

1 **Replies to Reviewer #1:**

2 Thank you very much for these constructive comments. We have revised the manuscript carefully
3 based on these suggestions. The followings are our point-to-point replies.

4 *This manuscript presents a novel conceptual investigation into the potential for self-sustained,
5 multicentennial-scale oscillations of the Atlantic Meridional Overturning Circulation (AMOC)
6 within a two-hemisphere box model framework. Building upon earlier single-hemisphere box
7 models, the authors introduce the thermohaline and wind-driven gyre circulation, and
8 freshwater/heat inputs into a two-hemisphere box configuration. The results shed new light on the
9 possibility of internal, low-frequency AMOC variability driven mainly by the salinity advection
10 feedback in the North Atlantic. The work is highly relevant to theoretical climate dynamics and
11 offers potential implications for understanding long-term Atlantic variability in both past and future
12 climates. The model's simplicity allows the authors to isolate and interpret the mechanisms that are
13 often obscured in more complex GCMs (2 examples are analyzed), while largely reproducing the
14 oscillation modes from them. The manuscript is generally clearly written. To further enhance the
15 manuscript's completeness and clarity, several minor issues regarding model assumptions, physical
16 realism, and broader climate implications should be addressed.*

17 **Responses:** Thank you very much for your encouraging comments. Combining suggestions from
18 all reviewers, we have revised the manuscript substantially in the following areas:

19 (1) The section discussing the millennial mode has been removed.

20 (2) The section titled "Linear Oscillations Excited by Stochastic Forcing" has been removed.

21 (3) A new section, "Oscillatory Timescales of Multicentennial Oscillations", has been added. This
22 material was previously part of the Discussion section.

23 (4) Substantial revisions have been made to both the Methods and Discussion sections. In the
24 Methods, we now include a more detailed description of the box model, including the
25 fundamental oceanic processes it represents and the treatment of wind-driven processes. In the
26 Discussion, we have expanded the text to better emphasize the novelty of this study and to
27 clearly acknowledge its limitations.

28 **Specific issues**

29 1. *Oversimplification of ocean geometry (in Table 1) and basin asymmetry. The model treats the*
30 *Atlantic basin as a symmetric two-hemisphere system with simplified vertical and meridional*
31 *box divisions. This symmetry ignores key features of the real climate system, such as the*
32 *configuration of the Southern Ocean and the role of the Agulhas leakage which are known to*
33 *influence AMOC strength and variability (e.g. Biastoch et al. 2008). The authors can discuss in*
34 *more details how geometric asymmetries and inter-basin exchange processes (e.g., with the*
35 *Indo-Pacific; Sun et al. 2021) might alter or inhibit the oscillatory behavior seen in the model.*

36 **Responses:** Thank you for your comments. We agree that the highly idealized geometry and
37 dynamics in our model may omit some important influences on the AMOC multicentennial
38 variability. In response, we have expanded the discussion to include the potential roles of the
39 Southern Ocean, Agulhas leakage, and inter-basin exchange processes.

40 Our model does not simulate Southern Ocean-driven mechanisms seen in more complex coupled
41 models. For instance, in the Kiel Climate Model and GFDL CM2.1 (Park and Latif 2008; Delworth
42 and Zeng 2012), multicentennial AMOC oscillations are triggered by heat or salinity anomalies in
43 the Weddell Sea that propagate to the North Atlantic, influencing North Atlantic Deep Water
44 (NADW) formation. The absence of such signals in our simulation likely reflects the simplified
45 model structure and boundary conditions.

46 While few studies have explored the influence of Agulhas leakage or Indo-Pacific exchange on
47 AMOC multicentennial variability, they are recognized contributors to shorter-timescale variability.
48 Biastoch et al. (2008), for example, demonstrate that dynamic signals originating in the Agulhas
49 leakage region can modulate decadal MOC variability, with impacts in the North Atlantic
50 comparable to those from the northern source. Sun et al. (2021) further suggest that during warm
51 phases of the Atlantic multidecadal oscillation, changes in sea surface temperatures and
52 atmospheric circulation over the Indo-Pacific may also feedback into the Atlantic system via inter-
53 basin connections.

54 We now acknowledge these processes more fully in the revised manuscript, while noting that the
55 extent to which they influence AMOC variability on multicentennial timescales remains an open
56 research question. Nevertheless, we believe that despite omitting some key processes, the highly
57 idealized model highlights the central role of oceanic dynamics, which we consider a strength of its
58 simplified design.

59 2. *The absence of some potentially important atmosphere-ocean-sea-ice feedbacks/processes.*
60 *While the model includes some key climate feedbacks/processes (such as the salt advection*

61 *feedback, vertical mixing, wind stress SST gradient feedback), it omits other critical*
62 *atmosphere-ocean-sea-ice couplings/processes. For instance, feedbacks involving sea ice (e.g.,*
63 *insulating effects on surface fluxes, brine rejection; Maccia et al. 2022) are not fully*
64 *incorporated which can also be important at multicentennial timescales and can fundamentally*
65 *alter the behavior of the oscillator system. These potential limitations and how they impact the*
66 *oscillation mechanism should be acknowledged and discussed.*

67 **Responses:** Thank you for your comments. We appreciate your helpful suggestion to expand the
68 discussion on the limitations of our model and the potential influence of atmosphere-ocean-sea-ice
69 feedbacks on AMOC multicentennial oscillations. These feedbacks are indeed present in the real
70 climate system, and numerous studies have highlighted their importance. In response, we have
71 revised the discussion section to explicitly acknowledge this limitation.

72 Our model does not include key atmosphere-sea-ice feedbacks identified in recent studies of
73 Arctic-origin AMOC multicentennial oscillations. For example, Jiang et al. (2021) and Meccia et al.
74 (2023) reported that sea ice melt during strong AMOC phases generates freshwater anomalies,
75 which are advected southward and weaken subpolar deep convection. Although these oscillations
76 are primarily governed by mean advection, the maintenance of anomalies likely involves coupled
77 feedbacks not captured in our model. Similar limitations apply to Mehling et al. (2023) and
78 Vellinga and Wu (2004), which emphasize simplified or air-sea-driven mechanisms.

