𝐴𝑚 ⟹ 𝐴′ ⟹𝐾′ 

Energy Cycle:  
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Sec. 6.4: Charney-Stearn Theorem 

 

1. Charney-Stearn Theorem: 

Complementary to the study of the energetics in the last section, Charney-Stearn theorem 

studies the instability in terms of the mean potential vorticity field. Consider small amplitude 

perturbations on a basic state of parallel flow (y,z) and of a buoyancy frequency N(z), the 

mean PV field is: 

𝑄(𝑦, 𝑧) = 𝛽𝑦 + 𝛹𝑦𝑦 + 1/𝑝𝜕𝑧[𝑝𝑓0
2/𝑁2𝜕𝑧𝛹] 

For small amplitude perturbations, the wave activity equation is 

𝜕𝑡𝐴 + ∇ ∙ 𝐅 = 0 

where 𝐴 = 𝑝〈𝑞′
2〉/2𝑄𝑦, with 〈 〉 being the zonal mean. Integrate the equation over a domain D 

bounded in the y, z plane by D, we have: 

𝜕𝑡∬ 𝐴
𝐷

+ ∫ 𝐅 ∙ 𝐧𝑑𝑙
∂𝐷

= 0                                                                                         (6.4.1) 

where n is the outward unit normal to D. If D is a rigid boundary, one might expect Fn to 

vanish there. That is, however, not the case.  

 

For simplicity, we take D as the region of y1 y  y2  and  z1 z  z2. Immediately, we have 

v’=0 on the y boundaries 

𝐅 ∙ 𝐧 = 𝐹𝑦 = −𝑝〈𝑢′𝑣′〉 = 0⁡⁡⁡⁡⁡𝑦 = 𝑦1, ⁡𝑦2                                                                 (6.4.2) 

However, on the upper and lower boundaries, the situation is subtle, because the vertical 

component of E-P flux is not vertical velocity. On the boundary surface, we have w=0, and 

therefore the thermodynamic equation: 

𝜕𝑡𝜃 + 𝐽(𝜓, 𝜃) = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧 = 𝑧1, ⁡𝑧2                                                                 (6.4.3) 

The linearized equation is 

(𝜕𝑡 + 𝑈𝜕𝑥)𝜃
′ + 𝑣′𝛩𝑦 = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧 = 𝑧1, ⁡𝑧2                                                                (6.4.4) 

We define a northward displacement ’ of the wave motion for a given isothermal 0 that 

is defined by 𝜃0 ≡ 𝜃[𝑥, 𝑌0(𝑥, 𝑡), 𝑡]. The kinematic condition 𝑑𝑌0(𝑥, 𝑡)/𝑡 = 𝑣 can be linearized 

as 

(𝜕𝑡 + 𝑈𝜕𝑥)𝜂
′ = 𝑣′. 

 

Substitute this into (6.4.4), we have: 

(𝜕𝑡 + 𝑈𝜕𝑥)𝜃
′ + 𝛩𝑦(𝜕𝑡 + 𝑈𝜕𝑥)𝜂

′ = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧 = 𝑧1, ⁡𝑧2 

Thus, 

𝜃′ = −𝜂′𝛩𝑦⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧 = 𝑧1, ⁡𝑧2 

if we assume ’ = 0 for ’ =  0 (back in the far past before the disturbance was present). 

Therefore, the heat transport on the z boundaries is 

D 

D 

n 
l 

’(x,t)= Y0(x,t)- y0 
0 

y0 

Y0(x,t) 
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〈𝑣′𝜃′〉 = −〈𝑣′𝜂′〉𝛩𝑦 = −𝜕𝑡〈𝜂
′2〉𝛩𝑦/2,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧 = 𝑧1, ⁡𝑧2                                              (6.4.

5). 

𝐹𝑧 = 𝑝𝑓0〈𝑣′𝜃
′〉/𝛩𝑧 = −𝑝𝑓0𝜕𝑡〈𝜂

′2〉𝛩𝑦/2𝛩𝑧 

Therefore, the normal component of the E-P flux 𝐹𝑧 = 𝑝𝑓0〈𝑣′𝜃
′〉/𝛩𝑧 is zero for a growing 

disturbance 𝜕𝑡〈𝜂
′2〉 ≠ 0 only if the mean temperature gradient is zero there 𝛩𝑦 = 0. Otherwise, 

Fz has the opposite sign to f0y. On the surface, since y decreases poleward, Fz is always 

upward for growing disturbances. For almost-plane waves, one can easily show that the trough 

of the growing disturbance tilts westward with height.  

