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Abstract 24 

In the first part of our research on self-sustained multicentennial oscillation of the Atlantic 25 

meridional overturning circulation (AMOC), we proposed a hemispheric box model considering only 26 

the saline process. In this paper, we consider both thermal and saline processes in the box model and 27 

employ mixed boundary conditions, so as to include more realistic physics. Generally, the thermal 28 

process has a stabilizing effect on the system, and additional physics, such as enhanced subpolar 29 

mixing or a nonlinear relation between the AMOC and meridional density gradient, is still needed to 30 

realize a self-sustained oscillation. Specifically, the thermal process exerts mainly two effects on the 31 

system: shortening marginally the multicentennial oscillation period of the AMOC, and stabilizing the 32 

oscillating system and subpolar stratification, which are contributed by the fast surface temperature 33 

restoring, the negative temperature-advection feedback and subpolar temperature stratification, 34 

respectively. The oscillation properties are controlled by the balance of destabilizing salinity 35 

advection and stabilizing temperature advection. Different from salinity-only situation, the enhanced 36 

subpolar mixing in the current situation makes the system more unstable. Weaker meridional 37 

temperature gradient and stronger meridional salinity gradient can lead to weaker temperature-38 

advection feedback and stronger salt-advection feedback, and thus a longer AMOC oscillation period 39 

with less stability at multicentennial timescale, which might be expected in the future due to more 40 

intense high-latitude warming and freshwater hosing. 41 

Keywords: AMOC, Self-sustained oscillation, Temperature feedbacks, Box model 42 
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1.   Introduction 44 

In our first publication on the multicentennial oscillation of the Atlantic meridional overturning 45 

circulation (AMOC) (Li and Yang 2022, hereafter LY22), we used a 4-box model to study the self-46 

sustained multicentennial AMOC oscillation, which only considered salinity equations. Here, we 47 

expand our horizon to explore theoretically the multicentennial oscillation of the AMOC by including 48 

both thermal and saline processes. Thus, the term AMOC in this paper refers to its thermohaline 49 

circulation portion that is controlled by both temperature and salinity. It is well recognized that the 50 

AMOC is a crucial regulator for the North Atlantic and likely the global climate over a wide range of 51 

timescales (Chabaud et al. 2014; Muir and Fedorov 2015; Zhang et al. 2019). Low-order theoretical 52 

models are essentials for understanding the AMOC dynamics. To isolate the most fundamental 53 

dynamics, only salinity equations were kept in the theoretical model of LY22, paralleling a few other 54 

studies (Rahmstorf 1996; Cimatoribus et al. 2014; Sévellec and Fedorov 2014). However, such 55 

treatment is unphysical to an extent since all the temperature-related effects were excluded. 56 

In ocean-only theoretical models of the AMOC, mixed boundary conditions (Haney 1971) are 57 

often employed; that is, sea surface temperature (SST) is restored to a prescribed value following the 58 

Newtonian law, while sea surface salinity (SSS) is forced by the surface freshwater flux. As seen in 59 

quite a few studies, the negative temperature-advection feedback (Stommel 1961; Walin 1985) and 60 

the positive restoring-advection feedback (Griffies and Tziperman 1995, hereafter GT95; Scott et al. 61 

1999; Colin de Verdière 2010) are included in their temperature equations. The former works as 62 

follows: commencing with an initial positive AMOC perturbation, the elevated poleward heat 63 

transport reduces subpolar density, therefore restraining deep-water formation, which is followed by 64 

the slowdown of the AMOC. The latter works as an opponent to the former: an enhanced AMOC 65 

increases the subpolar SST, leading to restore the warming itself, and the reduced positive SST 66 

anomaly hinders the AMOC slowdown. The restoring-advection feedback strengthens as the restoring 67 

process (timescale) speeds up (shortens). However, this feedback merely offsets, but never overruns 68 

the temperature-advection feedback even under extremely strong restoring. Hence, the net effect of 69 

temperature feedbacks is to stabilize the system. It has also been illustrated in other studies that the 70 

oceanic thermal process influences the stability of AMOC system (Zhang et al. 1993; Marotzke and 71 

Stone 1995; Rahmstorf and Willebrand 1995; Marotzke 1996). Consequently, adding temperature 72 

equations to the salinity-only model of LY22 should be more realistic for the multicentennial AMOC 73 

oscillation. 74 
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Usually, the thermal process is faster than the saline process due to the fast SST restoring, whose 75 

timescale is not more than a few years (Pierce 1996). It is thus intuitive that including this fast process 76 

might shorten the multicentennial period. However, Schmidt and Mysak (1996) considered that such 77 

fast restoring removes high-frequency anomalies and therefore might prolong the multicentennial 78 

period. They then stated that such lengthening is not so obvious; and their main focus was on the 79 

system’s stability, leaving this question unanswered. Therefore, it would be intriguing to see the role 80 

of temperature in influencing AMOC oscillation timescale. An in-depth understanding of temperature 81 

effects in shaping multicentennial AMOC oscillation should also provide us insight about how the 82 

AMOC will respond to future climate change. 83 

In this study, we extend the 4-box salinity-only model in LY22 to a temperature-salinity one; and 84 

we employ mixed boundary conditions. The conciseness of this model enables stability analysis. We 85 

aim to unravel the effects induced by thermal process. We then work on realization of a self-sustained 86 

oscillation with bounding terms affiliated, in order to test whether the advection process dominates 87 

the eigenmode. Motivated by the difference in period and stability between our model and other 88 

studies, we also examine the sensitivity of eigenmode to model parameters controlling the model 89 

geometry, flow properties and feedback processes. 90 

This paper is structured as follows. In section 2, a 4-box temperature-salinity model (hereafter 91 

4TS) is introduced, followed by illustration of temperature and salinity feedbacks. In section 3, the 92 

role of temperature equations is analyzed. In section 4, we test two ways for realizing a self-sustained 93 

oscillation, and elucidate the critical role of advection process. In section 5, the sensitivities of 94 

eigenmode’s period and stability to model parameters are examined. Summary and discussion are 95 

presented in section 6. 96 

 97 

2.   Box model 98 

a.   Model formulae 99 

The model we use here is a hemispheric 4-box model with identical geometry to that in LY22 100 

(Fig. 1a). The model domain is 60 in longitude, with the tropical and subpolar boxes spanning over 101 

0-45N and 45-70N, respectively. The AMOC flows through the boxes in a clockwise sense. 102 

Excluding multi-equilibria, we do not discuss possibility of a reversed AMOC cell. Analogous box 103 

models have been widely used (Joyce 1991; Huang et al. 1992; GT95). In the 4-box salinity-only 104 
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model (hereafter 4S) of LY22, only salinity equations were used to obtain analytical solutions. In the 105 

4TS model, we have: 106 

𝑉1𝑇1̇ = 𝑞(𝑇4 − 𝑇1) + 𝑉1𝜏(𝑇1
∗ − 𝑇1) (1𝑎) 107 

𝑉2𝑇2̇ = 𝑞(𝑇1 − 𝑇2) + 𝑉2𝜏(𝑇2
∗ − 𝑇2) (1𝑏) 108 

𝑉3𝑇3̇ = 𝑞(𝑇2 − 𝑇3) (1𝑐) 109 

𝑉4𝑇4̇ = 𝑞(𝑇3 − 𝑇4) (1𝑑) 110 

𝑉1𝑆1̇ = 𝑞(𝑆4 − 𝑆1) + 𝐹𝑤 (1𝑒) 111 

𝑉2𝑆2̇ = 𝑞(𝑆1 − 𝑆2) − 𝐹𝑤 (1𝑓) 112 

𝑉3𝑆3̇ = 𝑞(𝑆2 − 𝑆3) (1𝑔) 113 

𝑉4𝑆4̇ = 𝑞(𝑆3 − 𝑆4) (1ℎ) 114 

It is an advection-dominated box model, with mixed boundary conditions where Haney-style 115 

restoring for SST (Haney 1971) and surface freshwater flux for SSS are adopted. 𝑉𝑖, 𝑇𝑖 and 𝑆𝑖 are the 116 

volume, temperature and salinity in each box. Dots over variables denote their temporal derivatives. 𝑞 117 

stands for AMOC strength. 𝐹𝑤 represents the surface freshwater flux, which actually takes the form of 118 

virtual salt flux. 𝑇1
∗ and 𝑇2

∗ correspond to the restoring temperatures for boxes 1 and 2, respectively. 119 

The Newtonian restoring coefficient 𝜏 is also the reciprocal of the restoring timescale for 𝑇1 and 𝑇2. 120 

