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Abstract 24 

In the first part of our research on self-sustained multicentennial oscillation of the Atlantic 25 

meridional overturning circulation (AMOC), we used a hemispheric box model considering only the 26 

salinity equations. In this follow-up paper, we consider both thermal and saline processes in the box 27 

model, so as to investigate the role of temperature in multicentennial AMOC oscillation. The thermal 28 

processes exert mainly three effects: shortening the oscillation period, stabilizing subpolar 29 

stratification and thus the oscillation system. These three effects are caused by the fast surface 30 

temperature restoring process, the stabilizing subpolar temperature stratification, and the negative 31 

temperature advection feedback, respectively. Nonlinear restraining effect from enhanced subpolar 32 

mixing, or a nonlinear relation between AMOC anomaly and meridional difference of density 33 

anomaly, is still needed to realize a self-sustained oscillation, whose mechanism can be generalized as 34 

follows: a combination of a linearly growing oscillation dominated by linear advection and a 35 

nonlinear restraining process. This study advances the theory reported in the first part of this research. 36 

Linear stability analyses reveal that the eigenmode of the system is sensitive to model geometry, flow 37 

properties, and meridional differences of sea-surface temperature (SST) and sea-surface salinity 38 

(SSS). Our theoretical results suggest that, a smaller (larger) meridional SST (SSS) difference 39 

weakens (strengthens) the negative temperature (positive salinity) advection feedback which may lead 40 

to a less stable AMOC. Such heuristic findings may be expected in the future due to more intense 41 

warming and freshwater hosing at the high latitudes of the Northern Hemisphere. 42 

Keywords: AMOC, Box model, Nonlinearity, Self-sustained oscillation, Temperature feedback, 43 

Multicentennial timescale 44 

  45 
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1.   Introduction 46 

Compared to the glacial-interglacial climate variation, the mid-Holocene to pre-industrial climate 47 

has been considered to be relatively stable (Grootes et al. 1993), thanks to the lack of drastic 48 

fluctuation of natural forcing (Otto-Bliesner et al. 2017) and of anthropogenic forcing. Although the 49 

natural forced variability is important, it is reasonable to deduce that internal variability was crucial 50 

for climate variability during that period. On the multicentennial timescale, it has been suggested that 51 

climate variability is strongly linked to the Atlantic meridional overturning circulation (AMOC) 52 

(Oppo et al. 2003; Hall et al. 2004; Miettinen et al. 2012; Chabaud et al. 2014; Ayache et al. 2018). 53 

However, the fundamental mechanism governing the multicentennial AMOC internal variability 54 

remains unclear. 55 

Multicentennial AMOC variability has been reported in pre-industrial control simulations of 56 

several coupled climate models. Mechanisms provided in these studies can be categorized into at least 57 

three groups. The first group relates the multicentennial AMOC variability to the Arctic Ocean. Jiang 58 

et al. (2021) identified a 200-year period AMOC oscillation in the IPSL-CM6-LR model, and 59 

suggested it was due to sea-ice-induced salinity anomaly exchange between the Arctic Ocean and 60 

North Atlantic convection region. Utilizing the EC-Earth3 model with the same ocean component 61 

(NEMO 3.6) to that of the IPSL-CM6-LR, Meccia et al. (2022) found a 150-year AMOC oscillation 62 

bearing a similar mechanism. Oscillation periods of the first group of studies are hardly 63 

distinguishable from the centennial timescale, probably because their mechanisms are merely related 64 

to surface ocean processes instead of deeper ocean processes. The second group emphasizes the roles 65 

of the Southern Ocean and processes at depth. Park and Latif (2008) reported a multicentennial peak 66 

in the AMOC strength spectrum of their Kiel Climate Model. Their following studies attributed such 67 

variability to a bipolar ocean seesaw teleconnection mechanism (Martin et al. 2013, 2015); that is, an 68 

increase in the Antarctic Bottom Water (AABW) formation caused by a sudden strengthening in 69 

Southern Ocean deep convection weakens the North Atlantic Deep Water (NADW) formation and 70 

hence the AMOC strength. Drastic Southern Ocean deep convection is triggered when deep Southern 71 

Ocean heat accumulation becomes too extreme, whose timescale is set by the advection of warm 72 

water from the North Atlantic. A slightly different example can be seen in Delworth and Zeng (2012), 73 

where an AMOC oscillation with a period of 200-500 years was discerned in their GFDL-CM2.1 74 

simulation. The AMOC variation was directly controlled by salinity anomaly advected from the 75 

Southern Ocean all the way to the NADW formation sites, different from the aforementioned bipolar 76 
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seesaw mechanism. The third group proposes that no inter-hemispheric or Arctic Ocean related 77 

process is needed to sustain the multicentennial AMOC oscillation. Li and Yang (2022) (hereafter 78 

LY22) found a 300-400-year AMOC oscillation in a CESM1 control simulation, where the salinity 79 

advection feedback between the subtropical and subpolar North Atlantic operates as the essential 80 

mechanism. As a side note, the AMOC oscillation in Vellinga and Wu (2004) is driven by 81 

atmosphere-ocean feedback instead of internal oceanic processes, which leads to its centennial 82 

timescale, excluding itself from the multicentennial paradigm. Inconsistency between those 83 

mechanisms calls for theoretical model studies. 84 

Theoretical studies of the AMOC tend to focus on its thermohaline portion, which is buoyancy-85 

driven thus determined by two foremost elements, temperature and salinity variations. Adopting 86 

different restoring coefficients for temperature and salinity in a simple two-box model, Stommel 87 

(1961) found multiple equilibria in the system, which stems from competing effects of thermal and 88 

saline processes. The follow-up theoretical studies inspired by Stommel’s idea primarily focused on 89 

multi-equilibria phenomenon due to the combined effect of temperature and salinity (Welander 1982; 90 

Joyce 1991; Huang et al. 1992; Cessi 1994; Scott et al. 1999; Zhang et al. 2002; Lucarini and Stone 91 

2005; Colin de Verdière 2007), revealing that both thermal and saline processes are indispensable. 92 

Given the relatively stable Holocene climate, we focus on small amplitude and sustainable climate 93 

variation around a single equilibrium, instead of abrupt climate shift suggested by the multi-equilibria 94 

phenomenon. Griffies and Tziperman (1995) (hereafter GT95) realized a stochastically sustained 95 

AMOC oscillation in their 4-box model. Using a 3-box model without separation between upper and 96 

deeper subpolar ocean, Rivin and Tziperman (1997) (hereafter RT97) found that the AMOC 97 

oscillation in their model could be sustained by either stochastic forcing or intrinsic nonlinearity. 98 

More recently, Wei and Zhang (2022) realized a self-sustained AMOC oscillation in their revised 99 

Stommel’s 2-box model that consists of an Arctic Ocean box and a North Atlantic box. However, 100 

oscillations in those studies are on the multidecadal timescale. Roebber (1995) realized a 683-year 101 

stochastically sustained AMOC oscillation in a 3-box ocean model coupled with a Lorenz 102 

atmospheric model. Yet, this oscillation timescale is dominated by diffusion instead of advection 103 

process. Scott et al. (1999) and Lucarini and Stone (2005) demonstrated that there exist 104 

multicentennial oscillations around one of the several equilibria in their inter-hemispheric models, 105 

though the oscillations were unsustainable. In a loop model, Sévellec et al. (2006) found a 170-year 106 

self-sustained AMOC oscillation, while the regrets are the indistinguishability between meridional 107 

and vertical processes due to model simplicity, and the scarcity of discussion on the role of 108 
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equilibrium salinity difference advected by anomalous flow. It is therefore necessary to come up with 109 

a theoretical model directed at revealing the underlying mechanism for sustainable multicentennial 110 

AMOC internal variability. 111 

Driven by this desire, our first publication of LY22 focused on the multicentennial AMOC 112 

oscillation in a single-hemispheric 4-box model, while we further looked into its self-sustained 113 

oscillation behavior. Since salinity variation dominates over temperature variation in regulating 114 

NADW formation (Delworth et al. 1993; Dong and Sutton 2005; Jiang et al. 2021), and for an easier 115 

access toward analytical solutions, the model in LY22 only retains salinity variation. Such approach 116 

trades temperature variation for model simplicity, and has been adopted in several theoretical studies 117 

(Winton and Sarachik 1993; Huang and Dewar 1996; Rahmstorf 1996; Cimatoribus et al. 2014; 118 

Sévellec and Fedorov 2014). However, excluding all the thermal processes is unphysical, since it has 119 

been shown that thermal processes can potentially affect the stability (Zhang et al. 1993; Nakamura et 120 

al. 1994; Rahmstorf and Willebrand 1995; Tziperman and Gildor 2002) and period (Schmidt and 121 