 

If, however, there is no mean temperature gradient on the top and bottom boundaries, we 

have Fz = 0 on the boundaries. Therefore, ∫ 𝐅 ∙ 𝐧𝑑𝑙
∂𝐷

= 0 and we have the conservation of total 

wave activity from (6.4.1): 

𝜕𝑡∬ 𝐴
𝐷

𝑑𝑦𝑑𝑧 = 0                                                                                                     (6.4.6) 

Since ⁡𝐴 = 𝑝〈𝑞′
2〉/2𝑄𝑦 , we have: 

𝜕𝑡∬ 𝑝〈𝑞′
2〉/2𝑄𝑦𝐷

𝑑𝑦𝑑𝑧 = 0 . 

For normal modes, q’ can be written as: 

𝑞′(𝑥, 𝑦, 𝑧, 𝑡) = 𝑟(𝑡)𝑞(𝑥, 𝑦, 𝑧) ,                                                                                   (6.4.7) 

Therefore, we have  

𝜕𝑡𝑟
2(∬ 𝑝〈𝑞2〉/2𝑄𝑦𝐷

)𝑑𝑦𝑑𝑧 = 0 .                                                                               (6.4.8) 

If Qy is single signed throughout, the integral constant cannot be zero, so  

𝜕𝑡𝑟
2 = 0 

The Charney-Stearn theorem therefore states: there can be no growing, conservative, quasi-

geostrophic normal mode disturbances to a zonally-uniform state in which the potential vorticity 

gradient is single-singed throughout and which is isothermal on horizontal boundaries.  

 

It is worth reflecting that the normal mode assumption (6.4.7), which grows or decays 

everywhere, is important for deriving (6.4.8). Otherwise, the disturbance can grow and decay at 

the same time within the domain. Therefore, the single signed PV gradient cannot guarantee the 

stability of the disturbance within the domain.  

 

2. Necessary Condition for Instability 

A sufficient condition for stability is also a necessary condition for instability. Thus, 

instability is possible if one of these conditions is violated. If the boundaries are isothermal, we 

require the change of sign of the mean PV gradient  

𝑄𝑦 = 𝛽 − 𝑈𝑦𝑦 − 1/𝑝𝜕𝑧[𝑝𝑓0
2/𝑁2𝑈𝑧] 

Since   > 0, Qy must be positive unless the flow curvature - the latter two terms on the RHS - is 

negative and of sufficient magnitude, or 
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𝑈𝑦𝑦 + 1/𝑝𝜕𝑧[𝑝𝑓0
2/𝑁2𝑈𝑧] > 𝛽       somewhere in the domain.                                  (6.4.9) 

The instability is called the barotropic instability if the first term (horizontal shear) is dominant, 

and is called the baroclinic instability if the second term (vertical shear, or horizontal 

temperature gradient) or the temperature gradient on the top and bottom boundaries is dominant.   

 

3. The Boundary Temperature Effect* 

The effect of the boundary temperature gradient can also be unified with the mean PV 

gradient by introducing a delta function on the boundary (Bretherton, 1966). We introduce the 

generalized QGPV as: 

𝑞𝑏 = 𝑞 + [𝛿(𝑧 − 𝑧1) − 𝛿(𝑧 − 𝑧2)]𝑓0𝜃/ 𝑑Θ 𝑑𝑧⁄                                                        (6.4.10) 

This is like adding a PV sheet just inside a horizontal boundary. This generalized PV satisfies 

the QGPV equation: 

𝜕𝑡𝑞𝑏 + 𝐽(𝜓, ⁡𝑞𝑏) = 0,⁡ 

and the boundary condition is now  

𝜃 = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧 = 𝑧1, ⁡𝑧2                                                                  (6.4.11) 

 

 

 

 

 

 

This can be verified. In the interior, the delta functions are zero and (6.4.10) is simply  

𝜕𝑡𝑞 + 𝐽(𝜓, 𝑞) = 0 . 