79 However, we also regard this as a strength of our modeling framework. The exclusion of coupled
80 atmosphere-ocean-sea-ice feedbacks enables us to isolate and demonstrate that AMOC
81 multicentennial oscillations can emerge solely from internal oceanic dynamics. This finding implies
82 the existence of a more fundamental, intrinsic mechanism underpinning such variability, operating
83 independently of the full complexity of coupled climate interactions.

84 References:

85 Jiang, W., G. Gastineau, and F. Codron, 2021: Multicentennial variability driven by salinity
86 exchanges between the Atlantic and the Arctic Ocean in a coupled climate model. *J. Adv. Model.*
87 *Earth Syst.*, 13, e2020MS002366.

88 Meccia, V. L., R. Fuentes-Franco, P. Davini, K. Bellomo, F. Fabiano, S. Yang, and J. Von
89 Hardenberg, 2023: Internal multi-centennial variability of the Atlantic Meridional Overturning
90 Circulation simulated by EC-Earth3. *Climate Dyn.*, 60, 3695-3712.

91 Mehling, O., K. Bellomo, and J. von Hardenberg, 2024: Centennial-scale variability of the Atlantic
92 meridional overturning circulation in CMIP6 models shaped by Arctic – North Atlantic interactions
93 and sea ice biases. *Geophys. Res. Lett.*, 51, e2024GL110791.

94 Vellinga, M., and P. Wu, 2004: Low-Latitude Freshwater Influence on Centennial Variability of the
95 Atlantic Thermohaline Circulation. *J. Climate*, 17, 4498-4511.

96 *3. Validation against paleoclimate periodicities. The authors note that the centennial-scale
97 oscillations produced by the model are not clearly observed in some proxy records (e.g.,
98 Stocker and Mysak, 1992) and propose several possible explanations for this discrepancy. I
99 encourage the authors to elaborate more fully on these potential factors qualitatively where
100 appropriate, and consider whether some of them could be explored or tested within the
101 framework of the modified model. This would help clarify the model's applicability to real-
102 world climate variability and enhance its relevance to paleoclimate interpretations.*

103 **Responses:** Thank you for your comments. We agree that it would be valuable to explore more
104 potential factors such as surface freshwater fluxes in our idealized model framework, as this could
105 help clarify their roles in modulating oceanic oscillations. Such extensions would indeed enhance
106 the model's relevance to paleoclimate variability.

107 However, we have chosen not to include additional experiments in the current paper for several
108 reasons. First, the scope of this study is already extensive, and adding new sensitivity experiments
109 would go beyond the paper's current focus. We plan to investigate these additional factors in future
110 work. We have also expanded the discussion section to address this point more thoroughly.

111 Second, we believe that idealized models are best suited for isolating and understanding the
112 fundamental dynamics of individual components, rather than reproducing the full complexity of the
113 real climate system. For the latter, fully GCMs are more appropriate tools.

114 Finally, our main objective in this study is to understand the internal ocean dynamics that give rise
115 to multicentennial oscillations. We therefore focus on how basin geometry and AMOC strength
116 affect the oscillation timescale in the new Section 4. These factors alone can account for most of the
117 variability in the modeled periods.

118 *Editorial comment: L35 The abstract is not complete.*

119 **Responses:** Thank you for your comments. We have completed the abstract in the revised version.

120 *Ref:*

121 *Biastoch et al. (2008). Agulhas leakage dynamics affects decadal variability in Atlantic overturning*
122 *circulation. Nature, 456(7221), 489-492.*

123 *Sun et al. (2021). The importance of inter - basin atmospheric teleconnection in the SST footprint*
124 *of Atlantic multidecadal oscillation over western Pacific. Climate Dynamics, 57, 239-252.*

125

126 **Replies to Reviewer #2:**

127 Thank you very much for these constructive comments. We have revised the manuscript carefully
128 based on these suggestions. The followings are our point-to-point replies.

129 *The authors presented a self-sustained oscillatory AMOC in multi-century timescale using a two-
130 hemisphere 6-box model. Their study showed that the AMOC is largely driven by salinity. The
131 AMOC become weak/damped when wind-driven circulation is introduced. The study is very helpful
132 in understanding the AMOC, and can be published after major/minor revision.*

133 **Responses:** Thank you very much for your encouraging comments. Combining suggestions from
134 all reviewers, we have revised the manuscript substantially in the following areas:

135 (1) The section discussing the millennial mode has been removed.

136 (2) The section titled "Linear Oscillations Excited by Stochastic Forcing" has been removed.

137 (3) A new section, "Oscillatory Timescales of Multicentennial Oscillations", has been added. This
138 material was previously part of the Discussion section.

139 (4) Substantial revisions have been made to both the Methods and Discussion sections. In the
140 Methods, we now include a more detailed description of the box model, including the
141 fundamental oceanic processes it represents and the treatment of wind-driven processes. In the
142 Discussion, we have expanded the text to better emphasize the novelty of this study and to
143 clearly acknowledge its limitations.

144 **Major issues**

145 *My major concerns are (1) Clarity of the parameter definitions and their physical meaning, or
146 how these values are derived based on some kind observations if possible,*

147 **Responses:** Thank you for your comments. The parameters in our model are selected based on
148 observational data or outputs from climate models. For example, the boundary conditions, including
149 freshwater fluxes and restoring temperatures, are set to values that produce equilibrium temperature
150 and salinity fields closely matching CESM1 output (Yang et al., 2015). Standard physical constants
151 follow widely accepted values, and wind-driven advection coefficients are chosen to reproduce
152 realistic subtropical cell transports. The κ is set to produce the desired amplitude of the self-
153 sustained oscillation. The total basin volume is adjusted to reflect realistic ocean conditions, and the
154 basin geometry parameters are tuned to capture the targeted oscillatory behavior, with their

155 sensitivity discussed in Section 3b. The mean AMOC strength is also based on CESM1 output, and
156 its influence on the oscillation period is examined in Section 4. The linear closure parameter is
157 chosen to obtain a relatively robust oscillation period, with details provided in the manuscript.
158 Hence, all equilibrium values are selected to be consistent with results from climate models. Details
159 on parameter selection are provided at their first mention in the manuscript. A clarifying note has
160 also been added to the caption of the parameter table.

161 References:

162 Yang, H., Q. Li, K. Wang, Y. Sun, and D. Sun, 2015: Decomposing the meridional heat transport in
163 the climate system. *Climate Dyn.*, 44, 2751-2768.