Mysak 1996) of an oscillatory AMOC system. Moreover, on the multicentennial timescale, the role of 122 

temperature variation in AMOC variability is not well studied. We thus add temperature variation in 123 

the salinity-only model of LY22. 124 

In this study, we extend the 4-box salinity-only model (hereafter 4S) in LY22 to a temperature-125 

salinity one by adding temperature equations. For studying AMOC oscillation mechanism within the 126 

framework of internal oceanic processes and maintaining an explicit picture for our theory, we 127 

employ mixed boundary conditions for both temperature and salinity equations.  We aim to reveal the 128 

effects induced by thermal processes and their underlying causes. We then work on realization of self-129 

sustained oscillation with restraining terms affiliated, in order to further explore the essential 130 

mechanism for the self-sustained AMOC oscillation. Finally, we examine the sensitivity of 131 

eigenmode to model parameters controlling model geometry, flow properties, and meridional 132 

differences of equilibrium sea-surface temperature (SST) and salinity (SSS). 133 

This paper is structured as follows. In section 2, a 4-box temperature-salinity model (hereafter 134 

4TS) is introduced, followed by illustration of temperature and salinity feedbacks involved. In section 135 

3, the role of temperature equations is analyzed. In section 4, we test two ways for realizing self-136 

sustained oscillation and come up with a more profound self-sustained AMOC oscillation mechanism. 137 

In section 5, we examine sensitivities of eigenmode’s period and stability to model parameters. 138 

Summary and discussion are presented in section 6. 139 
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 140 

2.   Box model 141 

a.   Model description 142 

The model used here is a hemispheric 4-box model with identical geometry to that in LY22 (Fig. 143 

1a). The model domain is 60 in longitude, with the tropical and subpolar boxes spanning over 0-144 

45N and 45-70N, respectively. The AMOC moves through the boxes clockwise. We do not discuss 145 

the possibility of a reversed AMOC cell, by excluding multi-equilibria. Analogous box models have 146 

been widely used (Joyce 1991; Huang et al. 1992; Griffies and Tziperman 1995). In the 4-box 147 

salinity-only model (hereafter 4S model) of LY22, only salinity equations were used. In the 4TS 148 

model, we employ both temperature and salinity equations: 149 

𝑉1𝑇1̇ = 𝑞(𝑇4 − 𝑇1) + 𝑉1𝛾(𝑇1
∗ − 𝑇1) (1𝑎) 150 

𝑉2𝑇2̇ = 𝑞(𝑇1 − 𝑇2) + 𝑉2𝛾(𝑇2
∗ − 𝑇2) (1𝑏) 151 

𝑉3𝑇3̇ = 𝑞(𝑇2 − 𝑇3) (1𝑐) 152 

𝑉4𝑇4̇ = 𝑞(𝑇3 − 𝑇4) (1𝑑) 153 

𝑉1𝑆1̇ = 𝑞(𝑆4 − 𝑆1) + 𝐹𝑤 (1𝑒) 154 

𝑉2𝑆2̇ = 𝑞(𝑆1 − 𝑆2) − 𝐹𝑤 (1𝑓) 155 

𝑉3𝑆3̇ = 𝑞(𝑆2 − 𝑆3) (1𝑔) 156 

𝑉4𝑆4̇ = 𝑞(𝑆3 − 𝑆4) (1ℎ) 157 

It is an advection-dominated box model, with mixed boundary conditions where Haney-style 158 

restoring for SST (Haney 1971) and surface virtual salt flux (VSF) for SSS are adopted, leading to 159 

more relaxed temperature variation and freer salinity variation. Eqs. (1e-h) are used in the original 4S 160 

model in LY22. 𝑉𝑖, 𝑇𝑖, and 𝑆𝑖 are volume, temperature, and salinity, respectively, in each box. Dot 161 

over variable denotes its temporal derivative. 𝑞 stands for AMOC strength. 𝐹𝑤 is surface VSF, 162 

representing surface freshwater flux in reality. 𝑇1
∗ and 𝑇2

∗ correspond to the restoring temperatures for 163 

boxes 1 and 2, respectively. The Newtonian restoring coefficient 𝛾 is the reciprocal of the restoring 164 

timescale for 𝑇1 and 𝑇2. 165 
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 166 

FIG. 1. Schematics of temperature-salinity box models. (a) The 4-box model; (b) the 3-box model reduced 167 

from the 4-box one. Numbers , , , and  denote the ocean boxes. Boxes 1 and 4 stand for the upper and 168 

deeper tropical ocean boxes, respectively, while boxes 2 and 3 stand for the upper and deeper subpolar ocean 169 

boxes, respectively. 𝐷1 and 𝐷2 represent the upper and deeper ocean box depths, respectively. Net VSF into 170 

(out of) the surface tropical (subpolar) ocean box is represented by 𝐹𝑤. 𝑇1
∗ (𝑇2

∗) is the restoring temperature of 171 

the tropical (subpolar) ocean box. 𝑞 represents the AMOC. 172 

 173 

By setting the terms on the left-hand side of Eq. (1) to 0, the equilibrium solutions at steady state 174 

can be written as follows:  175 

𝑇1 = 𝑇1
∗ −

𝑞𝑉2(𝑇1
∗−𝑇2

∗)

𝑞(𝑉1+𝑉2)+𝑉1𝑉2𝛾
,         𝑇2 =

𝑉1𝑇1
∗+𝑉2𝑇2

∗−𝑉1𝑇1

𝑉2
= 𝑇3 = 𝑇4 (2𝑎)  176 

𝑆2 = 𝑆3 = 𝑆4,         𝐹𝑤 = 𝑞(𝑆1 − 𝑆2) (2𝑏) 177 

Variables with overbar denote their equilibrium values. Following LY22, the upper ocean boxes depth 178 

𝐷1, deeper ocean boxes depth 𝐷2, and total depth 𝐷 are still 500, 3500, and 4000 𝑚, respectively. Note 179 

that our hemispheric model only incorporates the AMOC recirculating in the Northern Hemisphere. 180 

Consequently, 𝑞 is set to 10 𝑆𝑣, which is lower than the measured value of 20 𝑆𝑣 (McCarthy et al. 181 

2015). Straightway, 𝑇1
∗ and 𝑇2

∗ are considered to be close to the averaged realistic SSTs in the tropical 182 
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and subpolar regions, set to 25℃ and 7℃, respectively. Values for 𝑆1, 𝑆2, 𝑆3, and 𝑆4 are identical to 183 

that in LY22, set to 36.0, 33.5, 33.5, and 33.5 𝑝𝑠𝑢 , respectively. Therefore, 𝐹𝑤  is 25.0 𝑝𝑠𝑢 ⋅ 𝑆𝑣 184 

following Eq. (2b). The choices of restoring temperatures and equilibrium salinities are based on the 185 

CESM1 control simulation analyzed in LY22 (Yang et al. 2015). 186 

Typically, restoring timescale 1/𝛾 is set to 1-2 months for a surface layer of a few tens of meters 187 

in depth (Marotzke and Willebrand 1991; Weaver and Sarachik 1991; Pierce 1996). Here, we permit 188 

the surface temperature restoring to happen over the full depth range of boxes 1 and 2; therefore, a 189 

much longer restoring timescale has to be used. A reasonable range of 1/𝛾 should be around one year 190 

to several years. We set 𝛾 = 3.171 × 10−8 𝑠−1, corresponding to 1-year restoring timescale. 191 

The total AMOC strength 𝑞 can be separated into a given equilibrium part 𝑞 and a calculated 192 

anomalous part 𝑞′. We consider a linear relation between 𝑞′ and thickness-weighted meridional 193 

difference of density anomaly 𝛥𝜌′. Both 𝑞′ and 𝛥𝜌′ can be decomposed into temperature-driven part 194 

(𝑞𝑇
′ , 𝛥𝜌𝑇

′ ) and salinity-driven part (𝑞𝑆
′ , 𝛥𝜌𝑆

′ ); therefore, we have: 195 

𝑞 = 𝑞 + 𝑞′ (3𝑎) 196 

𝑞′ = 𝑞𝑇
′ + 𝑞𝑆

′ = 𝜆𝛥𝜌𝑇
′ + 𝜆𝛥𝜌𝑆

′ = 𝜆𝛥𝜌′ (3𝑏) 197 

where 198 

𝛥𝜌𝑇
′ = −𝜌0𝛼[𝛿(𝑇2

′ − 𝑇1
′) + (1 − 𝛿)(𝑇3

′ − 𝑇4
′)] (4𝑎) 199 

𝛥𝜌𝑆
′ = 𝜌0𝛽[𝛿(𝑆2

′ − 𝑆1
′) + (1 − 𝛿)(𝑆3

′ − 𝑆4
′)] (4𝑏) 200 

𝛿 =
𝑉1

𝑉1+𝑉4
=

𝑉2

𝑉2+𝑉3
=

𝐷1

𝐷
(4𝑐)  201 

The sensitivity of 𝑞′ to 𝛥𝜌′ is represented by a linear closure coefficient 𝜆. 𝜌0, 𝛼, and 𝛽 are the 202 

reference density, thermal expansion, and haline contraction coefficients for seawater, respectively. 𝑇𝑖
′ 203 

and 𝑆𝑖
′ are the temperature and salinity anomalies of box 𝑖, respectively. A summary of the standard 204 

parameter values is provided in Table 1. These basic model parameters are independent of each other, 205 

and are the same as those in LY22, except for the temperature related parameters. 206 