 121 
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FIG. 1. Schematic diagrams of temperature-salinity box models. (a) The 4-box model. (b) The 3-box model 122 

reduced from the 4-box one. The circled numbers , , , and  denote the ocean boxes. Boxes 1 and 4 123 

stand for the upper and lower tropical oceans, respectively, while boxes 2 and 3 stand for the upper and lower 124 

subpolar oceans, respectively. 𝐷1 and 𝐷2 represent the upper and lower ocean depths, respectively. The net 125 

freshwater flux out of (into) the tropical (subpolar) ocean is represented by 𝐹𝑤. 𝑇1
∗ (𝑇2

∗) is the restoring 126 

temperature of the tropical (subpolar) ocean. 𝑞 represents the AMOC. 127 

 128 

The equilibrium solutions at steady state can be easily written as:  129 

𝑇1 = 𝑇1
∗ −

𝑞𝑉2(𝑇1
∗−𝑇2

∗)

𝑞(𝑉1+𝑉2)+𝑉1𝑉2𝜏
,         𝑇2 =

𝑉1𝑇1
∗+𝑉2𝑇2

∗−𝑉1𝑇1

𝑉2
= 𝑇3 = 𝑇4 (2𝑎)  130 

𝑆1 = 𝐹𝑤/𝑞 + 𝑆2, 𝑆2 = 𝑆3 = 𝑆4 (2𝑏) 131 

Variables with overbar denote their equilibrium values. Similar to previous studies (Winton and 132 

Sarachik 1993; Cessi 1994; Roebber 1995), we choose 𝑞 = 10 𝑆𝑣. Following LY22, the upper and 133 

total ocean depths are 500 and 4000 𝑚, respectively. We set 𝑆2 and 𝐹𝑤 to 33.5 𝑝𝑠𝑢 and 25.0 𝑝𝑠𝑢 ⋅ 𝑆𝑣, 134 

respectively, leading to 𝑆1 = 36 𝑝𝑠𝑢. Straightway, 𝑇1
∗ and 𝑇2

∗ are considered to be close to the 135 

averaged realistic SSTs in the tropical and subpolar regions; thus we have 25℃ and 7℃, respectively. 136 

The setting of 𝜏 uses the idea of Bretherton (1982), and the restoring timescale 1/𝜏 is represented as 137 

follows: 138 

1/𝜏 =
𝜌𝑤𝑐𝛥𝑧𝐴

𝜅0𝐴
=
𝜌𝑤𝑐𝛥𝑧

𝜅0
(3) 139 

Here, 𝐴 is the area of ocean surface. 𝜌𝑤 and 𝑐 are the typical density and specific heat of seawater, set 140 

to 1027 𝑘𝑔 ⋅ 𝑚−3 and 3850 𝐽/(𝑘𝑔 ⋅ ℃), respectively. A value of 30 𝑚 is given to the thickness of the 141 

surface layer 𝛥𝑧 (not the upper ocean). 𝜅0 is a restoring coefficient. Bretherton (1982) stated that 𝜅0 142 

should be small when averaged over the whole globe, while it is larger if a smaller area is considered. 143 

In view of our one-hemisphere configuration, it is reasonable to choose 𝜅0 = 4 𝑊/(𝑚
2 ⋅ ℃), yielding 144 

a restoring timescale of almost one year in our box model. For convenience, we set 𝜏 =145 

3.171 × 10−8 𝑠−1, corresponding to a precise 1-year restoring timescale. 146 

The total AMOC strength 𝑞 could be separated into an equilibrium portion 𝑞 and an anomalous 147 

portion 𝑞′. We consider a linear relation between 𝑞′ and thickness-weighted meridional density 148 

gradient anomaly 𝛥𝜌′. Both 𝑞′ and 𝛥𝜌′ can be decomposed into temperature-driven portion (𝑞𝑇
′ , 𝛥𝜌𝑇

′ ) 149 

and salinity-driven portion (𝑞𝑆
′ , 𝛥𝜌𝑆

′ ); therefore, we have: 150 
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𝑞 = 𝑞 + 𝑞′ (4𝑎) 151 

𝑞′ = 𝑞𝑇
′ + 𝑞𝑆

′ = 𝜆𝛥𝜌𝑇
′ + 𝜆𝛥𝜌𝑆

′ = 𝜆𝛥𝜌′ (4𝑏) 152 

where 153 

𝛥𝜌𝑇
′ = −𝜌0𝛼[𝛿(𝑇2

′ − 𝑇1
′) + (1 − 𝛿)(𝑇3

′ − 𝑇4
′)] (4𝑐) 154 

𝛥𝜌𝑆
′ = 𝜌0𝛽[𝛿(𝑆2

′ − 𝑆1
′) + (1 − 𝛿)(𝑆3

′ − 𝑆4
′)] (4𝑑) 155 

𝛿 =
𝑉1

𝑉1+𝑉4
=

𝑉2

𝑉2+𝑉3
=

𝐷1

𝐷
(4𝑒)  156 

The sensitivity of 𝑞′ to 𝛥𝜌′ is represented by a linear closure coefficient 𝜆. 𝜌0, 𝛼 and 𝛽 are the 157 

reference density, thermal expansion and haline contraction coefficients for seawater, respectively. 𝐷1 158 

and 𝐷 correspond to the upper and total ocean depths, respectively. 𝑇𝑖
′ and 𝑆𝑖

′ are the temperature and 159 

salinity anomalies of box 𝑖, respectively. A summary of the standard parameter values is provided in 160 

Table 1.  161 

TABLE 1. Standard values of the parameters used. 162 

Symbol Physical Significance Value 

𝑉2 Volume of box 2  2.8 × 1015 𝑚3 

𝑉1, 𝑉3, 𝑉4 Volumes of boxes 1, 3 and 4, respectively 5𝑉2, 7𝑉2, 35𝑉2 

𝐷1, 𝐷2, 𝐷 Thicknesses of the upper, lower oceans and the entire ocean  500, 3500, 4000 𝑚 

𝑇1
∗, 𝑇2

∗ Restoring temperatures of boxes 1 and 2 25℃, 7℃ 

𝜏 Restoring coefficient of boxes 1 and 2 3.171 × 10−8 𝑠−1 

𝑆1̅, 𝑆2̅̅̅, 𝑆3̅̅̅, 𝑆4̅̅̅ Equilibrium salinities of boxes 1, 2, 3 and 4 36, 33.5, 33.5, 33.5 𝑝𝑠𝑢 

𝑞 Equilibrium strength of AMOC 10 𝑆𝑣 (106 𝑚3 𝑠−1) 

𝐹𝑤 Surface freshwater flux 25.0 𝑝𝑠𝑢 ⋅ 𝑆𝑣 

𝜆 Linear closure coefficient 12 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3 

𝜌0 Reference seawater density 1.00 × 103 𝑘𝑔 𝑚−3 

α Thermal expansion coefficient 1.468 × 10−4 ℃ −1 

𝛽 Haline contraction coefficient 7.61 × 10−4 𝑝𝑠𝑢−1 

 163 
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We linearize Eq. (1) as follows: 164 