164 *(2) the difference between the current and previous work may need being discussed or clarified,*

165 This study enhances our understanding of the AMOC multicentennial variability by extending
166 earlier one-hemisphere box model analyses to a more physically realistic two-hemisphere
167 configuration. While the fundamental mechanisms governing AMOC oscillations are broadly
168 consistent across both models, the two-hemisphere framework offers several important advances.
169 These include the influence of basin geometry and vertical ocean structure on the period and
170 stability of oscillations, an improved parameterization of AMOC anomalies based on inter-
171 hemispheric density differences, and a theoretical expression linking system properties to oscillation
172 timescales. The study also demonstrates that thermohaline circulation is both necessary and
173 sufficient for generating multicentennial variability, and provides the first analytical explanation for
174 the absence of such variability in the presence of wind-driven meridional overturning circulation
175 (WD-MOC) alone.

176 Beyond our previous work, some studies have reported multicentennial AMOC oscillations in
177 two-hemisphere three-box models (e.g., Lucarini and Stone, 2005a, 2005b; Scott et al., 1999), but
178 their analyses focus mainly on eigenmode computations and time series outputs, lacking a detailed
179 account of the underlying feedback mechanisms. Moreover, the oscillations identified in these
180 studies are typically damped or unstable, whereas the present work demonstrates a sustained
181 multicentennial oscillation. Some spatially resolved, though still highly idealized, models also
182 exhibit AMOC multicentennial variability. Mysak et al. (1993) identified 200-300-year oscillations
183 triggered by stochastic freshwater forcing, but their analysis focuses solely on the positive salinity-
184 advection feedback and lacked a complete feedback loop explanation. Similarly, Wolfe and Cessi
185 (2015) report ~380-year oscillations characterized by large-scale sea surface salinity (SSS)
186 anomalies of opposite sign in the two hemispheres. However, their analysis primarily focuses on the

187 positive salinity-advection feedback and does not consider the full suite of feedback mechanisms
188 required to sustain such oscillations.

189 Overall, in contrast to these previous studies, our work provides a systematic and physically
190 interpretable framework for understanding sustained AMOC multacentennial oscillations in a two-
191 hemisphere box model. We explicitly derive the oscillation period, clarify the necessary and
192 sufficient role of thermohaline circulation, and explain why wind-driven circulation alone cannot
193 sustain such variability. This work contributes to bridging conceptual box models with more
194 complex climate models, offering insights into AMOC dynamics during the Holocene and their
195 potential relevance to long-term societal change.

196 We have added a comparison between this work and previous studies, including results obtained
197 from spatially resolved yet highly idealized models, in the Discussion in the revised manuscript.

198 References:

199 Lucarini, V., and P. H. Stone, 2005a: Thermohaline circulation stability: A box model study. Part I:
200 Uncoupled model. *J. Climate*, 18, 501-513.

201 ——, 2005b: Thermohaline circulation stability: a box model study. Part II: coupled atmosphere –
202 ocean model. *J. Climate*, 18, 514-5291.

203 Scott, J. R., J. Marotzke, and P. H. Stone, 1999: Interhemispheric thermohaline circulation in a
204 coupled box model. *J. Phys. Oceanogr.*, 29, 351-365.

205 *(3) I have difficulty understand the solid and dashed qs and qn in Figure 1b, which does not seem to
206 be necessary in the associated equations.*

207 In this study, we assume that the wind-driven circulation consists of two components: a poleward
208 branch and an equatorward branch. The poleward transport in the tropics is primarily driven by
209 Ekman transport (solid arrows in Fig. 1b), while the equatorward return flow is geostrophic (dashed
210 arrows in Fig. 1b). These two components are approximately balanced in the tropical upper ocean,
211 ensuring mass conservation. Although the total mass is conserved, integration over the entire upper
212 ocean shows that the net salinity and heat transports are poleward. Therefore, qn and qs represent
213 the total mass transports of the wind-driven circulation in the upper ocean in the Northern and
214 Southern Hemispheres, respectively. The dashed arrows are retained to emphasize mass
215 conservation in the model. Further explanation has been added to the revised manuscript.

216 and (4) Implication of this study to the observed AMOC change should be welcomed if possible.

217 We agree that it is helpful to relate our results to the observed changes in the AMOC. Our study
218 shows that multicentennial AMOC oscillations can occur due to internal ocean dynamics alone,
219 even without complex feedbacks from the atmosphere or sea ice. This suggests that some of the
220 long-term AMOC variability seen in observations may come from natural ocean processes, rather
221 than external climate forcing. Although our model is simplified, it provides a clear framework for
222 understanding the possible timescale of these oscillations. However, we recognize that real-world
223 climate processes are much more complex and may weaken or mask such oscillations, which could
224 explain why they are hard to detect or irregular in proxy records. We have added a short discussion
225 to explain how our results may be relevant to observed AMOC changes.

226 **Specific issues**

227 1. *L28, sensitivity => sensitive*

228 **Responses:** Thank you for your comments. We have revised this.

229 2. *L54, arose => arisen?*

230 **Responses:** Thank you for your comments. We have revised this.

231 3. *L81-83, It might be helpful to summarize the difference two-hemisphere model in the current*
232 *study and previous ones (Lucarini and Stone 2005a, 2005b; Scott et al. 1999). What is new in*
233 *this study?*

234 **Responses:** Thank you for your comments. The previous studies primarily computed the
235 eigenmodes and presented the AMOC time series without providing a clear explanation of the
236 underlying feedback mechanisms. In addition, the multicentennial oscillations identified in their
237 work are either damped or unstable, whereas our study presents a sustained oscillation. We have
238 revised the manuscript to clarify these points.

239 4. *L101, 6S model, Authors must have a reason of using this name, but it might be helpful to*
240 *readers if the name could be explain briefly.*

241 **Responses:** Thank you for your comments. We have revised the phrase "only salinity equations" to
242 "six salinity equations" for clarity. This change will help readers better understand the abbreviation.