TABLE 1. Standard values of the parameters used. 207 

Symbol Physical Significance Value 

𝑉2 Volume of box 2  2.8 × 1015 𝑚3 
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𝑉1, 𝑉3, 𝑉4 Volumes of boxes 1, 3 and 4, respectively 5𝑉2, 7𝑉2, 35𝑉2 

𝐷1, 𝐷2, 𝐷 
Thicknesses of the upper, deeper ocean boxes, and the entire 

ocean boxes 
500, 3500, 4000 𝑚 

𝑇1
∗, 𝑇2

∗ Restoring temperatures of boxes 1 and 2 25℃, 7℃ 

𝛾 Restoring coefficient of boxes 1 and 2 3.171 × 10−8 𝑠−1 

𝑆1̅, 𝑆2̅̅̅, 𝑆3̅̅̅, 𝑆4̅̅̅ Equilibrium salinities of boxes 1, 2, 3, and 4 36, 33.5, 33.5, 33.5 𝑝𝑠𝑢 

𝑞 Equilibrium strength of AMOC 10 𝑆𝑣 (106 𝑚3 𝑠−1) 

𝜆 Linear closure coefficient 12 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3 

𝜌0 Reference seawater density 1.00 × 103 𝑘𝑔 𝑚−3 

α Thermal expansion coefficient 1.468 × 10−4 ℃ −1 

𝛽 Haline contraction coefficient 7.61 × 10−4 𝑝𝑠𝑢−1 

 208 

We linearize Eq. (1) as follows: 209 

𝑉1𝑇1
′̇ = 𝑞′(𝑇4 − 𝑇1) + 𝑞(𝑇4

′ − 𝑇1
′) − 𝑉1𝛾𝑇1

′ (5𝑎) 210 

𝑉2𝑇2
′̇ = 𝑞′(𝑇1 − 𝑇2) + 𝑞(𝑇1

′ − 𝑇2
′) − 𝑉2𝛾𝑇2

′ (5𝑏) 211 

𝑉3𝑇3
′̇ = 𝑞(𝑇2

′ − 𝑇3
′) (5𝑐) 212 

𝑉4𝑇4
′̇ = 𝑞(𝑇3

′ − 𝑇4
′) (5𝑑) 213 

𝑉1𝑆1
′̇ = 𝑞′(𝑆4̅ − 𝑆1̅) + 𝑞(𝑆4

′ − 𝑆1
′) (5𝑒) 214 

𝑉2𝑆2
′̇ = 𝑞′(𝑆1̅ − 𝑆2̅) + 𝑞(𝑆1

′ − 𝑆2
′) (5𝑓) 215 

𝑉3𝑆3
′̇ = 𝑞(𝑆2

′ − 𝑆3
′) (5𝑔) 216 

𝑉4𝑆4
′̇ = 𝑞(𝑆3

′ − 𝑆4
′) (5ℎ) 217 

Eqs. (5e-h) are the linearized 4S model of LY22. In LY22, it was assumed that under an 218 

extremely strong vertical mixing between subpolar boxes 2 and 3, the 4S model can be reduced to a 219 

3-box salinity-only model (hereafter 3S). Applying the same treatment to the 4TS model, a 3-box 220 

temperature-salinity model (hereafter 3TS; Fig. 1b) can be obtained. Now, Eqs. (4a-c) become,  221 

𝛥𝜌𝑇
′ = −𝜌0𝛼[𝑇2

′ − 𝛿𝑇1
′ − (1 − 𝛿)𝑇4

′] (6𝑎) 222 
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𝛥𝜌𝑆
′ = 𝜌0𝛽[𝑆2

′ − 𝛿𝑆1
′ − (1 − 𝛿)𝑆4

′ ] (6𝑏) 223 

𝛿 =
𝑉1

𝑉1+𝑉4
=

𝐷1

𝐷
(6𝑐)  224 

and Eqs. (5a-h) are reduced to:  225 

𝑉1𝑇1
′̇ = 𝑞′(𝑇4 − 𝑇1) + 𝑞(𝑇4

′ − 𝑇1
′) − 𝑉1𝛾𝑇1

′ (7𝑎) 226 

𝑉2𝑇2
′̇ = 𝑞′(𝑇1 − 𝑇2) + 𝑞(𝑇1

′ − 𝑇2
′) − 𝑉2𝛾𝑇2

′ (7𝑏) 227 

𝑉4𝑇4
′̇ = 𝑞(𝑇2

′ − 𝑇4
′) (7𝑐) 228 

𝑉1𝑆1
′̇ = 𝑞′(𝑆4̅ − 𝑆1̅) + 𝑞(𝑆4

′ − 𝑆1
′) (7𝑑) 229 

𝑉2𝑆2
′̇ = 𝑞′(𝑆1̅ − 𝑆2̅) + 𝑞(𝑆1

′ − 𝑆2
′) (7𝑒) 230 

𝑉4𝑆4
′̇ = 𝑞(𝑆2

′ − 𝑆4
′) (7𝑓) 231 

Here, boxes 2 and 3 in the 4-box models are well mixed to become a new box 2 in the 3-box models, 232 

and 𝑉2 in the 3-box models equals to the sum of 𝑉2 and 𝑉3 in the 4-box models. For consistency, other 233 

background state parameters in Table 1 are identical in the 3-box and 4-box models. 234 

Unless otherwise mentioned, results shown in this paper are obtained from forward numerical 235 

integration of Eq. (5) (the 4TS model) with the standard parameters listed in Table 1. The fourth-order 236 

Runge-Kutta method is used to solve Eq. (5), with 𝑆1
′(𝑡 = 0) = −0.02 𝑝𝑠𝑢 at the first time step, and 237 

𝑆′ = 𝑇′ = 0 thereafter. The integration time step is 7.2 days, and the total integration length exceeds 238 

10000 years, but only the initial parts are shown. Annual mean data is used for analysis.  239 

 240 

b.   Stability analysis 241 

Let us first examine the eigenvalues of the 4TS model. Table 2 lists the eight eigenvalues of Eq. 242 

(5) under the parameters in Table 1. The eigenvalues in the 4S model of LY22 under the same 243 

parameters are also listed in Table 2 for comparison.  244 

TABLE 2. Eigenvalues (10−10 𝑠−1) for the 4TS and 4S models under the parameters of Table 1. 245 

4TS 4S Physical Significance 

−0.55 ± 6.59𝑖 0.31 ± 5.83𝑖 Oscillatory mode 
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0 0 Zero mode 

−366 — Damped mode 

−324 — Damped mode 

−37.4 −37.4 Damped mode 

−5.28 — Damped mode 

−0.78 — Damped mode 

 246 

There is still a pair of conjugate eigenvalues (−0.55 ± 6.59𝑖) in the 4TS model. The weakly 247 

unstable oscillatory mode (0.31 ± 5.83𝑖) in the 4S model becomes a weakly damped oscillatory mode 248 

in the 4TS model; that is, the e-folding time changes from 1025 years for growing oscillation in the 249 

4S model to 576 years for decaying oscillation in the 4TS model, and the period is shortened from 250 

340 years to 300 years. This seems to suggest that the thermal processes have a stabilizing effect on 251 

the system, and shorten the oscillation period slightly. The zero mode (eigenvalue 0) represents the 252 

climatological mean state. The other five eigenvalues in the 4TS model represent five purely damped 253 

modes, which are not of our concern here. 254 

The stability of the box model system is strongly dependent on the linear closure parameter 𝜆, 255 

i.e., the sensitivity of AMOC anomaly to the meridional difference of density anomaly as formulated 256 

in Eq. (3b). The critical role of 𝜆 and its physical explanation can be found in LY22. In this paper, we 257 

simply solve Eqs. (5) and (7) numerically to investigate how 𝜆 affects the stabilities and periods of the 258 