𝑉1𝑇1
′̇ = 𝑞′(𝑇4 − 𝑇1) + 𝑞(𝑇4

′ − 𝑇1
′) − 𝑉1𝜏𝑇1

′ (5𝑎) 165 

𝑉2𝑇2
′̇ = 𝑞′(𝑇1 − 𝑇2) + 𝑞(𝑇1

′ − 𝑇2
′) − 𝑉2𝜏𝑇2

′ (5𝑏) 166 

𝑉3𝑇3
′̇ = 𝑞(𝑇2

′ − 𝑇3
′) (5𝑐) 167 

𝑉4𝑇4
′̇ = 𝑞(𝑇3

′ − 𝑇4
′) (5𝑑) 168 

𝑉1𝑆1
′̇ = 𝑞′(𝑆4̅ − 𝑆1̅) + 𝑞(𝑆4

′ − 𝑆1
′) (5𝑒) 169 

𝑉2𝑆2
′̇ = 𝑞′(𝑆1̅ − 𝑆2̅) + 𝑞(𝑆1

′ − 𝑆2
′) (5𝑓) 170 

𝑉3𝑆3
′̇ = 𝑞(𝑆2

′ − 𝑆3
′) (5𝑔) 171 

𝑉4𝑆4
′̇ = 𝑞(𝑆3

′ − 𝑆4
′) (5ℎ) 172 

In LY22, we assumed an extremely strong vertical mixing between subpolar boxes 2 and 3; the 173 

4S model can be reduced to a 3-box salinity-only model (hereafter 3S). Applying the same treatment 174 

to the 4TS model, a 3-box temperature-salinity model (hereafter 3TS; Fig. 1b) can be obtained. Now, 175 

Eqs. (4c-e) become,  176 

𝛥𝜌𝑇
′ = −𝜌0𝛼[𝑇2

′ − 𝛿𝑇1
′ − (1 − 𝛿)𝑇4

′] (6𝑎) 177 

𝛥𝜌𝑆
′ = 𝜌0𝛽[𝑆2

′ − 𝛿𝑆1
′ − (1 − 𝛿)𝑆4

′] (6𝑏) 178 

𝛿 =
𝑉1

𝑉1+𝑉4
=

𝐷1

𝐷
(6𝑐)  179 

and Eqs. (5a-h) are reduced to:  180 

𝑉1𝑇1
′̇ = 𝑞′(𝑇4 − 𝑇1) + 𝑞(𝑇4

′ − 𝑇1
′) − 𝑉1𝜏𝑇1

′ (7𝑎) 181 

𝑉2𝑇2
′̇ = 𝑞′(𝑇1 − 𝑇2) + 𝑞(𝑇1

′ − 𝑇2
′) − 𝑉2𝜏𝑇2

′ (7𝑏) 182 

𝑉4𝑇4
′̇ = 𝑞(𝑇2

′ − 𝑇4
′) (7𝑐) 183 

𝑉1𝑆1
′̇ = 𝑞′(𝑆4̅ − 𝑆1̅) + 𝑞(𝑆4

′ − 𝑆1
′) (7𝑑) 184 

𝑉2𝑆2
′̇ = 𝑞′(𝑆1̅ − 𝑆2̅) + 𝑞(𝑆1

′ − 𝑆2
′) (7𝑒) 185 

𝑉4𝑆4
′̇ = 𝑞(𝑆2

′ − 𝑆4
′) (7𝑓) 186 

 187 

b.   Stability analysis 188 
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Let us first examine the eigenvalues of the 4TS model. Table 2 lists the eight eigenvalues of Eq. 189 

(5) using the parameters in Table 1. The eigenvalues in the 4S model of LY22 using the same 190 

parameters are listed in Table 2 for comparison.  191 

TABLE 2. Eigenvalues (10−10 𝑠−1) for the 4TS and 4S models using the parameters of Table 1. 192 

4TS 4S Physical significance 

−0.55 ± 6.59𝑖 0.31 ± 5.83𝑖 Oscillatory mode 

0 0 Zero mode 

−366 — Damped mode 

−324 — Damped mode 

−37.4 −37.4 Damped mode 

−5.28 — Damped mode 

−0.78 — Damped mode 

 193 

There is still a pair of conjugate eigenvalues (−0.55 ± 6.59𝑖) in the 4TS model. The weakly 194 

unstable oscillatory mode (0.31 ± 5.83𝑖) in the 4S model becomes a weakly damped oscillatory mode 195 

in the 4TS model (Fig. 3a). That is, the e-folding time changes from positive 1025 years in the 4S 196 

model to negative 576 years in the 4TS model, and the period changes from 340 years to about 300 197 

years. This seems to suggest that the thermal processes have a stabilizing effect on the system, and 198 

tend to shorten the oscillation period slightly (Fig. 3a). The zero mode (eigenvalue 0) represents the 199 

climatological mean state. The other five eigenvalues in the 4TS model represent five purely damped 200 

modes, which are not of our concern. 201 

The stability of the box model system is strongly dependent on the linear closure parameter 𝜆, 202 

i.e., the sensitivity of the AMOC to the meridional density gradient as formulated in Eq. (4b). The 203 

critical role of 𝜆 and its physical explanation can be found in LY22. In this paper, we simply solve 204 

Eqs. (5) and (7) numerically to investigate how 𝜆 affects the stabilities of the 4TS and 3TS models. 205 

Figure 2 shows the dependence of real and imaginary parts of the oscillatory mode on 𝜆. The results 206 

from the 4S and 3S models in LY22 are also plotted in Fig. 2 for comparison. The intersections 207 
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between line 𝑦 = 0 and the stability diagrams of each model, (𝜆𝐶, 0), (𝜆1, 0) and (𝜆2, 0), correspond 208 

to the instability threshold (Fig. 2b), the lower and upper limits for the existence of the imaginary 209 

parts (Fig. 2a), respectively. Their values are listed in Table 3. When 𝜆 ≥ 𝜆2 or 𝜆 ≤ 𝜆1, only purely 210 

growing or damped modes without oscillatory potentials exist, suggested by the corresponding 211 

positive or negative real parts (Fig. 2b). When 𝜆1 < 𝜆 < 𝜆2, the systems exhibit oscillatory behavior 212 

because of the presence of the imaginary parts (Fig. 2a). With the increase of 𝜆, the models have the 213 

tendency to change from a damped oscillation to a growing oscillation. In comparison with the 4S and 214 

3S models of LY22, it appears that including the temperature equations in the system has at least two 215 

consequences:  216 

(a) An acceleration of the oscillation, evidenced by the larger imaginary parts in the 4TS and 3TS 217 

models (Fig. 2a, orange curves) than in the 4S and 3S models (Fig. 2a, black curves). 218 

(b) An overall stabilization for the system, evidenced by the higher 𝜆𝑐 in the 4TS and 3TS models 219 

than in the 4S and 3S models listed in Table 3, and the smaller real parts in the 4TS and 3TS 220 

models (Fig. 2c, orange lines) than in the 4S and 3S models (Fig. 2c, black lines). 221 

 222 

FIG. 2. Dependences of (a) imaginary parts and (b) real parts of the oscillatory mode on 𝜆 in the 4TS (solid 223 

orange curves), 3TS (dashed orange curves), 4S (solid black curves), and 3S (dashed black curves) models. (c) 224 

is the magnified version of (b) near line 𝑦 = 0. Results of the 4S and 3S models are from LY22. The units of 225 

the ordinate are 10-10 s-1. The values of the other parameters are the same as those listed in Table 1. The vertical 226 

dashed gray line denotes the situation under the standard value 𝜆 = 12 𝑆𝑣 ⋅ 𝑘𝑔−1𝑚3. 227 