243 5. *L124-126, a little confused about qn (qs) northward (southward) in solid arrows and poleward*
244 *(equatorward) arrows. First, qn and qs is in green solid; second, it is not clearly described why*
245 *we have two wind-driven transports at the same time. Are they driven by westerlies in the mid-*
246 *latitude and easterlies in the tropical oceans, respectively? The connections between theoretical*
247 *box model and physical reason behind should be described.*

248 *Consider: "and in green arrows represent transports by the wind-driven circulation. The solid*
249 *and dashed arrows represent poleward and equatorward wind-driven transports, respectively."*

250 **Responses:** Thank you for your comments. In this study, we assume that the wind-driven
251 circulation consists of two components: a poleward branch and an equatorward branch. The
252 poleward transport in the tropics is primarily driven by Ekman transport (represented by solid
253 arrows), while the equatorward return flow is geostrophic (represented by dashed arrows). These
254 two components are approximately balanced in the tropical upper ocean, ensuring mass
255 conservation. Although the total mass is conserved, when integrated over the entire upper ocean, the
256 net salinity and heat transport remains poleward. Therefore, qn and qs represent the total mass
257 transports of the wind-driven circulation in the upper ocean, in the Northern and Southern
258 Hemispheres, respectively.

259 This explanation was not clearly provided in the original manuscript, and the meaning of the
260 dashed arrows was also missing. For clarity, we have now added this explanation both in the figure
261 caption and in the relevant section discussing the wind-driven circulation.

262 6. *Table 1: Not clear how some of these numbers were determined: $T1^*$, $T2^*$, $T3^*$, λ , K , qn*
263 *bar, qs bar etc.*

264 **Responses:** Thank you for your comments. We agree that parameter selection is a critical issue.
265 Most of the parameters used in our model, including geometric configurations, boundary
266 conditions, and equilibrium values, are chosen to be consistent with observations, realistic
267 assumptions, or results from coupled climate models. For example, the boundary conditions,
268 including freshwater fluxes and restoring temperatures, are set to values that produce equilibrium
269 temperature and salinity fields closely matching CESM1 output (Yang et al., 2015), as described in
270 the main text and Appendix A. The relationship between the boundary conditions and the
271 equilibrium fields is provided in [Eqs. \(8\)](#). Other physical constants, such as the thermal expansion
272 coefficient, saline contraction coefficient and reference seawater density are based on commonly
273 accepted values. The wind-driven advection coefficients for the North and South Atlantic are
274 selected to produce realistic mean mass transports associated with subtropical cells. These values

275 are consistent with estimates from climate models, as mentioned in the manuscript. The total basin
276 volume is also adjusted to reflect realistic oceanic conditions, and the parameters related to basin
277 geometry are tuned to better capture the targeted oscillatory behavior. Since these parameters can
278 influence the oscillation, their sensitivity is discussed in Section 3b. Although the mean AMOC
279 strength used in this study (24 Sv) is relatively strong compared to values used in some previous
280 studies, it is tuned to match the CESM1 result. Besides, the influence of the mean AMOC strength
281 on the oscillation period is also discussed in the Section 4 in the manuscript. The linear closure
282 parameter is chosen to obtain a relatively robust oscillation period, with details provided in the
283 manuscript. We have added a clarifying note in the caption of the parameter table to reflect these
284 choices.

285 References:

286 Yang, H., Q. Li, K. Wang, Y. Sun, and D. Sun, 2015: Decomposing the meridional heat transport in
287 the climate system. *Climate Dyn.*, 44, 2751-2768.

288 *7. L168-169, what is the unit of omega or just an eigenvalue?*

289 **Responses:** Thank you for your comments. The unit of omega is 10^{-10} s^{-1} . We have added this
290 information to the context.

291 *8. L171, how is the e-folding time is estimated or derived?*

292 **Responses:** Thank you for your comments. The e-folding time is calculated from the imaginary part
293 of the eigenvalue and represents the time interval over which an exponentially growing quantity
294 decreases by a factor of e. This explanation has been incorporated into the context.

295 *9. Table 2, 6TS_THC and 6TS_WDC have not been introduced. What is "In 10–10 s–1" in
296 frequency and "In Year" in period? Why are there multi-values in the last row in Damped
297 mode?*

298 **Responses:** Thank you for your comments. We have addressed Table 2 in the revised manuscript
299 from the following three aspects:

300 (1) We added a brief explanation of the 6TS models in the table caption. Since these models are
301 introduced later in Section 5, some distance from where Table 2 appears, we also included a
302 sentence to help readers make the connection.

303 (2) "In 10–10 s⁻¹" (for frequency) and "In Year" (for period) are the units. The real part of each
304 eigenvalue is used to calculate the e-folding time, and the imaginary part is used to compute the
305 period of the related oscillatory mode. We have added this explanation to the revised manuscript.

306 (3) The 6TS models in the last row have multiple damped modes because they have more degrees
307 of freedom. As this is a secondary point, we chose not to include it in the main text.

308 10. *L178, weakly, do you have a criterion defining the "weakly" or "strongly"?*

309 **Responses:** Thank you for your comments. For unstable oscillations, "weakly" means the e-folding
310 time is longer than the oscillation period, so the amplitude increases slowly. In contrast, "strongly"
311 means the e-folding time is shorter, leading to faster growth. For decaying oscillations, where the e-
312 folding time is negative, "weakly" refers to a smaller (more negative) e-folding time and slower
313 decay, while "strongly" indicates a larger (less negative) e-folding time and faster decay. This
314 explanation has been incorporated into the context.

315 11. *L179-180, "The real part of the eigenvalue [Re(omega)] increases with lambda", how about
316 those after fork when >50?*

317 **Responses:** Thank you for your comments. When lambda>50, the multicentennial eigenmode
318 disappears. We have added this information to the context.

319 12. *L180, maximum, also minimum when Im(omega) <0?*

320 **Responses:** Thank you for your comments. It's correct that Im(omega) reaches its minimum when
321 considering the sign. We have revised this point in the context.

322 13. *L187, ordinate => y-ordinate?*

323 **Responses:** Thank you for your comments. The term "ordinate" refers to the y-coordinate, so its use
324 here is correct.

325 14. *L190, "-40" => 40? How are periods of 1800 and e-folding time of -40 year estimated? "-40"
326 mean the model is unstable as later discussions show.*

327 **Responses:** Thank you for your comments. Based on all the reviewers' suggestions, we have
328 removed the section about the millennial mode. However, we would like to address your question
329 here. The period and e-folding time are derived from the eigenvalues of the box model by
330 converting the units. In this context, the millennial mode has an e-folding time of -40 years, which

331 indicates that it takes 40 years to decrease to 1/e of the original value, signifying stability. I believe
332 it is important to retain the sign to clarify whether the system is stable or unstable.