4TS and 3TS models.  259 

Figure 2 shows dependences of real and imaginary parts of eigenvalue 𝜔 on 𝜆. The results from 260 

the 4S and 3S models in LY22 are also plotted in Fig. 2 for comparison. The intersections between 261 

line 𝑅𝑒(𝜔) = 0/𝐼𝑚(𝜔) = 0 and the stability diagram of each model, (𝜆𝐶, 0) corresponds to the 262 

stability threshold (Fig. 2b), (𝜆1, 0) and (𝜆2, 0), to the lower and upper limits for the existence of the 263 

imaginary part (Fig. 2a), respectively. Their values are listed in Table 3. When 𝜆 ≥ 𝜆2 or 𝜆 ≤ 𝜆1, only 264 

purely growing or damped modes without oscillatory potential exist, suggested by the corresponding 265 

positive or negative real part (Fig. 2b). When 𝜆1 < 𝜆 < 𝜆2, the system exhibits oscillatory behavior 266 

because of the presence of the imaginary part (Fig. 2a). With the increase of 𝜆, the models have the 267 
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tendency to change from a damped to a growing oscillation. In comparison with the 4S and 3S models 268 

of LY22, permitting the temperature variation in the system has at least three consequences:  269 

(a) An increase of oscillation frequency, evidenced by the larger imaginary parts in the 4TS and 3TS 270 

models (Fig. 2a, orange curves) than in the 4S and 3S models (Fig. 2a, black curves). 271 

(b) An overall stabilization of the system, evidenced by the larger 𝜆𝑐 in the 4TS and 3TS models than 272 

in the 4S and 3S models listed in Table 3, and the smaller real parts in the 4TS and 3TS models 273 

(Fig. 2c, orange lines) than in the 4S and 3S models (Fig. 2c, black lines). 274 

(c)  Stabilization of subpolar stratification, evidenced by the larger 𝜆𝐶 in the 4TS model than in the 275 

3TS model, but smaller 𝜆𝐶 in the 4S model than in the 3S model. 276 

 277 

FIG. 2. Dependences of (a) imaginary parts and (b) real parts of eigenvalue 𝜔 on 𝜆 in the 4TS (solid orange 278 

curve), 3TS (dashed orange curve), 4S (solid black curve), and 3S (dashed black curve) models. (c) is the 279 

zoomed-in version of (b) near line 𝑅𝑒(𝜔) = 0. Results of the 4S and 3S models are from LY22. The units of 280 

the ordinate are 10-10 s-1. The values of the other parameters are the same as those listed in Table 1. The vertical 281 

dashed line denotes the situation under the standard value 𝜆 = 12 𝑆𝑣 ⋅ 𝑘𝑔−1𝑚3. 282 

 283 

TABLE 3. Values for 𝜆𝑐, 𝜆1, and 𝜆2 (units: 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3) in different box models. 284 
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 4TS 3TS 4S 3S 

𝜆𝐶 13.20 13.06 11.44 12.39 

𝜆1, 𝜆2 -0.92, 26.80 -0.70, 23.24 -0.89, 20.44 -0.69, 21.46 

 285 

The stability analyses provide us mathematical fundamentals, showing how the behaviors of the 286 

system change when the thermal processes are included. Physical insight into why the system 287 

behaviors change will be deliberated next.  288 

 289 

3.   Effects of temperature equations 290 

a.   Temperature feedbacks  291 

By permitting temperature variation, two feedbacks between thermal processes and AMOC are 292 

introduced in the 4-box model: the negative temperature advection feedback and the positive restoring 293 

advection feedback. Numerical results reveal that the former overcomes the latter, evidenced by the 294 

transition from a growing oscillation (Fig. 3a, green curve) into a damped oscillation (Fig. 3a, black 295 

and orange curves). Let us illustrate these two feedbacks using box 2 (Fig. 3b). Starting with a 296 

positive perturbation 𝑞′, the anomalous advection 𝑞′(𝑇1 − 𝑇2) transports more warm water 297 

northward; 𝑇2
′ is increased and thus 𝛥𝜌𝑇

′  is lowered, causing a final decrease in 𝑞𝑇
′ . This is the 298 

negative temperature advection feedback, which can be physically and mathematically derived from 299 

Eqs. (5b) and (6a), and can be further illustrated by the lead/lag correlation between 𝑞′(𝑇1 − 𝑇2) and 300 

𝑞𝑇
′ : they have a negative correlation coefficient at lag 0 (Fig. 3e, orange curve). The correlation 301 

coefficient at lag 0 cannot be treated as a verification of causality between AMOC and terms on the 302 

right-hand side of Eq. (5). However, it provides an intuitional representation of the positive/negative 303 

feedback after the physical interpretation of model equations is given. The increased 𝑇2
′ caused by the 304 

initial positive perturbation in 𝑞′ also triggers relaxation via anomalous restoring −𝑉2𝛾𝑇2
′, whose 305 

strength is proportional to the restoring coefficient 𝛾. This limits the growth of positive 𝑇2
′ itself, 306 

limiting the decreases of 𝛥𝜌𝑇
′  and 𝑞𝑇

′ . Consequently, the net effect of the restoring advection feedback 307 

itself is to increase 𝑞′, demonstrating it is a positive feedback. The positive restoring advection 308 

feedback is further illustrated in Fig. 3e (green curve): −𝑉2𝛾𝑇2
′ has a positive correlation coefficient 309 

with 𝑞𝑇
′  at lag 0. Note that the restoring advection feedback is driven by the temperature advection 310 
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feedback and only partly hampers the latter; thus, the net effect of temperature feedbacks is a negative 311 

feedback. There is another feedback coming from 𝑞(𝑇1
′ − 𝑇2

′) of Eq. (5b), which is positive (Fig. 3e, 312 

dotted black curve), but rather weak (Fig. 3b, dotted black curve).  The negative temperature 313 

advection feedback and the positive restoring advection feedback are both local feedbacks, since they 314 

are free of anomalies transported from one box to another. 315 

 316 

FIG. 3. (a) Damped and growing oscillations in the 4TS and 4S models under the standard parameters in Table 317 

1. Black, orange, and green curves are the time series of 𝑇2
′ (units: C), 𝑆2

′  (units: 𝑝𝑠𝑢) in the 4TS model, and 318 

𝑆2
′  in the 4S model, respectively. (b) Time series for temperature terms (units: 𝑆𝑣 ⋅ ℃) on the right-hand side of 319 

Eq. (5b); (c) time series for salinity terms (units: 𝑆𝑣 ⋅ 𝑝𝑠𝑢) on the right-hand side of Eq. (5f); and (d) time 320 

series for 𝑞′, 𝑞𝑇
′ , and 𝑞𝑆

′  (units: 𝑆𝑣) in the 4TS model. The vertical dashed lines in (a)-(d) mark the locations of 321 

/2, , 3/2, and 2 of the period (300 years) in the 4TS model. (e) Lead/lag correlation coefficients between 322 

𝑞𝑇
′  and 𝑞(𝑇1

′ − 𝑇2
′) (dotted black curve), 𝑞′(𝑇1 − 𝑇2) (solid orange curve), and −𝑉2𝛾𝑇2

′ (solid green curve) in 323 

the 4TS model. (f) Lead/lag correlation coefficients between 𝑞𝑆
′  and 𝑞(𝑆1

′ − 𝑆2
′) (solid black curve), and 324 

between 𝑞𝑆
′  and 𝑞′(𝑆1 − 𝑆2) (solid orange curve) in the 4TS model. In (e)-(f), negative lag represents 𝑞′ lags 325 

the other term.  326 

 327 

The salinity advection feedback in the 4TS model is nearly identical to that in the 4S model of 328 

LY22. The positive and negative feedbacks come from terms 𝑞′(𝑆1 − 𝑆2) and 𝑞(𝑆1
′ − 𝑆2

′) (Figs. 3c, 329 

f), respectively. Note that 𝑞′ is the sum of salinity-induced 𝑞𝑆
′  and temperature-induced 𝑞𝑇

′ . These two 330 
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components are roughly out of phase, with the former being much bigger than the latter (Fig. 3d); it 331 

suggests that the salinity advection feedback has more remarkable effect on the AMOC than the 332 

temperature advection feedback does. However, the phase of 𝑞′ is no longer identical to that of 333 

salinity-induced 𝑞𝑆
′ , and the variation of 𝑞′ is obviously offset by temperature-induced 𝑞𝑇

′  (Fig. 3d), 334 

indicating that the behavior of the system is affected by the thermal processes. 335 

 336 

b.   Role of restoring advection feedback  337 

The restoring advection feedback in the temperature equations can significantly affect the 338 

system’s behavior. To understand this better, let us first examine how the restoring timescale affects 339 

the temperature advection feedback. Based on Eq. (2a), we have, 340 

𝑇1 − 𝑇2 = (𝑇1
∗ − 𝑇2

∗)/ [
𝑞(𝑉1+𝑉2)