 228 
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TABLE 3. Values for 𝜆𝑐, 𝜆1 and 𝜆2 (units: 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3) in different box models. 229 

 4TS 3TS 4S 3S 

𝜆𝐶 13.20 13.06 11.44 12.39 

𝜆1, 𝜆2 -0.92, 26.80 -0.70, 23.24 -0.89, 20.44 -0.69, 21.46 

 230 

The stability analyses provide us the mathematical fundamentals, showing how the oscillatory 231 

behaviors of the system change when the thermal process is included. Physical insight into why the 232 

oscillation changes will be deliberated next.  233 

 234 

3.   Effects of temperature equations 235 

a.   Temperature feedbacks  236 

There are mainly two feedbacks between the thermal process and the AMOC: the negative 237 

temperature-advection feedback and the positive restoring-advection feedback. Let us illustrate them 238 

using box 2 (Fig. 3b). Starting with a positive perturbation of 𝑞′, the anomalous advection 239 

𝑞′(𝑇1 − 𝑇2) transports more warm water northward, 𝑇2
′ is increased and thus 𝛥𝜌𝑇

′  is lowered, causing 240 

a decrease in 𝑞𝑇
′ . This is the negative temperature-advection feedback, which can be further illustrated 241 

by the lead/lag correlation between 𝑞′(𝑇1 − 𝑇2) and 𝑞𝑇
′ : the former leads the latter by about 𝜋/4 with 242 

a negative correlation near 1.0 (Fig. 3e, orange curve). However, the increased 𝑇2
′ also triggers a 243 

relaxation via the anomalous restoring −𝑉2𝜏𝑇2
′, whose strength is proportional to the restoring 244 

coefficient 𝜏. This limits the growth of the positive 𝑇2
′ itself, bounding the decreases of 𝛥𝜌𝑇

′  and 𝑞𝑇
′ . 245 

This is the positive restoring-advection feedback, which is also illustrated clearly in Fig. 3e (green 246 

curve): −𝑉2𝜏𝑇2
′ leads 𝑞𝑇

′  by about 𝜋/4 with a positive correlation near 1.0. These two feedbacks are 247 

local ones, which have the comparable amplitude and can offset each other mostly (Fig. 3b). There is 248 

a third feedback coming from 𝑞(𝑇1
′ − 𝑇2

′) of Eq. (5b). This term is related to the remote response 𝑇1
′, 249 

and is a weak positive feedback (Figs. 3b, e).  250 
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 251 

FIG. 3. (a) Damped and growing oscillations in the 4TS and 4S models using the standard parameters in Table 252 

1. Black, orange and green curves are the time series of 𝑇2
′ (units: C), 𝑆2

′  (units: 𝑝𝑠𝑢) in the 4TS model and 𝑆2
′  253 

in the 4S model, respectively. (b) Time series for temperature terms (units: 𝑆𝑣 ⋅ ℃) on the right-hand side of 254 

Eq. (5b); (c) time series for salinity terms (units: 𝑆𝑣 ⋅ 𝑝𝑠𝑢) on the right-hand side of Eq. (5f); (d) time series for 255 

𝑞′, 𝑞𝑇
′  and 𝑞𝑆

′  (units: 𝑆𝑣) in the 4TS model. The vertical dashed gray lines in (a)-(d) mark the locations of /2, 256 

, 3/2, and 2 of the period (302 years) in the 4TS model. (e) Lead/lag correlation coefficients between 𝑞𝑇
′  257 

and 𝑞(𝑇1
′ − 𝑇2

′) (dotted black curve), 𝑞′(𝑇1 − 𝑇2) (solid orange curve) and −𝑉2𝜏𝑇2
′ (solid green curve) in the 258 

4TS model. (f) Lead/lag correlation coefficients between 𝑞𝑆
′  and 𝑞(𝑆1

′ − 𝑆2
′) (solid black curve), and between 259 

𝑞𝑆
′  and 𝑞′(𝑆1 − 𝑆2) (solid orange curve) in the 4TS model. In (e)-(f), the negative lag represents 𝑞′ lags the 260 

other terms.  261 

 262 

The salt-advection feedback in the 4TS model is nearly identical to that in the 4S model of 263 

LY22. The positive and negative feedbacks come from terms 𝑞′(𝑆1 − 𝑆2) and 𝑞(𝑆1
′ − 𝑆2

′) (Figs. 3c, 264 

f), respectively. Note that 𝑞′ is the sum of salinity-induced 𝑞𝑆
′  and temperature-induced 𝑞𝑇

′ . These two 265 

components are roughly out of phase; and the former is much bigger than the latter (Fig. 3d), 266 

suggesting that the salt-advection feedback has more remarkable effect on the AMOC than the 267 

temperature-advection feedback does. In addition, although introducing the fast-restoring processes 268 

leads to an obvious time lag between the thermal process and the AMOC (Fig. 3e), there is almost no 269 
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time lag between the saline process and the AMOC (Fig. 3f), further suggesting the deterministic role 270 

of the saline process in the multicentennial oscillation of the AMOC. 271 

Results shown in Fig. 3 are obtained from forward numerical integration of Eq. (5) with the 272 

standard parameters in Table 1. The fourth-order Runge-Kutta method is used to solve Eq. (5), with 273 

𝑆1
′(𝑡 = 0) = −0.02 𝑝𝑠𝑢 at the first time step, and 𝑆′ = 𝑇′ = 0. The integration time step is 7.2 days, 274 

and the total integration length exceeds 10000 years, but only the very front parts are shown. 275 

Throughout this paper, the same numerical method is employed for all experiments; and annual mean 276 

data is used for analysis.  277 

 278 

b.   Role of restoring feedback  279 

It is the restoring feedback in the temperature equations that changes the oscillatory behavior of 280 

the system. To understand this better, let us first examine how the restoring timescale affects the 281 

temperature-advection feedback. Based on Eq. (2a), we have, 282 

𝑇1 − 𝑇2 = (𝑇1
∗ − 𝑇2

∗)/ [
𝑞(𝑉1+𝑉2)

𝑉1𝑉2𝜏
+ 1] (8)  283 

This depicts a larger 𝜏 (or a shorter restoring timescale) causes a larger 𝑇1 − 𝑇2, thus stronger 284 

advection 𝑞′(𝑇1 − 𝑇2). However, since the negative temperature-advection feedback is realized 285 

through an increase in 𝑇2
′, which is in turn limited by stronger −𝑉2𝜏𝑇2

′, the restoring-advection 286 

feedback tends to always offset mostly the temperature-advection feedback, regardless of the 287 

restoring strength (Fig. 3b).  288 

 TABLE 4. Conjugate eigenmodes in the 4TS model under different 𝜏. 289 

𝜏 Eigenvalues (10−10 𝑠−1) E-folding time (Years) Period (Years) 

𝜏0 = 0 0.31 ± 5.83𝑖 1025 341 

𝜏1 = (5 𝑦𝑒𝑎𝑟)
−1 −1.48 ± 7.30𝑖 -215 273 

𝜏2 = (1 𝑦𝑒𝑎𝑟)
−1 −0.55 ± 6.59𝑖 -576 302 

𝜏3 = (0.25 𝑦𝑒𝑎𝑟)−1 0.036 ± 6.09𝑖 8830 327 
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𝜏4 = (1 𝑚𝑜𝑛𝑡ℎ)
−1 0.21 ± 5.92𝑖 1492 336 

𝜏5 = (1 𝑚𝑖𝑛𝑢𝑡𝑒)−1 0.31 ± 5.83𝑖 1025 341 

 290 

There are two extreme situations. When 𝜏 → 0 or 𝜏 → ∞, that is, the restoring timescale for SST 291 

goes to either infinity or zero, the oscillatory eigenmode (0.31 ± 5.83𝑖) in the 4TS model is identical 292 

to that in the 4S model (Table 4). Under these two situations, the thermal process has no effect on the 293 