On the boundaries 𝑧1 + and 𝑧2 −, since Θ = Θ(𝑧), (6.4.10) simply gives the boundary condition 

(6.4.3). The definition 𝑞𝑏 thus incorporates both the interior and boundary equations. Since now 

𝜃′ = 0 on the top and bottom boundaries as in (6.4.11), 𝐹𝑧 = 0 there. However, since ∇ ∙ 𝑭 =

〈𝑣′𝑞′𝑏〉, now we found in the interior  

∇ ∙ 𝑭 ≈ 〈𝑣′𝜃′〉[𝛿(𝑧 − 𝑧1) − 𝛿(𝑧 − 𝑧2)]𝑓0/ 𝑑Θ 𝑑𝑧⁄  , 

near 𝑧1 and 𝑧2. It must be the vertical component of F that is discontinuous within the boundary 

potential vorticity sheets and therefore integrated vertically in the vicinity of 𝑧1 and 𝑧2, we have: 

𝐹𝑧 =⁡⁡⁡ 〈𝑣′𝜃′〉𝑓0/ 𝑑Θ 𝑑𝑧⁄ ⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑛⁡⁡𝑧 = 𝑧1 + , 

𝐹𝑧 = −〈𝑣′𝜃′〉𝑓0/ 𝑑Θ 𝑑𝑧⁄ ⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑛⁡⁡𝑧 = 𝑧2 − . 

The advantage of incorporate the boundary PV sheets to the generalized PV field is that 

we can follow the same steps as before, but with the boundary condition 𝐹𝑧 = 0 on the vertical 

boundaries. The flow is stable if 𝜕𝑦𝑄𝑏 does not change its sign, or the flow is unstable only if 

the generalized mean PV gradient 

𝜕𝑦𝑄𝑏 = 𝜕𝑦𝑄 + [𝛿(𝑧 − 𝑧1) − 𝛿(𝑧 − 𝑧2)]𝑓0𝜕𝑦Θ/𝑑Θ 𝑑𝑧⁄  ,                                        (6.4.12) 

Z 

qb 

=const 
Z2 

Z1 
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changes sign somewhere in the domain.  
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Sec. 6.5: Baroclinic Instability: Eady Model* 

 

1. Eigenvalue Problem 

We consider the simplest example of baroclinic instability in a continuously stratified flow 

(Eady, 1949). The fluid is on an f-plane, unbounded in x and y directions, but bounded by rigid 

boundaries at 𝑧 = ±𝐷/2, incompressible (so p=p0, H=, θ=T).The basic state is a zonal flow 

𝑈 = 𝑆𝑧⁡(Ψ = −𝑆𝑦𝑧, 𝑇 = −𝑓0𝑇𝑠𝑆𝑦/𝑔) with a uniform stratification 𝑁2 = 𝑔𝑇𝑧/𝑇0, giving a 

uniform mean PV in the interior, or  

𝜕𝑦𝑄 = 𝜕𝑦𝑦𝑈 + 𝑓0
2/𝑁2𝜕𝑧𝑧𝑈 = 0 .                                                                            (6.5.1) 

There is, however, a potential for instability, since the mean temperature has gradients on 𝑧 =

±𝐷/2. Consequently, the generalized mean PV Qb has a gradient 

𝜕𝑦𝑄𝑏 = [𝛿(𝑧 − 𝐷/2) − 𝛿(𝑧 + 𝐷/2)]𝑓0𝜕𝑦𝑇/𝑇𝑧 ,                                                     (6.5.2) 

 negative on 𝑧 = −𝐷/2 but positive on 𝑧 = 𝐷/2.  

 

 

 

 

 

 

 

The linearized QGPV eqn is: 

(𝜕𝑡 + 𝑈𝜕𝑥)𝑞′ = 0                                                                                                      (6.5.3) 

where (if we insist 𝑞′ = 0⁡for 𝑡 → −∞) 

𝑞′ = (𝜕𝑥𝑥 + 𝜕𝑦𝑦)𝜓
′ + 𝑓0/𝑁

2𝜕𝑧𝑧𝜓
′                                                                          (6.5.4) 

If we seek the solution of the form 𝜓′ = 𝑅𝑒{𝜓𝑒𝑖𝑘(𝑥−𝑐𝑡)+𝑖𝑙𝑦𝑍(𝑧)}, the vertical structure is 

determined by: 

𝑑2𝑍/𝑑𝑧2 − 𝜇2𝑍 = 0 ,                                                                                               (6.5.5) 

where 𝜇 = 𝑁𝐾/𝑓0, 𝐾
2 = 𝑘2 + 𝑙2. This gives the general solution 

𝑍 = 𝐴𝑠𝑖𝑛ℎ(𝜇𝑧) + 𝐵𝑐𝑜𝑠ℎ(𝜇𝑧) .                                                                                 (6.5.6) 

The boundary conditions are: 

(𝜕𝑡 + 𝑈𝜕𝑥)𝑇
′ + 𝑣′𝜕𝑦𝑇 = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧 = ±𝐷/2                                                           (6.5.7) 

Since 𝑇′ = 𝑓0𝑇𝑠𝜕𝑧𝜓′/𝑔 and 𝜕𝑦𝑇 = −𝑓0𝜕𝑦𝑇𝑠𝑆/𝑔, the boundary conditions become 

(𝑆𝑧 − 𝑐)𝑑𝑍/𝑑𝑧 − 𝑆𝑍 = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧 = ±𝐷/2 . 