𝑉1𝑉2𝛾
+ 1] (8)  341 

This depicts a larger 𝛾 (or a shorter restoring timescale) causes a larger 𝑇1 − 𝑇2, thus stronger 342 

anomalous advection of meridional difference of mean temperature 𝑞′(𝑇1 − 𝑇2). However, the 343 

negative temperature advection feedback is realized through an increase in 𝑇2
′, which is in turn limited 344 

by the stronger −𝑉2𝛾𝑇2
′; so the restoring advection feedback tends to always offset the temperature 345 

advection feedback to a certain degree (Fig. 3b), regardless of the restoring strength.  346 

 TABLE 4. Conjugate eigenmodes in the 4TS model under different 𝛾. 347 

𝛾 Eigenvalue (10−10 𝑠−1) E-folding Time (Years) Period (Years) 

𝛾
0
= 0 0.31 ± 5.83𝑖 1025 341 

𝛾
1
= (5 𝑦𝑒𝑎𝑟)−1 −1.48 ± 7.30𝑖 -215 273 

𝛾
2
= (1 𝑦𝑒𝑎𝑟)−1 −0.55 ± 6.59𝑖 -576 302 

𝛾
3
= (0.25 𝑦𝑒𝑎𝑟)−1 0.036 ± 6.09𝑖 8830 327 

𝛾
4
= (1 𝑚𝑜𝑛𝑡ℎ)−1 0.21 ± 5.92𝑖 1492 336 

𝛾
5
= (1 𝑚𝑖𝑛𝑢𝑡𝑒)−1 0.31 ± 5.83𝑖 1025 341 

 348 
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There are two extreme situations. When 𝛾 → 0 or 𝛾 →∞, that is, when the restoring timescale 349 

for SST goes to either infinity or zero, the oscillatory eigenmode (0.31 ± 5.83𝑖) in the 4TS model 350 

(Table 4) is identical to that in the 4S model (Table 1). Under these two situations, the thermal 351 

processes have no effect on AMOC variation, and the 4TS model is practically reduced to the 4S 352 

model. In the situation with 𝛾 → 0, Eqs. (2a) and (8) give us 𝑇1 = 𝑇2 = 𝑇3 = 𝑇4. There is no restoring 353 

advection feedback, and the temperature advection feedback becomes null (𝑞′(𝑇1 − 𝑇2) = 0), 354 

prohibiting any temperature variation in the system. Therefore, the linearized temperature equations 355 

(Eqs. 5a-d) are identical to the linearized salinity equations (Eqs. 5e-h), and the combined temperature 356 

and salinity equations are equivalent to the salinity equations in the 4S model. Case 𝛾 → 0 suggests 357 

that the system can only be affected by temperature equations when the restoring advection feedback 358 

is active. In the situation with 𝛾 →∞, we have 𝑇1 = 𝑇1
∗ and 𝑇2 = 𝑇2

∗ based on Eq. (2a). The 359 

extremely strong restoring kills any temperature perturbation immediately, which makes 𝑇1
′ = 𝑇2

′ = 0 360 

(thus 𝑇3
′ = 𝑇4

′ = 0), and the 4TS system is equivalent to a system without active thermal process; so 361 

only the saline processes matter to the system behavior. In summary, under these two extreme 362 

situations, the results from linear stability analysis suggest the variations of salinity and AMOC are 363 

identical to those of the 4S model in LY22; as a result, the corresponding figures (similar to Figs. 2-3 364 

but with 𝛾 → 0 or 𝛾 →∞) are not shown. 365 

Figure 4 shows dependences of imaginary and real parts of the oscillatory mode on 𝛾 in the 3TS 366 

and 4TS models (orange curves). The 3TS and 4TS models exhibit a damped oscillation only when 𝛾 367 

is neither too small nor large (Fig. 4b, orange curves), namely, when the temperature effects are 368 

strong. Compared with the 4S model (Fig. 4b, solid black line), the 4TS model is generally more 369 

stable, manifested by the negative or longer positive e-folding time. Even for a very short SST 370 

restoring timescale (one to several months) (Table 4), the positive e-folding time of the oscillatory 371 

mode in the 4TS model is still much longer than that in the 4S model. This is because for any given 𝛾 372 

and 𝜆, temperature-induced 𝑞𝑇
′  is always opposite to salinity-induced 𝑞𝑆

′ , so that the total 𝑞′ is always 373 

smaller; in other words, the AMOC sensitivity to buoyancy perturbation is always weaker in the 4TS 374 

model than in the 4S model. In addition, including the fast thermal restoring process leads to a shorter 375 

oscillation period in the 4TS model than in the 4S model (Fig. 4a), because the superimposition of a 376 

quick timescale and a slow timescale leads to a timescale in between. Since a reasonable restoring 377 

timescale is always much shorter than the multicentennial timescale, we can practically neglect the 378 

effect of restoring timescale on the oscillation period of the system. 379 
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 380 

FIG. 4. Dependences of (a) positive imaginary parts and (b) real parts of the oscillatory mode on 𝛾 (units: year-381 
1) in the 4TS model (solid orange curve) and the 3TS model (dashed orange curve). The units of the ordinate 382 

are 10-10 s-1. The vertical dashed lines from left to right denote the situations under 𝛾1, 𝛾2, 𝛾3, 𝛾4, and 𝛾5, 383 

respectively. The reference oscillatory modes in the 4S and 3S models are plotted as the solid and dashed black 384 

lines, respectively, which are independent of 𝛾. Here, 𝜆 is set to 12 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3. The values of the other 385 

parameters are the same as those listed in Table 1. 386 

 387 

The restoring timescale also affects the relative stability of the 4TS and 3TS models. As shown 388 

in Fig. 1, under extremely strong vertical mixing in the subpolar ocean, the 4-box model (Fig. 1a) can 389 

be reduced to a 3-box model (Fig. 1b). LY22 showed that the 3S model is always more stable than the 390 

4S model. Here, we find that including the thermal processes causes no obvious change of stability 391 

from the 4TS to 3TS model (Fig. 4b). To better understand the stability change, we should first 392 

recognize that whether the temperature and salinity anomalies stay in the subpolar upper or deeper 393 

ocean does not influence the meridional difference of density anomaly due to the vertically weighted 394 

volume-averaged treatment. However, the time consumed in transporting temperature and salinity 395 

anomalies from the upper to deeper ocean boxes is omitted; consequently, they are removed faster 396 

from the subpolar region in the 3-box model, which reduces their restraining and amplification effects 397 

on 𝑞𝑇
′  and 𝑞𝑆

′ , respectively. Therefore, the removals of temperature and salinity related subpolar 398 

stratification in the 3TS model have destabilizing and stabilizing effects, respectively, on the 399 

oscillation of the system. 400 
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 401 

FIG. 5. Lead/lag correlation coefficients between 𝑇2
′ − 𝑇3

′ and 𝑞𝑇
′  (orange curves) and between 𝑆2

′ − 𝑆3
′  and 𝑞𝑆

′  402 

(black curves) in the 4TS model under different 𝛾. Negative lag represents 𝑞′ lags the other terms. Here, 𝜆 is set 403 

to 12 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3. The values of the other parameters are the same as those listed in Table 1. 404 

 405 

In the 4TS model, the subpolar temperature (salinity) stratification 𝑇2
′ − 𝑇3

′ (𝑆2
′ − 𝑆3

′) has 406 

negative (positive) correlation with 𝑞𝑇
′  (𝑞𝑆

′ ) at lag 0 (Fig. 5). These correlations do not rely on the 407 

temperature restoring coefficient 𝛾. This further confirms that the existences of subpolar temperature- 408 

and salinity-related stratification have stabilizing and destabilizing effects, respectively, on the 409 

system. Whether the total subpolar buoyancy stratification plays a stabilizing or destabilizing role, 410 

however, depends on 𝛾. When 𝛾 lies in the range of about several years (from 𝛾1 to 𝛾2; Fig. 4b), the 411 

total subpolar buoyancy stratification plays a stabilizing role since the stabilizing effect of 412 

temperature stratification overcomes the destabilizing effect of salinity stratification. When 𝛾 is too 413 

small or too large, the temperature effect becomes weaker, while the salinity effect is not influenced. 414 

Hence, the stabilization from temperature stratification no longer overcomes the destabilization from 415 

salinity stratification, making the 3TS model more stable than the 4TS model. The 4S model can be 416 

qualitatively interpreted as the case with weak temperature effects in this study, that is, including 417 

extreme mixing in the subpolar ocean can stabilize the system. We conclude that under realistic range 418 

of 𝛾, the 4TS model can be more stable than the 3TS model, due to stronger stabilization effect of 419 

subpolar temperature stratification than the destabilization effect of subpolar salinity stratification. 420 