AMOC oscillation, and the 4TS model is practically reduced to the 4S model. In the situation with 294 

𝜏 → 0, the linearized temperature equations (Eqs. 5a-d) are identical to the linearized salinity 295 

equations (Eqs. 5e-h), and the combined temperature and salinity equations are equivalent to the 296 

salinity equations in the 4S model. Now, 𝑇1 = 𝑇2 = 𝑇3 = 𝑇4 based on Eqs. (2) and (8). There is no 297 

temperature-advection feedback (𝑞′(𝑇1 − 𝑇2) = 0) anywhere, so the system is totally controlled by 298 

the saline process. In the situation with 𝜏 → ∞, 𝑇1 − 𝑇2 = 𝑇1
∗ − 𝑇2

∗. The extremely strong restoring 299 

kills any temperature perturbations immediately, which makes 𝑇1
′ = 𝑇2

′ = 0 and the 4TS system is 300 

equivalent to a system without active thermal process, so that only the saline process matters to the 301 

oscillatory behavior. In summary, under these two extreme situations, the results from linear stability 302 

analysis suggest the oscillations of salinity and AMOC are identical to those of the 4S model in 303 

LY22; as a result, the corresponding figures (Figs. 2-3 when 𝜏 → 0 or 𝜏 → ∞) are not shown. 304 

The dependences of imaginary and real parts of the oscillatory mode on 𝜏 in the 4TS model are 305 

shown in Fig. 4 (solid orange curves). Under a reasonable range of 𝜏 (from 𝜏1 to 𝜏4; Table 4), the 306 

oscillatory behavior of the 4TS model can vary from a damped oscillation to a weakly growing 307 

oscillation (Fig. 4b, solid orange curve). This is because the positive restoring-advection feedback 308 

becomes stronger as the restoring timescale gets shorter; and the system changes from under-309 

compensation to overcompensation, to the negative temperature-advection feedback. Compared with 310 

the 4S model (Fig. 4b, solid black line), the 4TS model is generally more stable, manifested by the 311 

negative or longer positive e-folding time. Even for a very short SST restoring timescale (one to 312 

several months) (Table 4), the positive e-folding time of the oscillatory mode in the 4TS model is still 313 

much longer than that in the 4S model. This is because for any given 𝜏 and 𝜆, temperature-induced 𝑞𝑇
′  314 

is always opposite to salinity-induced 𝑞𝑆
′ , so that the total 𝑞′ is always smaller, i.e., the AMOC 315 

sensitivity to buoyancy perturbation is always weaker in the 4TS model than in the 4S model. In 316 

addition, including the fast thermal restoring process leads to a shorter oscillation period in the 4TS 317 

model than in the 4S model (Fig. 4a), because the superimposition of a quick timescale and a slow 318 
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timescale leads to a timescale in between. Practically, since a reasonable restoring timescale is always 319 

much shorter than the multicentennial timescale, the effect of restoring timescale on the oscillation 320 

period of the system can be neglected. 321 

 322 

FIG. 4. Dependence of (a) positive imaginary parts and (b) real parts of the oscillatory mode on 𝜏 (units: year-1) 323 

in the 4TS model (solid orange curve) and the 3TS model (dashed orange curve). The units of the ordinate are 324 

10-10 s-1. The vertical dashed gray lines from left to right denote the situations under 𝜏1, 𝜏2, 𝜏3, 𝜏4, and 𝜏5, 325 

respectively. The reference oscillatory modes in the 4S and 3S models are plotted as the solid and dashed black 326 

lines, respectively, which are independent of 𝜏. Here, 𝜆 is set to 12 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3. The values of the other 327 

parameters are the same as those listed in Table 1. 328 

 329 

The restoring timescale also affects the relative stability of the 4TS and 3TS models. As shown 330 

in Fig. 1, under extremely strong vertical mixing in the subpolar ocean, the 4-box model (Fig. 1a) can 331 

be reduced to a 3-box model (Fig. 1b). LY22 showed that the 3S model is always more stable than the 332 

4S model. Here, we find that including the thermal process, the change of stability from the 4TS to 333 

3TS model is not that obvious (Fig. 4). To better understand the stability change, we should first 334 

recognize that whether the temperature and salinity anomalies stay in the subpolar upper or lower 335 

ocean does not influence the meridional density gradient due to the vertically weighted volume-336 

averaged treatment. However, the time consumed in transporting temperature and salinity anomalies 337 

from the upper to lower ocean is omitted; consequently, they are removed faster from the subpolar 338 

region in the 3-box model, which reduces their restraining and amplification effects on 𝑞𝑇
′  and 𝑞𝑆

′ , 339 

respectively. Therefore, the removals of temperature and salinity related stratifications in the 3TS 340 

model have destabilizing and stabilizing effects, respectively, on the oscillation of the system. 341 
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 342 

FIG. 5. Lead/lag correlation coefficients between 𝑇2
′ − 𝑇3

′ and 𝑞𝑇
′  (orange curves) and between 𝑆2

′ − 𝑆3
′  and 𝑞𝑆

′  343 

(black curves) in the 4TS model under different 𝜏. The negative lag represents 𝑞′ lags the other terms. Here, 𝜆 344 

is set to 12 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3. The values of the other parameters are the same as those listed in Table 1. 345 

 346 

In the 4TS model, the subpolar temperature stratification 𝑇2
′ − 𝑇3

′ leads 𝑞𝑇
′  by about 

𝜋

2
 with a 347 

negative correlation, while the subpolar salinity stratification 𝑆2
′ − 𝑆3

′  leads 𝑞𝑆
′  by 

𝜋

2
 with a positive 348 

correlation (Fig. 5). Moreover, at lag 0, 𝑇2
′ − 𝑇3

′ (𝑆2
′ − 𝑆3

′ ) also has negative (positive) correlation with 349 

𝑞𝑇
′  (𝑞𝑆

′ ). These correlation relationships do not rely on the temperature restoring coefficient 𝜏. These 350 

confirm that the existences of subpolar temperature and salinity related stratifications have stabilizing 351 

and destabilizing effects, respectively, on the system. However, whether the total subpolar buoyancy 352 

stratification plays as a stabilizing or destabilizing role depends on 𝜏. When 𝜏 lies in the range of 353 

about several years (from 𝜏1 to 𝜏2; Fig. 4b), the subpolar buoyancy stratification plays as a stabilizing 354 

factor since the stabilizing effect of temperature stratification overcomes the destabilizing effect of 355 

salinity stratification. When 𝜏 is too small or too large, the temperature effect becomes weaker while 356 

the salinity effect is not influenced. Hence, the temperature stratification no longer overcomes the 357 

salinity stratification; and the 3TS model is more stable than the 4TS model, that is, including extreme 358 

mixing in the subpolar ocean can stabilize the system, as deliberated in LY22. We conclude that 359 

under realistic ranges of the parameters, the 4TS model can be more stable than the 3TS model, due to 360 

the stabilizing effect of subpolar temperature stratification. 361 

 362 

4.   Realization of self-sustained oscillation 363 
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Self-sustained oscillation is still absent in the 4TS model. Under the same parameters, the 4TS 364 

model is more stable than the 4S model in LY22 (Fig. 2c), as discussed in section 3. However, this 365 

does not lead to a self-sustained oscillation in the 4TS model; clearly, additional processes are 366 

needed. In LY22, an enhanced mixing process is added explicitly in the subpolar ocean, to realize a 367 

self-sustained oscillation. There is also an alternative way to realize a self-sustained oscillation as 368 