With (6.5.6), we have  

𝐴[(𝑐 +
𝑆𝐷

2
) − 𝑆𝑡𝑎𝑛ℎ(

𝐷

2
)] + 𝐵[𝑆 − (𝑐 +

𝑆𝐷

2
)𝑡𝑎𝑛ℎ(

𝐷

2
)] = 0,⁡⁡⁡⁡⁡⁡𝑧 = −

𝐷

2
 ,         (6.5.8a) 

U=Sz yQb 

z 

D/2 

-D/2 
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𝐴 [ (𝑐 −
𝑆𝐷

2
) + 𝑆𝑡𝑎𝑛ℎ (

𝐷

2
)] + 𝐵 [𝑆 +  (𝑐 −

𝑆𝐷

2
) 𝑡𝑎𝑛ℎ (

𝐷

2
)] = 0,⁡⁡⁡⁡⁡𝑧 =

𝐷

2
         (6.5.8b) 

Therefore, the eigenvalue is determined by setting the determinant of (6.5.8) zero as: 

𝑐2 = (𝑆𝐷/)2⁡[1 + (𝐷/2)2 − 𝐷𝑐𝑜𝑡ℎ(𝐷)]                                                          (6.5.9) 

where we have used the identity 𝑡𝑎𝑛ℎ (
𝜇𝐷

2
) + [tanh⁡(

𝜇𝐷

2
)]
−1

= 2𝑐𝑜𝑡ℎ(𝐷). The condition for 

instability is therefore  

𝜇𝐷𝑐𝑜𝑡ℎ(𝐷) − (𝐷/2)2 > 1 ,                                                                                 (6.5.10) 

which implies  

𝜇𝐷 < 𝑑𝑐 = 2.3994 . 

Since 𝜇𝐷 = 𝑁𝐾𝐷/𝑓0 = 𝐿𝐷1/𝐿 and 𝐿𝐷1 is the deformation radius for the first baroclinic mode, 

instability occurs when the scale of the wave is comparable or longer than 𝐿𝐷1.  

 

2. Stable Rossby Waves 

The dependency of the eigenvalue c and the eigenfunction structure Z (z) on D are shown 

in Fig.6.1. For D> dc, the perturbation are two neutrally propagating modes. The structures of 

the stable waves (for D >> dc) are boundary trapped:  the mode with negative c is trapped near 

the top (A0) while the mode with positive c is bottom trapped (B0). These two modes are 

boundary trapped Rossby waves. Although =0 in the interior, the PV sheets on the boundaries 

provide the necessary PV gradient. The generation of the boundary trapped Rossby waves is 

very similar to the topographically generated Rossby waves in the stratified flow (Fig.6.2). The 

top boundary is like a northward shoaling bottom slope, and therefore acts as a positive beta 

with “topographic” Rossby waves propagating westward. The bottom boundary, however, is like 

a northward deepening bottom slope, and therefore acts like a negative beta, with “topographic” 

Rossby waves propagating eastward. Due to the boundary trapping, these waves don’t feel the 

reversal of the mean PV gradient on the top and bottom boundaries simultaneously and therefore 

are stable.  
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Fig.6.1  Eigenvalues and Eigenfunctions of the Eddy problem 
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Fig.6.2  Boundary effect and “topographic” Rossby waves 

 

 

 

3. Unstable Modes 

As the wave length increases (D= LD1/L decreases), the two modes start to coalesce and 

interfere such that for L/LD1 <dc, they merge and propagate together at a phase speed equal to the 

middle level mean flow (Fig.6.2). The growing mode tilt with height westward, as it must be to 

extract APE from the mean flow (section 6.3).  The growth rate maximizes for smallest possible 

value of l (which goes to zero for a y-unbounded system), but a finite value of k, at k=km  