 421 

4.   Realization of self-sustained oscillation 422 
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Self-sustained oscillation is still absent in the 4TS model. Under the same parameters, the 4TS 423 

model is more stable than the 4S model in LY22 (Fig. 2c), as discussed in section 3. However, this 424 

does not lead to a self-sustained oscillation in the 4TS model. Clearly, additional processes are 425 

needed. In LY22, an enhanced vertical mixing process is added explicitly in the subpolar ocean, to 426 

realize a self-sustained oscillation. To ensure that the system becomes unstable, we choose 𝜆 =427 

14 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3 for the 4TS model from now on, and the subpolar vertical mixing is still 428 

destabilizing as a whole (Fig. 2b), in contrast to the purely stabilizing vertical salinity mixing in 429 

LY22. Will a self-sustained oscillation be realized with the destabilizing subpolar vertical mixing 430 

now? If so, what is the exact role of such vertical mixing in establishing the self-sustained oscillation?  431 

 432 

a.   Self-sustained oscillation with enhanced subpolar mixing  433 

Similar to LY22, we introduce an enhanced mixing term between boxes 2 and 3 in the 4TS 434 

model. Eqs. (5b-c) and (5f-g) become, 435 

𝑉2𝑇2
′̇ = 𝑞′(𝑇1 − 𝑇2) + 𝑞(𝑇1

′ − 𝑇2
′) − 𝑘𝑚(𝑇2

′ − 𝑇3
′) − 𝑉2𝛾𝑇2

′ (9𝑎) 436 

𝑉3𝑇3
′̇ = 𝑞(𝑇2

′ − 𝑇3
′) + 𝑘𝑚(𝑇2

′ − 𝑇3
′) (9𝑏)   437 

𝑉2𝑆2
′̇ = 𝑞′(𝑆1 − 𝑆2) + 𝑞(𝑆1

′ − 𝑆2
′) − 𝑘𝑚(𝑆2

′ − 𝑆3
′) (9𝑐)  438 

𝑉3𝑆3
′̇ = 𝑞(𝑆2

′ − 𝑆3
′) + 𝑘𝑚(𝑆2

′ − 𝑆3
′) (9𝑑)  439 

The mixing coefficient 𝑘𝑚 (units: 𝑚3/𝑠) is represented by: 440 

𝑘𝑚 = 𝜅𝑞′2 (9𝑒) 441 

where 𝜅 (units: 𝑚−3𝑠) is a positive constant. We set 𝜅 to 1 × 10−4 𝑚−3𝑠 in this paper. No matter the 442 

sign of 𝑞′, 𝑘𝑚 is always positive and helps remove subpolar upper-ocean anomalies. Detailed physics 443 

of the enhanced mixing process was discussed in LY22. If this mixing is strong enough, the 4TS 444 

model is virtually equivalent to the 3TS one. 445 

A growing oscillation (Fig. 6a, solid black curve) is turned into a self-sustained oscillation (Fig. 446 

6a, solid orange curve) when enhanced subpolar mixing is included, which can be seen clearly in the 447 

phase diagram of 𝑇2
′ vs 𝑆2

′  (Fig. 6e, orange curve); that is, a limit cycle is formed eventually. With 𝜆 =448 

14 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3, the intrinsic mode of the 4TS model is unstable. As 𝑞′ grows (decreases), more 449 
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warm and saline (cold and fresh) water is removed from the subpolar upper ocean into the deeper 450 

ocean via anomalous mixing of −𝑘𝑚(𝑇2
′ − 𝑇3

′) and −𝑘𝑚(𝑆2
′ − 𝑆3

′) (Figs. 6b, c, solid orange curves); 451 

thus, the anomalies exit the subpolar region more quickly. This vertical mixing has two effects. The 452 

first one is, from a nonlinear restraining view, to prevent the runaway tendency of subpolar 453 

temperature and salinity anomalies by pulling them back to a relatively confined range (Fig. 6e, 454 

orange curve); therefore, the drastic variation of 𝑞′ is inhibited. The second one is, from a linear 455 

stability view, the mixing of temperature (salinity) destabilizes (stabilizes) the system, which is 456 

illustrated by the correlation coefficients at lag 0 between the mixing terms and AMOC (Fig. 6d). 457 

Permitting only salinity variation in LY22, it is natural to have an impression that it is the linearly 458 

stabilizing effect of the subpolar salinity mixing that turns the growing oscillation into a self-sustained 459 

one. With the presence of temperature variation and thus overall destabilizing subpolar vertical 460 

mixing, we propose that the realization of self-sustained oscillation is not controlled by subpolar 461 

mixing, whether it is stabilizing or not, but depends on the nonlinear restraining effect of such mixing. 462 

Note that the 3-box models are fully linear systems; thus, no self-sustained oscillation can be realized, 463 

no matter how stabilizing the subpolar vertical mixing is. The 𝜅 chosen here is one order smaller than 464 

that used in LY22, suggesting that even weak subpolar vertical mixing can turn a growing oscillation 465 

into a self-sustained one. This triggers another underlying problem: is vertical mixing the only media 466 

to transform a growing oscillation into a self-sustained one? 467 

  468 
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 469 

FIG. 6. Oscillations under 𝜆 = 14 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3. (a) Time series for 𝑞′ (solid black curve) under 𝜅 = 0, 𝑞′ (solid 470 

orange curve), 𝑞𝑇
′ (solid green curve), and 𝑞𝑆

′  (dashed green curve) under 𝜅 = 1 × 10−4 𝑚−3𝑠 (units: 𝑆𝑣). (b) 471 

Time series for 𝑇2
′ (solid black curve; units: ℃) and −𝑘𝑚(𝑇2

′ − 𝑇3
′) (solid orange curve; units: 𝑆𝑣 ⋅ ℃). (c) Time 472 

series for 𝑆2
′  (solid black curve; units: 𝑝𝑠𝑢 ) and −𝑘𝑚(𝑆2

′ − 𝑆3
′)  (solid orange curve; units: 𝑆𝑣 ⋅ 𝑝𝑠𝑢 ). (d) 473 

Lead/lag correlation coefficients for −𝑘𝑚(𝑇2
′ − 𝑇3

′) and 𝑞𝑇
′  (solid black curve), and for −𝑘𝑚(𝑆2

′ − 𝑆3
′) and 𝑞𝑆

′  474 

(solid orange curve). (e) 𝑇2
′-𝑆2

′  phase space diagram for years 1-10000. The red dot represents the initial location 475 

of 𝑇2
′ and 𝑆2

′ . Black curve is for 𝜅 = 0, and orange curve, for 𝜅 = 1 × 10−4 𝑚−3𝑠. The values of the other 476 

parameters are the same as those listed in Table 1. 477 

 478 

b.   Self-sustained oscillation with nonlinear relation between AMOC anomaly and meridional 479 

difference of density anomaly 480 

A prominent feature of the subpolar vertical mixing is its unique nonlinearity in such a linear 481 

system. A nonlinear relation between AMOC anomaly and the meridional difference of density 482 

anomaly was adopted in Cessi (1994) and in RT97. Here, we replace the linear relation with a 483 

nonlinear one as the substitute nonlinearity for the subpolar vertical mixing introduced in section 4a. 484 

To this end, we set Eq. (3b) to, 485 
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𝑞′ =

{
 
 
 

 
 
 
𝜆𝜌𝑐𝑟𝑖 [𝑘 ([

𝛥𝜌′

𝜌𝑐𝑟𝑖
]

1

𝑘

− 1) + 1] , 𝑖𝑓 𝛥𝜌′ > 𝜌𝑐𝑟𝑖

𝜆𝛥𝜌′                                                     𝑖𝑓 −𝜌𝑐𝑟𝑖 < 𝛥𝜌′ < 𝜌𝑐𝑟𝑖

−𝜆𝜌𝑐𝑟𝑖 [𝑘 ([−
𝛥𝜌′

𝜌𝑐𝑟𝑖
]

1

𝑘

− 1) + 1] , 𝑖𝑓 𝛥𝜌′ < −𝜌𝑐𝑟𝑖

(10) 486 

It takes the form of Eq. (3) of RT97. Note that there is no enhanced vertical mixing in the system at 487 

present. At 𝑘 = 1, Eq. (10) is reduced to the linear Eq. (3b); and the system exhibits growing but 488 

purely linear oscillation under 𝜆 = 14 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3 (Figs. 6a, 7a, black curves). When 𝑘 is larger 489 

than 1, a nonlinear restraining effect will be introduced when 𝛥𝜌′ becomes larger (lower) than a given 490 

threshold 𝜌𝑐𝑟𝑖 (−𝜌𝑐𝑟𝑖), making 𝑞′ increasingly insensitive to 𝛥𝜌′ as 𝛥𝜌′ grows (decreases). For 491 

example, if 𝑘 = 1.05 with 𝜌𝑐𝑟𝑖 = 0.002 𝑘𝑔/𝑚3, a small degree of nonlinearity (Fig. 7c, orange 492 

curve) will be introduced into the linear system. The self-sustained oscillation is then realized (Fig. 493 