shown in Rivin and Tziperman (1997) (hereafter RT97), in which a nonlinear relationship between 369 

the AMOC strength and meridional density gradient is employed. Here, we want to emphasize that a 370 

self-sustained oscillation should first satisfy the instability criterion detailed in LY22, that is, 𝜆 > 𝜆𝐶, 371 

depicting that the AMOC should be sensitive enough to the perturbation of meridional density 372 

gradient, and the intrinsic oscillatory mode is an unstable mode. When 𝜆 ≤ 𝜆𝐶, the oscillatory mode 373 

itself is a decayed or neutral mode; and any additional mixing or nonlinear processes will make the 374 

oscillation even more decayed. 375 

 376 

a.   Self-sustained oscillation with enhanced subpolar mixing  377 

Similar to LY22, we introduce an enhanced mixing term between boxes 2 and 3 in the 4TS 378 

model. Eqs. (5b-c) and (5f-g) become, 379 

𝑉2𝑇2
′̇ = 𝑞′(𝑇1 − 𝑇2) + 𝑞(𝑇1

′ − 𝑇2
′) − 𝑘𝑚(𝑇2

′ − 𝑇3
′) − 𝑉2𝜏𝑇2

′ (9𝑎) 380 

𝑉3𝑇3
′̇ = 𝑞(𝑇2

′ − 𝑇3
′) + 𝑘𝑚(𝑇2

′ − 𝑇3
′) (9𝑏)   381 

𝑉2𝑆2
′̇ = 𝑞′(𝑆1 − 𝑆2) + 𝑞(𝑆1

′ − 𝑆2
′) − 𝑘𝑚(𝑆2

′ − 𝑆3
′) (9𝑐)  382 

𝑉3𝑆3
′̇ = 𝑞(𝑆2

′ − 𝑆3
′) + 𝑘𝑚(𝑆2

′ − 𝑆3
′) (9𝑑)  383 

And the mixing coefficient 𝑘𝑚 (units: 𝑚3/𝑠) is represented by: 384 

𝑘𝑚 = 𝜅𝑞′2 (9𝑒) 385 

Here, 𝜅 (units: 𝑚−3𝑠) is a positive constant. We set it to 1 × 10−4 𝑚−3𝑠 in this paper. No matter the 386 

sign of 𝑞′, 𝑘𝑚 is always positive and helps remove the subpolar upper-ocean anomalies. Detailed 387 

physics of the enhanced mixing process was discussed in LY22. 388 

A growing oscillation (Fig. 6a, solid black curve) is turned into a self-sustained oscillation (Fig. 389 

6a, solid orange curve) when enhanced subpolar mixing is included. Here, 𝜆 = 14 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3; and 390 

the intrinsic mode of the 4TS model is unstable. As 𝑞′ grows (decreases), more warm and saline (cold 391 
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and fresh) water is removed from the subpolar upper ocean, which enters the lower ocean through 392 

anomalous mixings −𝑘𝑚(𝑇2
′ − 𝑇3

′) and −𝑘𝑚(𝑆2
′ − 𝑆3

′) (Figs. 6b, c, solid orange curves). In turn, 393 

further growth (decrease) of 𝑞′ is restrained. Beware that the temperature and salinity mixing-394 

advection feedbacks have destabilizing and stabilizing effects on 𝑞′, respectively (Fig. 6d). Their 395 

combined effect on subpolar density is to stabilize 𝑞′. In summary, including enhanced mixing in the 396 

subpolar ocean can well establish a self-sustained oscillation, which can be seen more clearly in the 397 

phase diagram of 𝑇2
′ vs 𝑆2

′  (Fig. 6e, orange curve); that is, a limit cycle is formed eventually.  398 

 399 

FIG. 6. Oscillations under 𝜆 = 14 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3. (a) Time series for 𝑞′ (solid black curve) under 𝜅 = 0, 𝑞′ 400 

(solid orange curve), 𝑞𝑇
′ (solid green curve) and 𝑞𝑆

′  (dashed green curve) under 𝜅 = 1 × 10−4 𝑚−3𝑠 (units: 401 

𝑆𝑣). (b) Time series for 𝑇2
′ (solid black curve; units: ℃) and −𝑘𝑚(𝑇2

′ − 𝑇3
′) (solid orange curve; units: 𝑆𝑣 ⋅ ℃). 402 

(c) Time series for 𝑆2
′  (solid black curve; units: 𝑝𝑠𝑢) and −𝑘𝑚(𝑆2

′ − 𝑆3
′) (solid orange curve; units: 𝑆𝑣 ⋅ 𝑝𝑠𝑢). 403 

(d) Lead/lag correlation coefficients for −𝑘𝑚(𝑇2
′ − 𝑇3

′) and 𝑞𝑇
′  (solid black curve), −𝑘𝑚(𝑆2

′ − 𝑆3
′) and 𝑞𝑆

′  404 

(solid orange curve). (e) 𝑇2
′-𝑆2

′  phase space diagrams for years 1-10000. The red dot represents the initial 405 

location of 𝑇2
′ and 𝑆2

′ . Black curve is for 𝜅 = 0, and orange curve, for 𝜅 = 1 × 10−4 𝑚−3𝑠. The vertical dashed 406 

gray line in (a), (b) and (c) marks a holonomic oscillation period under 𝜅 = 1 × 10−4 𝑚−3𝑠. The values of the 407 

other parameters are the same as those listed in Table 1. 408 

 409 

The oscillation period under 𝜅 = 1 × 10−4 𝑚−3𝑠 is 300 years, quite close to the 306-year 410 

analytical period under 𝜅 = 0. The period is insensitive to the value of 𝜅, indicating that it is 411 
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dominated by advection instead of the mixing process. The 𝜅 chosen here is one order smaller than 412 

the value used in LY22, suggesting that even a small bounding from subpolar vertical mixing can lead 413 

to self-sustained oscillation. 414 

 415 

b.   Self-sustained oscillation with nonlinear AMOC-density relation 416 

It has been prevailing to set the sensitivity of the AMOC in low-order models to be linearly 417 

proportional to the meridional density gradient (Stommel 1961; GT95; Zhao et al. 2016; Shi and 418 

Yang 2021). As an alternative, we use a nonlinear relation analogous to Cessi (1994) and RT97 to 419 

introduce a degree of nonlinearity in this study. Now, Eq. (4b) becomes, 420 

𝑞′ =

{
 
 
 

 
 
 
𝜆𝜌𝑐𝑟𝑖 [𝑘 ([

𝛥𝜌′

𝜌𝑐𝑟𝑖
]

1

𝑘

− 1) + 1] , 𝑖𝑓 𝛥𝜌′ > 𝜌𝑐𝑟𝑖

𝜆𝛥𝜌′                                                     𝑖𝑓 −𝜌𝑐𝑟𝑖 < 𝛥𝜌
′ < 𝜌𝑐𝑟𝑖

−𝜆𝜌𝑐𝑟𝑖 [𝑘 ([−
𝛥𝜌′

𝜌𝑐𝑟𝑖
]

1

𝑘

− 1) + 1] , 𝑖𝑓 𝛥𝜌′ < −𝜌𝑐𝑟𝑖

(10) 421 

At 𝑘 = 1, Eq. (10) is reduced to the linear Eq. (4b); and the system exhibits growing oscillation under 422 

𝜆 = 14 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3 (Figs. 6a, 7a, black curves). If 𝑘 = 1.05 with 𝜌𝑐𝑟𝑖 = 0.002 𝑘𝑔/𝑚
3, a small 423 

degree of nonlinearity (Fig. 7c, orange curve) will be introduced into the linear system. The self-424 

sustained oscillation is then realized (Fig. 7a, orange curve), and a limit-cycle is achieved (Fig. 7b, 425 

orange curve). The intersections between the vertical dashed gray lines and the abscissa axis in Fig. 426 