2f0/ND = 2/LD1 for l=0.  Thus, the scale of the fastest growing disturbance, km
-1, is at the order 

of the (internal) Rossby radius. Take typical atmospheric numbers f0=10-4 s-1, N=10-2 s-1, D=10 

km, we find km=10-6 m-1 , which gives the wavelength L= /km about 3000 km. The maximum 

growth rate is about kmci 0.5SDkm, for a wind shear of 30 m/s over 10km depth, S=3*10-3s-1, the 

growth rate is kmci 1.5*10-5 s-1, or about 2 days. Both the length scale and growth rate agree 

well with observed cyclone development. Thus, the baroclinic instability for the first time gives 

a quantitative physical explanation of cyclone development. (Typical parameter in the ocean 

gives a spatial scale about 50 km, and growth time about 2 months). 

 

 

z 

y 

T=const 

T > 0 => c<0 

T < 0 => c>0 

yQb 

z 

D/2 

-D/2 

Eady Model yQb 

 

Topographic 

Analogy 



GFD-II-Ch.6. Instability.    2019-08-29 23 

 

 

 



GFD-II-Ch.6. Instability.    2019-08-29 24 

The energetics and wave activity features of the Eady mode are consistent with our 

previous studies of baroclinic unstable waves. Since now 𝑞′ = 0, we have ∇ ∙ 𝑭 = 〈𝑣′𝑞′〉 = 0. 

Hence, the E-P flux must be nondivergent in the interior. Since 𝜕𝑦〈𝑢′𝑣′〉 = 0 (this is easy to 

show with the assumed form of solution), it follows that 𝜕𝑧𝐹𝑧 = 0. Thus, the vertical E-P flux, or 

the northward heat transport 〈𝑣′𝑇′〉, is constant with height.  Its value can be found from the 

boundaries. Given  

(𝜕𝑡 + 𝑈𝜕𝑥)𝑇
′ + 𝑣′𝑇𝑦 = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧 = ±𝐷/2  

and a negative Ty, it follows that the boundary heat flux 

〈𝑣′𝑇′〉 = −𝜕𝑡(〈𝑇
′2〉/2)𝑇𝑦,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧 = ±𝐷/2 

is positive, as it must be for growing modes. The 𝐹𝑧 = 0 immediately beyond the boundary 

sheets of the generalized PV (6.5.2) because 𝑇′ = 0 there. Thus, the lower boundary has a 

divergence of Fz while the upper boundary a convergence, negatively correlated with the mean 

wind U on the two boundaries. This gives ∬𝑑𝑥𝑑𝑦𝑈𝛻 ∙ 𝑭 < 0. 

Therefore, energy is converted from the mean flow to the perturbation flow according to 

(6.3.10).  
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4. Charney Model 

The most unrealistic feature of the Eady model is the lack of a planetary . Charney 

(1947) considered the case of a beta-plane and compressible atmosphere. The upper boundary 

temperature gradient effect, however, is absent now. Nevertheless, since the lower boundary still 

provides a negative PV gradient sheets, whose sign is the opposite to the interior PV gradient 

>0, baroclinic instability is still possible.  

 

 

 

 

 

 

 

 

Fig.6.3  Charney Problem, mean flow and PV gradient 

 

 

The scale and growth rate for the most unstable mode is similar to those of Eady’s. 

However, the structure of the Charney’s mode is very different from the Eady mode. The 

Charney mode decays with height and is mostly confined between the lower boundary and the 

critical level (where U=cr). Above the critical level, the disturbance decays rapidly with height, 

with an almost constant phase. The E-P flux is mostly confined to the lower level near the 

surface, with a large heat flux. (Pedlosky, Fig.7.8.4, 5 and Gill, Fig.13.6). 

Physically, the reversal of  PV gradient  is now at the lower boundary, it is those bottom 

trapped waves that can feel strongly the reversal of PV gradient. This is why now the unstable 

waves are bottom trapped.  Furthermore, since even very small vertical scale (usually 

corresponding to small horizontal scale) waves can feel the reversal of PV gradient. Charney’s 

model, unlike Eady’s model, does not have shortwave cut off (ignoring friction of course). That 

is: no matter how small is the wave length, there can be unstable modes (Green’s modes).  
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Fig.6.5.4  Eigenvalues of the Charney problem and the structure of the Charney mode 
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Sec. 6.6: Barotropic Instability* 