333 *15. L191, unchanged, this should be cautious because the $Im(w)$ changes signs.*

334 **Responses:** Thank you for your comments. Based on the reviewers' suggestions, we have removed
335 the section about the millennial mode. However, we will be more cautious regarding the signs of the
336 eigenvalues.

337 *16. L192, smaller, do you mean the value including the sign? note the negative sign in $Re(w)$. I
338 suggest authors use the values such as about -10 unit, +/-5 unit as presented in the figure. This
339 will make readers easy to follow.*

340 **Responses:** Thank you for your comments. Following the suggestions of all three reviewers, we
341 have removed the section on the millennial mode. However, we address the related question here:
342 the sign is considered when comparing the real and imaginary parts of the eigenvalues. We
343 appreciate the suggestion to use specific values and units to describe growth/decay and
344 maxima/minima. This has been revised accordingly in the remaining parts of the paper.

345 *17. L191-193, for a given of millennial mode of 1800 years with e-folding time of 40 years, I am
346 afraid that the mode may not be real in the real-world, because the mode will be damped and
347 disappear within a small fraction of the mode period. Since the millennial model is discussed
348 here very briefly, I suggest deleting it.*

349 **Responses:** Thank you for your comments. We agree with your suggestion, and based on the
350 reviewers' feedback, we have removed the section about the millennial mode.

351 *18. L209, again, how is k determined? A reference is needed if this is determined based on previous
352 studies.*

353 **Responses:** Thank you for your comments. The value of κ affects the amplitude of the oscillation;
354 in this study, it is set to produce the desired amplitude of the self-sustained oscillation. We follow
355 the value used in our previous work (LY22), whereas YYL24 adopted a value an order of
356 magnitude smaller. This indicates that even weak subpolar vertical mixing can transform a growing
357 oscillation into a self-sustained one. Therefore, the specific value of κ is relatively flexible, as its
358 primary role is to introduce a nonlinear mechanism that limits the unbounded growth of the
359 oscillation. We have added this statement and the corresponding reference in the revised
360 manuscript.

361 19. L267, global, which might be misleading, "total Atlantic" might be more reasonable.

362 **Responses:** Thank you for your comments. We have revised this.

363 20. L269, "multi-centennial mode is analyzed", I suppose, at this point, we don't know the timescale
364 of the mode. The statement may need revising.

365 **Responses:** Thank you for your comments. We have revised "multi-centennial mode" to "least
366 damped oscillatory mode".

367 21. L271, 5S, may need explanation such as "5-box salinity-driven model", which is also true to 6S
368 model.

369 **Responses:** Thank you for your comments. We fully agree with your suggestion to explain the
370 model abbreviations to help readers better understand the text, and we have updated the relevant
371 parts accordingly. Following all the reviewers' suggestions, we decided that introducing the 5S
372 model at this stage was unnecessary and might cause confusion, so we have removed it. Instead, it
373 is now introduced in the new Section 4. For the 6S model, we have already provided an explanation,
374 as mentioned in our response to point 4.

375 22. L406-406, Small $Re(\omega)$ should result in a smaller damping, therefore the thermal process
376 should make the damping weaker. Correct me if this not right.

377 **Responses:** Thank you for your comments. We believe there was a misunderstanding. When
378 comparing $Re(\omega)$ (the real part of the eigenvalues, in units of s^{-1}), both the sign and the value are
379 considered. A smaller $Re(\omega)$ means the oscillation is more stable, with stronger damping.
380 Therefore, the thermal process should increase the damping effect. We understand that the term
381 "damping rate" might be confusing, so we have changed all such expressions to "the imaginary
382 part". We have also replaced all uses of "frequency" with "real part" to make the meaning clearer.

383 23. L426, Should 6TS be 6TS_THC or 6TS_THC+WDC, or both?

384 **Responses:** Thank you for your comments. The 6TS models include both the 6TS_THC and
385 6TS_THC+WDC models. We have revised "6TS model" to "both 6TS_THC and 6TS_THC+WDC
386 models" for greater clarity.

387 24. L479-480, How about $T2'$? Should $T2'$ increase, decrease, or it is assumed being no change?

388 25. L485, "Southward wind-driven advection", is it in the South (qs solid in Fig. 1) or North
389 Atlantic (qs dashed)? How about the northward wind-driven advection, which is not explicitly
390 discussed?

391 **Responses:** Thank you for your comments. The original expression may lead to confusion. In this
392 context, we specifically refer to wind-driven advection in the South Atlantic, while that in the North
393 Atlantic has already been addressed earlier in the manuscript. For clarification, the wind-driven
394 circulation is represented by a poleward Ekman transport (solid arrows) and an equatorward
395 geostrophic return flow (dashed arrows), which are approximately balanced in the tropical upper
396 ocean to conserve mass. Although mass is conserved, the net salinity and heat transport remains
397 poleward. Accordingly, qn and qs denote the total upper-ocean mass transport associated with
398 wind-driven circulation in the Northern and Southern Hemispheres, respectively. This explanation,
399 along with the meaning of the dashed arrows, has been clarified in the revised figure caption and
400 manuscript text.

401 26. L546-547, "damped oscillatory mode", I am confused, since the results presented in 6TS_THC
402 and 6TS_THC+WDC (Figs. 6a, 7a) are oscillatory except for 6TS_WDC in Fig. 6a.

403 **Responses:** Thank you for your comments. Based on the reviewers' suggestions, we have removed
404 this section as it does not offer substantial new insights. However, we would still like to address
405 your question here. The term "damped oscillatory mode" refers to the fact that the eigenvalues
406 under these conditions are complex with negative real parts, indicating damped oscillations. When
407 sustained stochastic forcing is applied, these oscillations can be maintained over time.

408 27. L551-552, it may be true if I compare THC first and then THC+WDC. However, it might be
409 different, if I compare WDC first and then THC+WDC, the THC appears a damped effect, at
410 least between 1k-2k years and 4k-5k years.