7c mark the upper and lower limits for 𝛥𝜌′ during the integration. As 𝛥𝜌′ grows, the nonlinear 427 

bounding effect of Eq. (10) gradually emerges, limiting the fluctuation tendency of 𝑞′. The bounding 428 

manifested as the difference between the solid and orange curves is very small (Fig. 7c). Hence, even 429 

a tiny degree of internal nonlinearity from the AMOC-meridional density gradient relation can lead to 430 

self-sustained oscillation. The period here is 303 years, hardly deviated from the 306-year eigen 431 

period of the linear system, reflecting again the robustness of the advection-dominated eigenmode. 432 
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 433 

FIG. 7. Oscillations under 𝜆 = 14 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3. (a) Time series for 𝑞′ (units: 𝑆𝑣) under 𝑘 = 1 (black curve) 434 

and 𝑘 = 1.05 (orange curve). (b) 𝑇2
′-𝑆2

′  phase space diagrams for years 1-10000. The red dot represents the 435 

initial location of 𝑇2
′ and 𝑆2

′ . Black curve is for 𝑘 = 1, and orange curve, for 𝑘 = 1.05. (c) Variations of 𝑞′ with 436 

𝛥𝜌′ (units: 𝑘𝑔/𝑚3) under 𝑘 = 1 (black curve) and 𝑘 = 1.05 (orange curve). The intersections between the 437 

vertical dashed gray lines and the abscissa axis mark the upper and lower limits for 𝛥𝜌′ during the integration. 438 

The values of the other parameters are the same as those listed in Table 1. 439 

 440 

5.   Eigenmode sensitivity 441 

In theoretical models, model parameters can be tuned to control oscillation properties. GT95 442 

identified a multidecadal oscillation in their 4TS model, whose period is far shorter than our 443 

multicentennial period. RT97 used a 3TS model, and also identified a multi-decadal mode. The 444 

system stability in RT97’s model is far lower than ours. Since both GT95 and RT97 also employed 445 

mixed boundary conditions, and their core dynamics are all advection feedbacks, such differences in 446 

eigenmodes are likely to originate from parameter choices. Previously studies usually tuned 447 

parameters to study multi-equilibria problems (Colin de Verdière et al. 2006; Colin de Verdière 2007; 448 

Sévellec et al. 2010; Sévellec and Fedorov 2014). In single-equilibrium oscillation studies, the 449 

parameters effects on the eigenmode have not been widely heeded, which will be addressed next via 450 

numerical stability analyses. 451 

 452 

a.   Effect of basin geometry 453 

Basin geometry can affect both the period and e-folding time of the system eigenmode (Fig. 8). 454 

The eigen period increases roughly monotonously with the increases of both the subpolar ocean 455 

fraction (𝑉2 + 𝑉3)/𝑉 and the upper ocean fraction (𝑉1 + 𝑉2)/𝑉 (Fig. 8a). The standard geometry is 456 
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(𝑉1 + 𝑉2)/𝑉 = 1/8 and (𝑉2 + 𝑉3)/𝑉 = 1/6 in this paper, denoted by the orange stars in Fig. 8. In 457 

GT95, the fractions of the upper and subpolar ocean boxes are both 1/11, falling in the lower left 458 

corner of Fig. 8 (denoted by the green star), with a period less than 200 years if 𝑞 is set to 10 𝑆𝑣. 459 

Actually, the 𝑞 in GT95 was set to a higher value of about 17 𝑆𝑣, representing a much faster 460 

overturning rate; thus, the period is further shortened to the century scale. Consequently, it is 461 

reasonable to deduce that the multi-decadal period in GT95 is not at odds with our multicentennial 462 

period. Popularity of multi-decadal phenomena back then might account for their choice of model 463 

parameters. 464 

  465 

FIG. 8. Sensitivity of (a) period (units: years) and (b) e-folding time (units: years) of the eigenmode to subpolar 466 

ocean fraction (𝑉2 + 𝑉3)/𝑉 and upper ocean fraction (𝑉1 + 𝑉2)/𝑉 under 𝜆 = 14 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3. The orange 467 

star denotes the mode with standard values used in this work. The green and black stars denote the standard 468 

values used in GT95 and RT97, respectively. The solid orange curve is both the stability threshold and the 469 

lower limit of probability for self-sustained oscillation. The dashed orange curve is the upper limit of 470 
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probability for self-sustained oscillation. The light gray areas correspond to purely damped or growing regime 471 

without the imaginary part. The oscillatory mode is damped in region 1, potentially self-sustained in region 2 if 472 

bounding terms are affiliated, and growing in region 3. The values of the other parameters are the same as 473 

those listed in Table 1. 474 

 475 

In Fig. 8b, a higher (𝑉1 + 𝑉2)/𝑉 and a lower (𝑉2 + 𝑉3)/𝑉 are linked to lower stability. This 476 

explains why the mode in RT97 can be easily unstable even under a low AMOC sensitivity 477 

(equivalent to 𝜆 = 5.7 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3 in this paper). The basin geometry of RT97 is denoted by the 478 

black star in Fig. 8. Their high-latitude box stands for a small deep-water formation region instead of 479 

the subpolar region, so it was set to only around 1/100 the volume of the entire ocean basin. However, 480 

their upper ocean is as large as 1/4 of the entire ocean basin. Therefore, the low stability seen in RT97 481 

owes to their volume configuration, according to our stability analyses. The light gray areas in Fig. 8 482 

denote purely damped or growing region without oscillatory potentials. The solid orange curve 483 

partitions the stable and unstable regions, making itself also the lower limit for a possible self-484 

sustained oscillation. The oscillatory mode is damped in region 1 because of negative real part, and is 485 

growing due to positive real part in regions 2 and 3 (Fig. 8b). Nevertheless, we find that only in 486 

region 2 could the self-sustained oscillation take place if bounding terms are affiliated, through a large 487 

number of numerical experiments (not shown). No self-sustained oscillation is able to exist in region 488 

3, which is separated from region 2 by the dashed orange curve. Compared to Fig. 9 in LY22, the 489 

probability for a self-sustained oscillation is increased in the 4TS model, since the area of region 2 is 490 

larger than that in the 4S model of LY22.  491 

 492 

b.   Effect of mean flow 493 

Given the meridional density gradient, the total AMOC strength 𝑞 is determined by its 494 

sensitivity 𝜆 to the meridional density gradient and the equilibrium strength 𝑞. The period decreases 495 

monotonically as 𝑞 increases (Fig. 9a), reflecting that a faster overturning leads to a shorter oscillation 496 

period. Larger 𝜆 and smaller 𝑞 are both destabilizing factors (Fig. 9b). A larger 𝜆 results in more 497 

intense fluctuation of 𝑞′ under the same perturbation of meridional density gradient, contributing to a 498 

less stable system. A decreased 𝑞 weakens the equilibrium advection terms 𝑞(𝑇1
′ − 𝑇2

′) and 499 

𝑞(𝑆1
′ − 𝑆2

′), therefore limiting their destabilizing and stabilizing effects, respectively. The latter is 500 

more evident due to the dominant role that salinity plays in establishing AMOC variability. The 501 
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combined effect of temperature and salinity advection under a smaller 𝑞 is to make the system more 502 

unstable. 503 

 504 

FIG. 9. Same as Fig. 8, but the ordinate and abscissa correspond to the equilibrium AMOC strength 𝑞 (units: 505 

𝑆𝑣) and the linear closure coefficient 𝜆 (units: 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3), respectively. 506 

 507 

c.   Effect of boundary conditions 508 

Mixed boundary conditions are adopted in the 4TS model, where 𝑇1
∗ and 𝑇2

∗ control the surface 509 

heat flux while 𝐹𝑤 controls the surface virtual salt flux. The meridional restoring temperature gradient 510 