When the PV gradient changes sign primarily through the barotropic shear term, the 

resulting instability is known as barotropic instability. Consider a homogeneous shallow water 

system with a rigid lid. The potential vorticity gradient is  

𝑞𝑦 = 𝛽 − 𝑈𝑦𝑦 .                                                                                                       (6.6.1) 

Denote the spatial scale and flow strength of the mean shear as L and U, the Charney-Stern 

theorem suggests that L2<U/ is necessary for barotropic instability. For the midlatitude 

( ~1.5*10-11 m-1 s-1 ) atmosphere and ocean, U ~ 20 ms-1 and ~0.01.ms-1,  giving L< 1100 km 

and < 80 km; respectively. Therefore, barotropic instability is possible only in very narrow 

atmospheric or oceanic jets.  

Consider a simple example where the barotropic fluid has a basic state flow 

















YySY

YyYSy

YySY

U

,

,

,

 

The flow is on an f-plane (=0, so that this example is a classical shear - inflection point -

instability). Then, the mean PV gradient is zero except at y=±Y,  

𝑄 = 𝑆𝛿(𝑦 − 𝑌) − 𝑆𝛿(𝑦 + 𝑌) ,                                                                                 (6.6.1a) 

 

 

 

 

 

 

 

 

 

 

This situation clearly has parallels with the Eady problem of baroclinic instability (Section 

6.5). The general perturbation (potential) vorticity equation is: 

(𝜕𝑡 + 𝑈𝜕𝑥)𝜁
′ + 𝜕𝑥𝜓′𝑄𝑦 = 0                                                                                       (6.6.2) 

Except at y=Y, (6.6.1) shows Qy= 0 and therefore the perturbation equation reduces to 

(𝜕𝑡 + 𝑈𝜕𝑥)𝜁
′ = 0 .                                                                                                      (6.6.3) 

Therefore ’ = 0 except y=Y. We look for solutions of the form  

𝜓′ = 𝑅𝑒𝜙(𝑦)𝑒𝑖𝑘(𝑥−𝑐𝑡) , 

and insist that the solution is finite at y   . Eqn. (6.6.3) therefore gives the y structure as   

U 

Y 

-Y 

Qy =  y 
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













 



YyDe

YyYCeBe

YyAe

ky

kyky

ky

,

,

,

                                                                    (6.6.4a,b,c) 

The coefficients are determined by the matching conditions across y=Y. First,  is continuous 

across y=Y. This gives  

𝐴 = 𝐵𝑒2𝑘𝑌 + 𝐶,⁡⁡⁡⁡⁡𝐷 = 𝐵 + 𝐶𝑒2𝑘𝑌 .                                                                         (6.6.5) 

Second, u’~ d/dy has a finite jump across y=Y, whose value is determined as follows. Near y 

=+Y, the perturbation equation (6.6.2) is 

(𝑆𝑌 − 𝑐)𝜁′ + 𝜓′𝑆𝛿(𝑦 − 𝑌) = 0 .                                                                               (6.6.6) 

Since 𝜁′ = 𝜕𝑥𝑣
′ − 𝜕𝑦𝑢′, the singularity in ’ must indicate a discontinuity in u’ 








Y

Y

YxuYxudy ).,('),(''  

Therefore, integrating (6.6.6) in the vicinity of Y+ gives  

(𝑆𝑌 − 𝑐)[𝑑𝜙/𝑑𝑦(𝑌+) − 𝑑𝜙/𝑑𝑦(𝑌−)] + 𝑆𝜙(𝑌) = 0 .                                           (6.6.6a) 

Similarly, at y = -Y, 

(𝑆𝑌 + 𝑐)[𝑑𝜙/𝑑𝑦(−𝑌+) − 𝑑𝜙/𝑑𝑦(−𝑌−)] + 𝑆𝜙(−𝑌) = 0 .                                  (6.6.6b) 

Substitute (6.6.4) and (6.6.5) into (6.6.6a,b), we have 

[𝑆 − 2𝑘(𝑆𝑌 − 𝑐)]𝐵𝑒𝑘𝑌 + 𝑆𝐶𝑒−𝑘𝑌 = 0 , 

𝑆𝐵𝑒−𝑘𝑌 + [𝑆 − 2𝑘(𝑆𝑌 + 𝑐)]𝐶𝑒𝑘𝑌 = 0 .                                                                    (6.6.7) 

The eigenvalues are determined by setting the determinant zero as 

4𝑘2𝑐2 = 𝑆2[(1 − 𝑠𝑘𝑌)2 − 𝑒−4𝑘𝑌] .                                                                          (6.6.8) 