7a, orange curve), and a limit cycle is achieved (Fig. 7b, orange curve). The intersections between the 494 

vertical dashed lines and the abscissa axis in Fig. 7c mark the upper and lower limits for 𝛥𝜌′ during 495 

the integration. The restraining effect manifested as the difference between the black and orange 496 

curves is very small (Fig. 7c). Hence, even a tiny internal nonlinearity between AMOC anomaly and 497 

the meridional difference of density anomaly can lead to a self-sustained oscillation, reflecting that 498 

the self-sustained oscillation mechanism in the 4TS model does not have to be bounded together with 499 

subpolar vertical mixing. Even in the 3TS model under the same parameters, including this nonlinear 500 

relation also led to a self-sustained oscillation (figure not shown). Here, at the heart of the transition 501 

from a linearly growing oscillation into a nonlinear self-sustained one, the nonlinear restraining term 502 

matters, which can take the form as subpolar vertical mixing, or a nonlinear relation between AMOC 503 

anomaly and meridional difference of density anomaly, or even in a form of other nonlinear 504 

processes. The self-sustained AMOC oscillation mechanism can be concluded as a combination of a 505 

linearly growing oscillation dominated by linear advection and a nonlinear restraining effect. The 506 

self-sustained oscillation mechanism in LY22 becomes more explicit, and is shown to be not only 507 

consistent with but also advanced by this current study.    508 
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 509 

FIG. 7. Oscillations under 𝜆 = 14 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3. (a) Time series for 𝑞′ (units: 𝑆𝑣) under 𝑘 = 1 (black curve) 510 

and 𝑘 = 1.05 (orange curve). (b) 𝑇2
′-𝑆2

′  phase space diagram for years 1-10000. The red dot represents the 511 

initial location of 𝑇2
′ and 𝑆2

′ . Black curve is for 𝑘 = 1, and orange curve, for 𝑘 = 1.05. (c) Variation of 𝑞′ with 512 

𝛥𝜌′ (units: 𝑘𝑔/𝑚3) under 𝑘 = 1 (black curve) and 𝑘 = 1.05 (orange curve). The intersections between the 513 

vertical dashed lines and the abscissa axis mark the upper and lower limits for 𝛥𝜌′ during the integration. The 514 

values of the other parameters are the same as those listed in Table 1. 515 

 516 

5.   Eigenmode sensitivity 517 

a.   Effects of basin geometry 518 

Basin geometry can affect both the period and e-folding time of the 4TS model’s eigenmode 519 

(Fig. 8). The standard geometry is (𝑉1 + 𝑉2)/𝑉 = 1/8 and (𝑉2 + 𝑉3)/𝑉 = 1/6 in this paper, denoted 520 

by the orange star in Fig. 8. The gray areas in Fig. 8 denote purely damped or growing regions 521 

without oscillatory potential. The oscillatory mode is damped in region 1 because of negative real 522 

part; and it is growing in region 2 due to positive real part (Fig. 8b). The orange curve partitions 523 

regions 1 and 2, making itself also the lower limit for a possible self-sustained oscillation. The eigen 524 

period increases roughly monotonously with the increases of both the subpolar ocean fraction (𝑉2 +525 

𝑉3)/𝑉 and the upper ocean fraction (𝑉1 + 𝑉2)/𝑉 (Fig. 8a), while the stability of the eigenmode 526 

increases with a decrease in (𝑉1 + 𝑉2)/𝑉 and an increase in (𝑉2 + 𝑉3)/𝑉 (Fig. 8b). This suggests that 527 

it is possible for different periods and stabilities of the eigenmode to be found. Different 528 

considerations for upper and northern box volumes are possible, potentially leading to diversified 529 

periods and stabilities. In GT95, the fractions of the upper and subpolar ocean boxes are both 1/11, 530 

falling in the lower left corner of Fig. 8, with a period shorter than 200 years if 𝑞 is set to 10 𝑆𝑣. 531 

Actually, 𝑞 in GT95 was set to a larger value of about 17 𝑆𝑣, representing a much faster overturning 532 
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rate; thus, the period is further shortened to the century timescale. Consequently, it is reasonable to 533 

deduce that the multidecadal period in GT95 is not at odds with the multicentennial period here. 534 

Popularity of studying multidecadal phenomena back then might account for their choice of model 535 

parameters. 536 

  537 

FIG. 8. Sensitivity of (a) period (units: years) and (b) e-folding time (units: years) of the eigenmode in the 4TS 538 

model to subpolar ocean fraction (𝑉2 + 𝑉3)/𝑉 and upper ocean fraction (𝑉1 + 𝑉2)/𝑉 under 𝜆 = 14 𝑆𝑣 ⋅539 

𝑘𝑔−1 𝑚3. The values of the other parameters are the same as those listed in Table 1. The orange star denotes 540 

the mode with standard basin geometry (𝑉1 + 𝑉2)/𝑉 = 1/8 and (𝑉2 + 𝑉3)/𝑉 = 1/6. The orange curve is both 541 

the stability threshold and the lower limit of probability for self-sustained oscillation in the 4TS model. The 542 

oscillatory mode is damped in region 1 and growing in region 2, partitioned by the orange curve. The gray area 543 

corresponds to purely damped or growing regime without the imaginary part in the 4TS model. The dashed 544 

(solid) contours in (b) show the damped (growing) regime of the oscillation.  545 

 546 
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We can also explain why the mode in RT97 (although it is a 3-box model) can be easily unstable 547 

even under a low AMOC sensitivity (equivalent to 𝜆 = 5.7 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3 in this paper). Their high-548 

latitude box represents a small deep-water formation region instead of the subpolar region, so it was 549 

set to only around 1/100 of the volume of the entire ocean basin. However, their upper ocean is as 550 

large as 1/4 of the entire ocean basin. Therefore, the low stability seen in RT97 owes to their volume 551 

configuration, according to our stability analyses. 552 

 553 

b.   Effects of flow properties 554 

Given the meridional difference of density anomaly, the total AMOC strength 𝑞 is determined 555 

by its sensitivity 𝜆 to the meridional difference of density anomaly and the equilibrium strength 𝑞. 556 

The period decreases monotonically as 𝑞 increases (Fig. 9a), reflecting that a faster overturning leads 557 

to a shorter oscillation period. However, we should note that the oscillation in our model is not strictly 558 

paced by the transport of anomalies around the depth-latitude plane by the mean flow, contrary to the 559 

group of loop model studies (Mysak et al. 1993; Winton and Sarachik 1993; Sévellec et al. 2006). In 560 

our model, when warmer (more saline) water is transported from box 1 to box 2 [this weakens 561 

(strengthens) the AMOC], cold (fresh) anomaly will simultaneously be advected by 𝑞′(𝑇4 − 𝑇1) 562 

[𝑞′(𝑆4 − 𝑆1)] from box 4 to box 1, without waiting for anomaly to be transported back around the 563 

boxes. Larger 𝜆 and smaller 𝑞 are both destabilizing factors (Fig. 9b). A larger 𝜆 results in more 564 

intense fluctuation of 𝑞′ under the same perturbation of meridional difference of density anomaly, 565 

contributing to a less stable system. A decreased 𝑞 weakens the equilibrium advection terms 566 

𝑞(𝑇1
′ − 𝑇2

′) and 𝑞(𝑆1
′ − 𝑆2

′), thus limiting their destabilizing and stabilizing effects, respectively. The 567 

latter is more evident due to the dominant role that salinity plays in establishing AMOC variability. 568 

The combined effect of temperature and salinity advections under a smaller 𝑞 is to make the system 569 

more unstable. 570 
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 571 

FIG. 9. Same as Fig. 8, but the ordinate and abscissa correspond to the equilibrium AMOC strength 𝑞 (units: 572 

𝑆𝑣) and linear closure coefficient 𝜆 (units: 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3), respectively. The orange star denotes the mode with 573 

𝜆 = 14 𝑆𝑣 ⋅ 𝑘𝑔−1 𝑚3 and the standard value 𝑞 = 10 𝑆𝑣. 574 

 575 

c.   Effects of mean meridional difference of equilibrium SST and SSS 576 

From Eqs. (2b) and (8), we see, when keeping other parameters fixed, 𝑇1
∗ − 𝑇2

∗ controls 𝑇1 − 𝑇2 577 

while 𝐹𝑤 controls the 𝑆1 − 𝑆2. Since it is 𝑇1 − 𝑇2 and 𝑆1 − 𝑆2 instead of the individual values for 𝑇1, 578 