411 **Responses:** Thank you for your comments. In response to the reviewers' suggestions, we have
412 removed this section from the manuscript, as it does not provide substantial new insights. However,
413 we would still like to address your question here. It is appropriate to compare the salinity
414 amplitudes between the THC and THC+WDC models, as both exhibit oscillatory behavior. In
415 contrast, such a comparison between the WDC and THC+WDC models is not appropriate, as the
416 WDC models do not exhibit oscillations. Instead, the salinity variations in the WDC models follow
417 an irregular, stochastic pattern, which may occasionally produce larger amplitude values.

418 28. L561, Fig. 9d y-axis label may be simply "N".

419 **Responses:** Thank you for your comments. Based on the reviewers' suggestions, we have removed
420 this section as it does not provide substantial new insights; accordingly, the associated figure has
421 also been removed.

422 *29. L570 "box model", better to specify as "6-box model".*

423 **Responses:** Thank you for your comments. We have revised this.

424 *30. L569-579, what is new in this study should be emphasized? Does LY22 and YYL24 have the*
425 *multi-centennial oscillation?*

426 **Responses:** Thank you for your comments. Although multacentennial oscillations of the AMOC
427 have also been verified in the one-hemisphere box model in our previous work (LY22 and YYL24),
428 and the core physical mechanisms behind these oscillations are broadly similar between the one-
429 and two-hemisphere models, this study introduces several new elements not addressed in earlier
430 work:

431 (1) Clarifying the Mechanism Consistency:

432 The statement that “the core physical mechanisms of AMOC multacentennial oscillations are
433 similar between the one-hemisphere and two-hemisphere box models” is itself a significant point
434 requiring explicit clarification. Only by confirming this similarity can we confidently apply insights
435 from the one-hemisphere model to the more realistic two-hemisphere case. We find that the period
436 of multacentennial oscillations are less sensitive to some factors such as basin geometry and the
437 structure of the ocean layers. The two-hemisphere model, with its increased number of boxes,
438 introduces more degrees of freedom and therefore exhibits different oscillatory characteristics from
439 the one-hemisphere version. These distinctions help bridge the gap between idealized and coupled
440 models.

441 (2) Relevance to Holocene Variability and Human Civilization:

442 As discussed in the introduction, the overarching goal of our box model research is to understand
443 centennial-to-millennial natural climate variability during the Holocene—a period critical to the
444 development of human civilization. Historical documents, particularly those from ancient China,
445 suggest the presence of multacentennial variations in human activity. Understanding the
446 corresponding variability in the climate system, especially the AMOC, may therefore provide
447 insights into the trajectory of human history. A one-hemisphere model alone is insufficient to
448 explain the variability observed in proxy records and coupled model simulations, in which the

449 AMOC necessarily operates across both hemispheres. For this reason, the two-hemisphere box
450 model is essential for our analysis.

451 (3) Physical Differences in Parameterization:

452 While the mathematics of the one- and two-hemisphere models are similar and produce broadly
453 comparable outcomes, key physical differences remain. The two-hemisphere model more closely
454 resembles coupled models by incorporating the AMOC's inter-hemispheric nature. Additionally,
455 the models differ in how they parameterize the AMOC anomaly: the one-hemisphere model
456 assumes it is proportional to the density gradient anomaly between the equator and the pole, while
457 the two-hemisphere model uses the gradient between the two poles. This latter formulation is more
458 physically reasonable and is supported by diagnostic analyses from two coupled models (see
459 Appendix A).

460 (4) New Theoretical Insight into Oscillation Period:

461 By further simplifying the two-hemisphere box model, we derived a theoretical expression for the
462 oscillation period. This allows us to explicitly assess how factors such as mean AMOC strength,
463 basin volume, and ocean layer structure influence the period of oscillation. To our knowledge, such
464 an analytical formulation has not been previously reported.

465 (5) Role of Wind-Driven Circulation (WD-MOC):

466 This study offers the first systematic exploration of the impact of wind-driven meridional
467 overturning circulation (WD-MOC) on multicentennial variability. The two-hemisphere box model
468 is the simplest configuration capable of simultaneously representing thermohaline and wind-driven
469 circulations. For the first time, we derive a theoretical result showing that WD-MOC alone cannot
470 generate oscillatory behavior in this framework. We consider this a meaningful contribution to
471 understanding the role of WD-MOC in climate variability across different timescales. (It is worth
472 noting that horizontal wind-driven gyres can exhibit oscillatory behavior due to wave dynamics,
473 which is distinct from the mechanisms considered here.)

474 (6) Necessary and Sufficient Role of Thermohaline Circulation:

475 For the first time, we demonstrate that thermohaline circulation is both a necessary and sufficient
476 condition for generating multicentennial oscillations in this simplified model. This conclusion
477 cannot be obtained from either observational data or complex coupled models alone.

478 Finally, this work remains a critical part of our ongoing research series on AMOC multicentennial
479 variability across a hierarchy of models with increasing complexity. The two-hemisphere box
480 model serves as a key intermediate step between simple conceptual models and more complex tools
481 such as 2D and 3D ocean models, ocean general circulation models (OGCMs), and fully coupled
482 climate models.

483 We have also revised the discussion section of the manuscript to highlight and address the new
484 insights presented in this study.

485 **Replies to Reviewer #3:**

486 Thank you very much for these constructive comments. We have revised the manuscript carefully
487 based on these suggestions. The followings are our point-to-point replies.

488 *In this manuscript, the authors expand their previously proposed box models for multi-centennial*
489 *AMOC oscillations to include the Southern hemisphere as well as the wind-driven circulation. This*
490 *is an interesting step towards more a realistic process representation and yields some new insights,*
491 *for example about the role of the wind-driven vs. thermohaline circulation in sustaining AMOC*
492 *oscillations. While the manuscript is quite long, the modelling choices and especially parameter*
493 *values are nevertheless not sufficiently motivated. However, I think the manuscript should be*
494 *publishable after addressing these points (and some additional ones listed below).*

495 **Responses:** Thank you very much for your encouraging comments. Combining suggestions from
496 all reviewers, we have revised the manuscript substantially in the following areas:

497 (1) The section discussing the millennial mode has been removed.

498 (2) The section titled "Linear Oscillations Excited by Stochastic Forcing" has been removed.

499 (3) A new section, "Oscillatory Timescales of Multicentennial Oscillations", has been added. This
500 material was previously part of the Discussion section.