Very short waves are stable because the RHS is positive in the limit of large kY. Calculations 

show that instability occurs only for long waves of kY< 0.639, beyond which we have a 

shortwave cutoff (Fig.6.6.1). The reason of the shortwave cut-off is the same as in the Eady 

problem - short waves in x are of small scales in y (see the solution (6.6.4)) and therefore won’t 

feel the sign change of the mean PV gradient across y=Y simultaneously. The maximum 

growthrate is found occur at kY=0.398. 
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Fig.6.6.1  Eigenvalue of the barotropic instability 

 

The structure of the growing modes (Fig.6.6.2) is again quite similar to the Eady waves. 

Maximum streamfunction amplitude is found at y=Y. In -Y<y<Y, the mode tilts westward with 

y; this mean that 〈𝑢′𝑣′〉 < 0 or, equivalently, Fy >0. Since F can be nonzero only at y=Y , Fy 

is constant and positive in -Y < y < Y and zero for |y|>Y. Therefore,  

∫ U
∞

−∞

∇ ∙ 𝑭𝑑𝑦 < 0 

as it must be for the mean state to loss kinetic energy .  The energy source is the mean kinetic 

energy this time.  

 

 

 

 

Fig.6.6.2  Eigenfunction of the barotropic instability 
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Questions for Chapter 6 

 

Q6.1. Derive the 2-layer QG model from the continuously stratified QG equation as a level 

model, using finite difference in the vertical (assuming N=const).  

 

Q6.2. The 1.5-layer model can be understood as the limit of a 2-layer model if you follow these 

steps. a) derive the 2-layer QG model with different layer depths, b) In the absence of mean 

flows, derive the linear Rossby waves, their eigenvalues and eigenfunctions. c) Under what 

conditions, the 2-layer model in (a) reduces to the 1.5 layer model. d) Which mode in (c) 

approaches the Rossby wave mode derived from the 1.5-layer model. 

 

Exercises for Chapter 6 

 

E6.1. (Baroclinic wave structure) In the 2-layer QG model, with a mean flow U, the eigenvalues 

are derived in (6.2.14) and the eigenfunctions can be determined from (6.2.13). Discuss the 

vertical structures of the wave (i.e. A1/A2) for each eigenmodes in the following cases. a) U=0, 

but ≠0, b) =0, but U≠0. 

 

E6.2. (Forced baroclinic ocean response) A linear 2-layer QG model is forced by a weak wind 

curl perturbation 𝑐𝑢𝑟𝑙𝜏 = 𝐴𝑒𝑥𝑝[𝑖(𝑘𝑥 + 𝑙𝑦 − 𝜎𝑡]. Assuming the mean state is motionless, so the 

forced response satisfies 

𝜕𝑡[∇
2𝜓1 − 𝐹(𝜓1 − 𝜓2)] + 𝛽𝜕𝑥𝜓1 = 𝑐𝑢𝑟𝑙𝝉 , 

𝜕𝑡[∇
2𝜓2 + 𝐹(𝜓1 − 𝜓2)] + 𝛽𝜕𝑥𝜓2 = 0 . 

Find the response to the wind forcing and discuss the response as a function of the forcing 

frequency σ. What happens when σ approaches zero? 

 

E6.3. (Long baroclinic waves) On a f-plane (=0), assume a constant mean flow of U (>0) in 

the upper and –U in the lower layer, the perturbation PV equations in the 2-layer model are: 

(𝜕𝑡 + 𝑈𝜕𝑥)[∇
2𝜓′

1
− 𝐹(𝜓′

1
− 𝜓′

2
)] + 2𝐹𝑈𝜕𝑥𝜓′1 = 0 , 

(𝜕𝑡 − 𝑈𝜕𝑥)[∇
2𝜓′2 + 𝐹(𝜓′1 − 𝜓′2)] + 2𝐹𝑈𝜕𝑥𝜓′2 = 0 . 