𝑇2, 𝑆1, or 𝑆2 that influence the system, we should examine the eigenmode sensitivity to 𝑇1 − 𝑇2 and 579 

𝑆1 − 𝑆2 through altering 𝑇1
∗ − 𝑇2

∗ and 𝐹𝑤. Note that although the standard 𝐹𝑤 in Table 1 is calculated 580 

through the given 𝑆1, 𝑆2, and 𝑞, we can artificially change 𝑆1, or 𝑆2, or both, to obtain a new 𝐹𝑤, 581 

which actually has the same effect as changing 𝐹𝑤. Figure 10a shows that the period shortens 582 

marginally with the increase of 𝑇1
∗ − 𝑇2

∗, but exhibits a decrease-then-increase tendency as 𝐹𝑤 grows. 583 
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Smaller 𝑇1
∗ − 𝑇2

∗ and larger 𝐹𝑤 all lead to lower stability (Fig. 10b). From Eq. (8), we derive that 𝑇1 −584 

𝑇2 lower as 𝑇1
∗ − 𝑇2

∗ decreases; therefore, the temperature effects are hampered due to the weaker 585 

negative temperature advection feedback, leading to a longer period and lower stability for the 586 

system. As for salinity, it can be seen from Eq. (2b) that a larger 𝐹𝑤 increases 𝑞′(𝑆1 − 𝑆2), so the 587 

destabilizing positive salinity advection feedback is reinforced, which is consistent with the finding of 588 

Sévellec et al. (2006). 589 

 590 

FIG. 10. Same as Fig. 8, but the ordinate and abscissa correspond to 𝐹𝑤 (units: 10 𝑝𝑠𝑢 ⋅ 𝑆𝑣) and the meridional 591 

difference of restoring temperature 𝑇1
∗ − 𝑇2

∗ (units: ℃), respectively. The orange star denotes the mode with 592 

standard parameter values 𝑇1
∗ − 𝑇2

∗ = 18 ℃ and 𝐹𝑤 = 25.0 𝑝𝑠𝑢 ⋅ 𝑆𝑣. 593 

 594 

6.   Summary and discussion 595 
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As the second part of our theoretical studies on AMOC multicentennial variability, this study 596 

complements LY22 by including temperature equations in the box model. Mixed boundary conditions 597 

are employed for surface temperature and salinity. The added thermal processes consist of the 598 

negative temperature advection feedback and the positive restoring advection feedback. The latter is 599 

driven by and never overpowers the former; thus, the resultant temperature feedback is negative as a 600 

whole. Including the thermal processes leads to an increase of oscillation frequency because of the 601 

fast thermal-restoring process, a stabilization force for the system because of the negative temperature 602 

advection feedback, and a second stabilizing effect for the subpolar stratification due to the stabilizing 603 

subpolar temperature stratification.  604 

With the overall stabilizing thermal processes included, additional processes are needed to turn a 605 

linearly growing oscillation into a self-sustained oscillation. The enhanced subpolar vertical mixing 606 

raised in LY22 is able to realize a self-sustained oscillation in the 4TS model here. The subpolar 607 

vertical mixing can be overall destabilizing, but is not at odds with LY22, since the subpolar 608 

temperature mixing in this work is destabilizing, and can overcome the stabilizing subpolar salinity 609 

mixing under realistic surface temperature restoring timescale. Additionally, this destabilizing 610 

subpolar total vertical mixing reflects that it is its nonlinear restraining effect instead of the linear 611 

stabilizing/destabilizing effect that leads to the self-sustained oscillation, further complementing and 612 

advancing the theory of LY22. Furthermore, we show that the nonlinear restraining process is not 613 

confined to subpolar vertical mixing, but can also take the form of a nonlinear relation between the 614 

AMOC anomaly and the meridional difference of density anomaly, or even in other forms. The 615 

magnitude of such nonlinearity does not have to be large. Basically, we can generalize the self-616 

sustained oscillation mechanism in both LY22 and this paper as: “a combination of a linearly growing 617 

oscillation dominated by linear advection and a nonlinear restraining effect,” which is a more 618 

essential expression of the LY22 mechanism proposed in their introduction, namely, “a combination 619 

of salinity advection and enhanced mixing.”  620 

Stability analyses reveal that the period and stability of the oscillatory eigenmode are sensitive to 621 

model geometry, flow properties, and meridional difference of mean SST and SSS. Generally, smaller 622 

subpolar and upper ocean boxes tend to shorten the oscillation period; larger subpolar ocean and 623 

smaller upper ocean boxes have stabilizing effects on the system. A stronger mean AMOC shortens 624 

the period due to the faster overturning rate, stabilizing the system through enhancing the stabilizing 625 

mean advection of meridional difference of salinity anomaly, which dominates over the destabilizing 626 
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mean advection of meridional difference of temperature anomaly. Higher sensitivity of AMOC 627 

anomaly to the meridional difference of density anomaly makes the system less stable. Increasing 628 

surface freshwater flux energizes the destabilizing salinity advection feedback and lowers the system 629 

stability, because the background meridional difference of  mean salinity will be stronger. Larger 630 

meridional difference of restoring temperature strengthens the thermal processes; thus, it shortens the 631 

period and increases system stability. 632 

The box model is highly idealized, aimed at providing heuristic understanding of the 633 

multicentennial AMOC oscillation. The difference in system behaviors before and after the 634 

permission of temperature variation suggests that too few physics involved in theoretical models may 635 

lead to unrealistic eigenmode. This work can also help us understand the prevalence of centennial-to-636 

multicentennial AMOC oscillations found in a few pre-industrial control runs using high-order 637 

models (Park and Latif 2008; Delworth and Zeng 2012; Yang et al. 2015; Jiang et al. 2021). Whether 638 

the multicentennial AMOC oscillations found in Earth system models are self-sustained or 639 

stochastically-sustained is obscured by their intricate model physics. However, our box-model study 640 

suggests that a self-sustained oscillation can appear as long as a tiny nonlinearity is included, which is 641 

present in some form in the real ocean. Thereby, we conclude that self-sustained multicentennial 642 

AMOC oscillation has a good chance to exist in high-order models. A more precise mean AMOC 643 

strength simulated in high-order models may improve the simulation of multicentennial AMOC 644 

oscillation, especially its period. For instance, the difference in the oscillation period between Jiang et 645 

al. (2021) and Meccia et al. (2022) (~200 years vs ~150 years), both utilizing the NEMO 3.6 ocean 646 

component, is believed to derive from their different mean AMOC strengths (10.8 𝑆𝑣 vs 16.3 𝑆𝑣). 647 

Our stability analyses also suggest that if the strength of mean AMOC decreases in the future, it is 648 

likely that the stability and period of multicentennial AMOC oscillation may be lowered and 649 

lengthened, respectively. 650 

The more intense warming at northern high latitude in the context of global warming is also 651 

likely to result in more freshwater hosing in the subpolar North Atlantic (Serreze and Barry 2011; Dai 652 

2022), reducing meridional SST difference while enhancing meridional SSS difference. Therefore, 653 

the negative temperature advection feedback is weakened, while the positive salinity advection 654 

feedback is strengthened. This implies that the multicentennial AMOC oscillation may be less stable; 655 

this also implies that the period of the multicentennial AMOC oscillation is likely to be lengthened in 656 

the future, which has not gained attention yet. However, the period of decadal-to-multidecadal 657 
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AMOC oscillation is believed to be shortened under global warming scenario based on Rossby wave 658 

dynamics (Cheng et al. 2016; Ma et al. 2021). As global warming persists, more attention should be 659 

paid to how multicentennial AMOC oscillation period would change in the future, since global 660 

warming may occur on the background of a multicentennial oscillation. 661 

Finally, this theoretical study can be improved in several aspects. The one-hemisphere 662 

configuration singles out only North Atlantic advection, and contributions from the other ocean basins 663 

are not considered. Extending the one-hemisphere model into an inter-hemisphere one as that in Scott 664 

et al. (1999) and in Lucarini and Stone (2005), or incoraporating the Arctic Ocean as in Lambert et al. 665 

(2016), may provide more insightful results. Too few feedbacks are included in our model because of 666 

the ocean-only configuration and mixed boundary conditions. Adding more feedbacks, such as the 667 

meridional mositure transport feedback (Tziperman and Gildor 2002), wind forcing feedback 668 

(Sherriff-Tadano and Abe-Ouchi 2020), and sea ice feedback (Jayne and Marotzke 1999), should 669 

improve the simulation of stability and other characteristics of AMOC oscillation.  670 
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