501 (4) Substantial revisions have been made to both the Methods and Discussion sections. In the
502 Methods, we now include a more detailed description of the box model, including the
503 fundamental oceanic processes it represents and the treatment of wind-driven processes. In the
504 Discussion, we have expanded the text to better emphasize the novelty of this study and to
505 clearly acknowledge its limitations.

506 **Major Comments**

507 1. *The box model design, and especially the parameter values, are not motivated very well.*
508 *However, the reader should at least somewhat understand which processes are included and*
509 *which assumptions/simplifications go into the box model equations. This does not need to be*
510 *exhaustive, but some points to consider are, e.g.:*

511 **Responses:** Thank you for your comments. We agree that additional background on the model is
512 necessary. In the revised manuscript, we have incorporated further explanations, addressing the
513 questions listed below.

514 - *How are the transports terms expressed? (proportional to density difference? etc.)*

515 We assume a positive linear correlation between transport strength and the north-south density
516 difference. While this assumption is now stated explicitly in the paper, the transport formula is not
517 presented directly, as our focus is on the linearized equations.

518 - *Is the global salt content conserved?*

519 Yes. Eq. (2e) represents the conservation of salt content within the model.

520 - *Linear equation of state? How are the delta_rho terms obtained?*

521 The AMOC anomaly q' is parameterized as a linear function of the density anomaly difference
522 between the northern and southern boxes. The density anomaly is determined by the salinity
523 anomaly and is vertically integrated.

524 - *Why does the vertical mixing term have this form? etc. Probably some of these points are
525 addressed in the previous papers (LY22, YYL24), but this paper should be able to stand on its own.*

526 The form of vertical mixing is a reasonable outcome derived from the coupled model (LY22) and
527 represents one of several possible mechanisms that can generate the self-sustained oscillation
528 (YYL24).

529 2. *A bigger concern, which should however be easy to address, is that it is currently unclear how
530 the parameter values are obtained. It is only very briefly mentioned in L144 that "the model is
531 tuned so that its equilibria nearly agree with the results of the two coupled models", but it is not
532 detailed what is tuned exactly. Given that Eqs. 2a-e only have three degrees of freedom, it
533 should be mentioned more explicitly which variables were fitted to the model(s) (only CESM or
534 both?) and which weren't. Then, it would be good to check whether the remaining variables
535 have reasonable values compared to the model(s), or whether they deviate. (This wouldn't be a
536 big problem, but it should be transparently reported.)*

537 **Responses:** Thank you for your comments. We agree that parameter selection is a critical issue.

538 Most of the parameters used in our model, including geometric configurations, boundary
539 conditions, and equilibrium values, are chosen to be consistent with observations, realistic
540 assumptions, or results from coupled climate models. For example, the boundary conditions,
541 including freshwater fluxes and restoring temperatures, are set to values that produce equilibrium
542 temperature and salinity fields closely matching CESM1 output (Yang et al., 2015), as described in

543 the main text and Appendix A. The relationship between the boundary conditions and the
544 equilibrium fields is provided in Eqs. (8). Other physical constants, such as the thermal expansion
545 coefficient, saline contraction coefficient and reference seawater density are based on commonly
546 accepted values. The wind-driven advection coefficients for the North and South Atlantic are
547 selected to produce realistic mean mass transports associated with subtropical cells. These values
548 are consistent with estimates from climate models, as mentioned in the manuscript. The κ is set to
549 produce the desired amplitude of the self-sustained oscillation. The total basin volume is also
550 adjusted to reflect realistic oceanic conditions, and the parameters related to basin geometry are
551 tuned to better capture the targeted oscillatory behavior. Since these parameters can influence the
552 oscillation, their sensitivity is discussed in Section 3b. Although the mean AMOC strength used in
553 this study (24 Sv) is relatively strong compared to values used in some previous studies, it is tuned
554 to match the CESM1 result. Besides, the influence of the mean AMOC strength on the oscillation
555 period is also discussed in the Section 4 in the manuscript. The linear closure parameter is chosen to
556 obtain a relatively robust oscillation period, with details provided in the manuscript. We have added
557 a clarifying note in the caption of the parameter table to reflect these choices.

558 *It would also be good to state whether parameters were at any point tuned with the goal to*
559 *obtain a similar period of the oscillations as in Li & Yang (2022) or more generally in the*
560 *CESM.*

561 This is an insightful question. Most of the parameters used in our model, including boundary
562 conditions, and equilibrium values, were not intentionally selected to reproduce the same oscillation
563 period as reported in LY22. Instead, they were chosen based on observational constraints, realistic
564 assumptions, or outputs from coupled climate models, as previously discussed. However, the basin
565 geometry was adjusted to help achieve this outcome, as it is a particularly sensitive factor, although
566 it remains within a reasonable range. Furthermore, we have examined the sensitivity of the
567 oscillation period to basin geometry, and under realistic parameter settings, the period is very likely
568 to fall within the multicentennial range. This statement has been incorporated into the Discussion
569 section of the revised manuscript.

570 *The problem of unclear parameter choices of course persists for the more complex box models*
571 *introduced later in the manuscript, which probably have more degrees of freedom. Again, it*
572 *should be reported which values were fitted/tuned from the CMIP models, which ones were*
573 *chosen "by hand" or from theory, and which ones simply result from the choice of the other*
574 *parameter values. For the most important "hand-chosen" parameters (e.g., kappa in L209, I*
575 *would guess?), it would be good to physically motivate at least the order of magnitude.*

576 All box models, regardless of their complexity, are configured with different boundary conditions
577 to achieve a consistent equilibrium state. The closure parameters vary between models, while all
578 other parameters are held constant and are listed in Table 1. Additional clarification on these
579 choices has been provided in the revised manuscript.

580 The value of κ affects the amplitude of the oscillation; in this study, it is set to produce the desired
581 amplitude of the self-sustained oscillation. We follow the value used in our previous work (LY22),
582 whereas YYL24 adopted a value an order of magnitude smaller. This indicates that even weak
583 subpolar vertical mixing can transform a growing oscillation into a self-sustained one. Therefore,
584 the specific value of κ is relatively flexible, as its primary role is to introduce a nonlinear
585 mechanism that limits the unbounded growth of the oscillation.