The solution can be derived in the form of 𝜓′𝑛 = 𝑅𝑒[𝐴𝑛𝑒
𝑖𝑘(𝑥−𝑐𝑡)+𝑖𝑙𝑦]. In the long wave limit 

𝐾2 = 𝑘2 + 𝑙2 → 0,  

a) Prove that the eigenvalues approaches 𝐶 → 𝜆𝑖𝑈, where λ = ±1 (λ = +1 for one mode, λ = -1 

for the other mode). 

b) Prove that the eigenfunction structure satisfies: 𝐴1/𝐴2 → 𝜆𝑖. 

c) Prove that the perturbation streamfunctions can be written in the form 𝜓′2 = 𝑐𝑜𝑛(𝜃), 𝜓′1 =

𝑐𝑜𝑛(𝜃 + 𝜆𝜋/2), where 𝜃 = 𝑘𝑥 + 𝑙𝑦. 
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d) Prove that the perturbation heat flux approaches 〈(𝑣′1 + 𝑣′2)(𝜓
′
1
− 𝜓′

2
)〉 → 𝜆𝑘, where 

〈 〉 is the zonal mean over one wave length. 

e) Which is the unstable mode? What is its vertical structure (tilting west or east, by how 

much? What is the direction of perturbation heat flux? 

f) repeat e), but for the decaying mode 

 

E6.4. In the interior ocean (x>0), baroclinic waves in a 2-layer fluid satisfy: 

𝜕𝑡[∇
2𝜓1 − 𝐹(𝜓1 − 𝜓2)] + 𝛽𝜕𝑥𝜓1 = 0 , 

𝜕𝑡[∇
2𝜓2 + 𝐹(𝜓1 − 𝜓2)] + 𝛽𝜕𝑥𝜓2 = 0 . 

There is a wave maker on the eastern boundary of the ocean (x=0), which generates the 

perturbation of 𝜓1 = 𝐴𝑒−𝑖𝜎𝑡, 𝜓2 = 0, at x=0. Find the boundary forced waves? Discuss the 

wave response as a function of the forcing frequency σ.  

 

E6.5. (2.5-layer QG model) In a 2.5-layer fluid (see E1.4) with a rigid lid (such that surface 

elevation is negligible), using the PV approach similar to Sec. 6.2, show that the QGPV 

equations can be written as 2,1,0)],([  nqJ nnt  , and 
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where D1 and D2 are the mean thickness of the two layers. 

(Hint: in light of E1.4b, the perturbation interface depth anomalies 𝑧′1 and 𝑧′2 can be related to 

the QG streamfunctions as 𝑓0𝜓1 = −𝑔1𝑧′1 − 𝑔2𝑧′2 and 𝑓0𝜓2 = −𝑔2𝑧′2.) 

 

 

 

 

 

 

 

 

 

E6.6. (2.5-layer planetary waves) Free planetary Rossby waves in the 2.5-layer model can be 

derived by neglecting relative vorticity in the 2.5-layer QG PV model that is derived in E6.5. 

Discuss the baroclinic planetary waves for the two cases, where the mean state (a) is motionless, 

and (b) has a mean flow of U1 =U2 =U in the two layers. When U increases to infinity, what are 

the wave speeds of the two modes? Under what conditions, does the wave become unstable? For 

simplicity, you can assume D1=D2 and 𝑔′1 = 𝑔′2. 

 

 

h1 u1, v1, 1, p1 

u3= 0, v3=0, 3, p3=0 

u2, v2, 2, p2 

=const 

z1(x,y,t) 

z2(x,y,t) 
 

h2 
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E6.7. For a conservative quantity a, with da/dt =0, prove that a small perturbation of a satisfies 

a’= -’Ay, where ’ is the disturbance distance deviation.  

 

 

 

 

 

 

 

Hint: 𝑎0 ≡ 𝑎[𝑥, 𝑌0(𝑥, 𝑡)] gives the position of the contour a0 as 𝑌0(𝑥, 𝑡). Assume the time mean 

position of 𝑌0(𝑥, 𝑡) is y0, we have  

𝑎0 ≡ 𝑎[𝑥, 𝑌0(𝑥, 𝑡)] = 𝑎(𝑥, 𝑦0, 𝑡) + (𝑌0 − 𝑦0)𝜕𝑦𝑎|𝑦=𝑦0 +⋯ ≈ 𝑎(𝑥, 𝑦0, 𝑡) + 𝜂′𝜕𝑦𝐴 

where 𝑌0(𝑥, 𝑡) is a material surface and 𝜂′ = 𝑌0 − 𝑦0. Thus 𝑎′ = 𝑎(𝑥, 𝑦0, 𝑡) − 𝑎0 ≈ 𝜂′𝜕𝑦𝐴. 

 

a1 

a-1 

a0 

Before perturbation After perturbation 

’(x,t) a0 
a(x,y,t) 

y0 

Y0 
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