𝑇1
∗ − 𝑇2

∗ influences the system, while the exact values of 𝑇1
∗ and 𝑇2

∗ have no effect. Figure 10a shows 511 

that the period shortens marginally with the increase of 𝑇1
∗ − 𝑇2

∗, but exhibits a decrease-to-increase 512 

tendency as 𝐹𝑤 grows. Smaller 𝑇1
∗ − 𝑇2

∗ and larger 𝐹𝑤 all lead to lower stability (Fig. 10b). From Eq. 513 

(8), we derive that 𝑇1 − 𝑇2 lowers as 𝑇1
∗ − 𝑇2

∗ decreases; therefore, the temperature effects are 514 
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hampered due to the weaker negative temperature-advection feedback. We illustrated in section 3.1 515 

that a faster restoring denoted by a smaller 1/𝜏 also limits the temperature effects. Hence, the 516 

temperature effects are promoted by the increases in 𝑇1
∗ − 𝑇2

∗ and 1/𝜏, followed by a more stable 517 

system with a shorter period. It can also be seen from Eq. (2b) that a larger 𝐹𝑤 increases 𝑞′(𝑆1 − 𝑆2), 518 

so the destabilizing positive salt-advection feedback is reinforced, which is consistent with the finding 519 

of Sévellec et al. (2006). 520 

 521 

FIG. 10. Same as Fig. 8, but the ordinate and abscissa correspond to the freshwater flux 𝐹𝑤 (units: 10 𝑝𝑠𝑢 ⋅ 𝑆𝑣) 522 

and the meridional restoring temperature gradient 𝑇1
∗ − 𝑇2

∗ (units: ℃), respectively.  523 

 524 

6.   Summary and discussion 525 

As the second part of our theoretical studies on AMOC multicentennial variability, this study 526 

complements LY22 by including temperature equations in the box model. Mixed boundary conditions 527 
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are employed for surface temperature and salinity. The thermal process includes the negative 528 

temperature-advection feedback and positive restoring-advection feedback. The latter never overruns 529 

the former; thus, the resultant temperature feedback is negative. Including the thermal process leads to 530 

an acceleration of oscillation because of the fast thermal-restoring process, a stabilization force for the 531 

system because of the negative temperature-advection feedback and a portion of stabilization for the 532 

subpolar stratification due to temperature stratification.  533 

Similar to LY22, bounding processes are needed to realize a self-sustained oscillation, which can 534 

be either enhanced subpolar mixing or weak nonlinearity in the AMOC-meridional density gradient 535 

relation. Multicentennial eigenmode is robust regardless of these bounding processes, because the 536 

oscillatory eigenmode is fundamentally determined by advection processes. Only a tiny magnitude of 537 

the bounding process is able to realize the self-sustained oscillation. Same as in LY22, the effects of 538 

nonlinear temperature and salinity advection terms on the self-sustained oscillation are trivial and can 539 

be safely neglected (figure not shown), and the external stochastic forcing can also excite a 540 

sustainable multicentennial oscillation (figure not shown). Compared to the 4S model in LY22, the 541 

probability for a self-sustained oscillation in the 4TS model is much increased with temperature 542 

equations added. 543 

Stability analyses reveal that the period and stability of the oscillatory eigenmode are sensitive to 544 

model geometry, flow properties and boundary conditions. Generally, smaller subpolar and upper 545 

oceans tend to shorten the period. Larger subpolar ocean and smaller upper ocean have stabilizing 546 

effects on the system. A stronger AMOC shortens the period due to the faster overturning rate, 547 

stabilizing the system through balancing the positive salt-advection feedback more quickly. Higher 548 

AMOC sensitivity to the meridional density gradient makes the system less stable. Increasing surface 549 

freshwater flux energizes the destabilizing salt-advection feedback, and lowers the system stability, 550 

because the background meridional salinity gradient will be stronger. It also lengthens the period of 551 

the system because more time is needed to consume the stronger background salinity gradient. Larger 552 

meridional restoring temperature gradient strengthens the thermal process; thus, it shortens the period 553 

and increases the system stability. 554 

The box model is highly idealized, aimed at providing heuristic understanding of the 555 

multicentennial AMOC oscillation. This work can also help us understand the prevalence of 556 

centennial to multicentennial AMOC oscillations found in a few pre-industrial control runs using 557 

high-order models (Vellinga and Wu 2004; Park and Latif 2008; Delworth and Zeng 2012; Yang et 558 



THC_MultiCentennial_Theory_P2_20221004.docx, Yang et al., 10/5/2022 

 

26 

al. 2015; Jiang et al. 2021). Whether the multicentennial AMOC oscillations found in Earth system 559 

models are self-sustained or stochastically-sustained is obscured by their intricate model physics. 560 

However, our study suggests that a self-sustained oscillation can appear as long as a tiny magnitude 561 

of nonlinearity or additional mixing is included, which is easy to realize in the realistic ocean. 562 

Thereby, we conclude that even with random components removed completely, self-sustained 563 

multicentennial oscillation has a good chance to exist in high-order models. 564 

The core of the oscillation mechanism here is the advection process, consistent with many 565 

previous studies (Mikolajewicz and Maier-Reimer 1990; Winton and Sarachik 1993; Drijfhout et al. 566 

1996; Delworth and Zeng 2012). Sensitivity of period to model geometry is observed not only in our 567 

theoretical model but also in higher complexity models (Weaver and Sarachik 1991; Drijfhout et al. 568 

1996; Delworth and Zeng 2012). Since the flow rate and route affect the overturning rate, a more 569 

precise simulation of AMOC structure and a finer model resolution are likely to improve the 570 

simulation of AMOC oscillation. Although the boundary conditions in our model influence the 571 

eigenmode, the essence for such impact is climate feedbacks. It inspires us that a better representation 572 

of climate feedbacks in high-order models may improve their performances.  573 

The warming and freshwater hosing in the North Atlantic will reduce the meridional temperature 574 

gradient while enhance the meridional salinity gradient, hampering the negative temperature-575 

advection feedback and strengthening the positive salt-advection feedback. On one hand, this implies 576 

that the AMOC might march gradually toward (not necessarily reach) the collapse state (Gregory et 577 

al. 2005; Sévellec et al. 2017; Dai 2022), since its stability is likely to reduce, as revealed in this 578 

paper. On the other hand, this also implies that the period for the multicentennial timescale portion of 579 

the AMOC oscillation is likely to be lengthened in the future, which has not gained attention yet. 580 

However, the portion with decadal to multi-decadal periods of the AMOC is believed to be shortened 581 

under global warming scenario based on Rossby wave dynamics (Cheng et al. 2016; Ma et al. 2021). 582 

As global warming persists, more attention should be paid to how the multicentennial AMOC period 583 

would change in the future, since the global warming might occur on the background of a 584 

multicentennial oscillation. 585 

This theoretical study can be improved in several aspects. The one-hemisphere configuration 586 

singles out only North Atlantic advection, and contributions from other ocean basins are not 587 

considered. Extending the one-hemisphere model into an inter-hemisphere one as in Scott et al. 588 

(1999) and in Lucarini and Stone (2005), or incoraporating the Arctic Ocean as in Lambert et al. 589 
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(2016) may provide more insightful results. Too few natural feedbacks are reserved in our model 590 

because of the ocean-only configuration and mixed boundary conditions. Adding more feedbacks, 591 

such as meridional mositure transport feedback (Tziperman and Gildor 2002), wind forcing feedback 592 

(Sherriff-Tadano and Abe-Ouchi 2020) and sea ice feedback (Jayne and Marotzke 1999), should 593 

improve the authenticity of stability and other characteristics of AMOC oscillation.  594 
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