586 *One particularly important parameter is the closure coefficient lambda, on which the stability of
587 the solutions depends sensitively (e.g., Fig. 2). It would be good to explain in a bit more detail
588 how this parameter is obtained, and what could be a reasonable range from different climate
589 models (at least from the two in Appendix A, if it can be obtained by fitting these data).*

590 Although the oscillation period is sensitive to the closure parameter lambda over a broad range, its
591 variation becomes limited near the minimum period, which corresponds to the maximum imaginary
592 part. Therefore, we use this minimum period as a representative estimate. It is difficult to compare
593 the values of lambda between the box model and climate models, or to define a reasonable range for
594 lambda, given the simplified nature of the box model. In our climate model results, lambda can
595 exceed 30, as shown in the Appendix, and may reach values above 80 depending on the choice of
596 box regions (not shown). Therefore, we consider it more appropriate to select lambda based on its
597 behavior in the sensitivity curves.

598 *Around L428, different values of this parameter are considered. How are these values chosen?*

599 As mentioned earlier, in different models, we select the ‘standard’ value of lambda as the value at
600 which the imaginary part reaches its maximum (corresponding to the minimum period), since the
601 values are relatively stable in its vicinity.

602 *3. While the box model analysis undoubtedly yields some interesting results, the Discussion
603 currently does not link or contrast them with the results from previous box model studies beyond
604 the authors' own previous research. The only other study that is discussed briefly regarding
605 mechanisms is that of Sévellec et al. (2006) (L636). Following this example, and given that
606 quite a lot of other previous studies are cited in the Introduction, it would be very helpful to*

607 *include some of them in the discussion. In addition, it improve the Discussion to link the results*
608 *obtained here to studies with spatially resolved but still highly idealized approaches such as*
609 *Mysak et al. (1993) and Wolfe & Cessi (2015).*

610 **Responses:** Thank you for your comments. Several conceptual studies, including our previous
611 work, have identified the low-frequency AMOC oscillations in one-hemisphere models (e.g.,
612 Griffies and Tziperman, 1995; Rivin and Tziperman, 1997; Wei and Zhang, 2022). However,
613 systematic investigations of AMOC multacentennial variability in two-hemisphere configurations
614 remain limited—an important gap that this study aims to address.

615 Although some studies have reported multacentennial AMOC oscillations in two-hemisphere
616 three-box models (e.g., Lucarini and Stone, 2005a, 2005b; Scott et al., 1999), their analyses
617 primarily involve eigenmode computations and time series outputs, without offering a detailed
618 explanation of the underlying feedback mechanisms. Moreover, the oscillations identified in these
619 studies are typically damped or unstable, whereas the present work demonstrates a sustained
620 multacentennial oscillation.

621 Sévellec et al. (2006) also investigate centennial-scale oscillations using a two-dimensional
622 latitude-depth model under mixed boundary conditions, complemented by a simplified Malkus loop
623 oscillator to explore the oscillation mechanism. Their linear stability analysis incorporates both
624 temperature and salinity, making it analytically complex. The oscillations reported—on the order of
625 100-200 years in the one-hemisphere configuration and over 500 years in the two-hemisphere
626 case—are either strongly damped or highly unstable, with growth rates comparable to or exceeding
627 the oscillation periods. For example, their Table 2 reports a 170-year period with a 454-year growth
628 rate (unstable), and a 605-year period with a -908-year growth rate (damped), suggesting that
629 these modes may not be physically robust.

Table 2. Period and growth time scale obtained from time integration (nonlinear) and predicted by the linear stability analysis (linear) of the centennial modes. These values are done for all experiments (one and two hemispheres, with and without convection/ACC) for the 2-D latitude-depth model and the Howard-Malkus loop.

One Hemisphere	2D with conv. nonlinear	2D with no conv. nonlinear	Howard-Malkus loop nonlinear	Howard-Malkus loop linear
Period (yr)	171	424	170	167
Growth (yr)	-507	-208	454	476
Two Hemispheres	2D model (linear) without ACC	2D model (linear) with ACC	Howard-Malkus loop nonlinear	Howard-Malkus loop linear
Period (yr)	733	750	605	502
Growth (yr)	-67	-129	-908	∞

630

631 Some spatially resolved, though still highly idealized, models also exhibit AMOC multicentennial
632 variability. Mysak et al. (1993) identified 200-300-year oscillations triggered by stochastic freshwater
633 forcing, but their analysis focuses solely on the positive salinity-advection feedback and lacked a
634 complete feedback loop explanation. Similarly, Wolfe and Cessi (2015) report ~380-year oscillations
635 characterized by large-scale sea surface salinity (SSS) anomalies of opposite sign in the two
636 hemispheres. However, their analysis primarily focuses on the positive salinity-advection feedback
637 and does not consider the full suite of feedback mechanisms required to sustain such oscillations.

638 Overall, in contrast to these previous studies, our work provides a systematic and physically
639 interpretable framework for understanding sustained AMOC multicentennial oscillations in a two-
640 hemisphere box model. We explicitly derive the oscillation period, clarify the necessary and
641 sufficient role of thermohaline circulation, and explain why wind-driven circulation alone cannot
642 sustain such variability. This work contributes to bridging conceptual box models with more
643 complex climate models, offering insights into AMOC dynamics during the Holocene and their
644 potential relevance to long-term societal change.

645 We have added a comparison between this work and previous studies, including results obtained
646 from spatially resolved yet highly idealized models, in the Discussion in the revised manuscript.

647 **Specific comments**

648 1. *L30: "the AMOC itself is a necessary and sufficient condition (...)": This sounds a bit odd. Of
649 course the AMOC cannot exhibit oscillations if it doesn't exist. I think what the authors mean is
650 that the shallow wind-driven overturning cannot exhibit multi-centennial oscillations without
651 the thermohaline component (in this model)? Please clarify.*

652 **Responses:** Thank you for your comments. We completely agree with your idea that this statement
653 seems not rigorous. We have revised this expression.

654 2. *L33-35: This sentence is incomplete (understanding what?). Besides, I am unsure whether this
655 millennial mode, which is only mentioned briefly in the text and the authors are "not sure
656 whether this mode is physically meaningful" deserves to be highlighted in the abstract. In my
657 view, it would be better to end the abstract with a conclusion/take-home message.*

658 **Responses:** Thank you for your comments. Following the suggestions of all reviewers, we have
659 removed the discussion of the millennial mode from both the main text and the abstract in the

660 revised manuscript. In addition, as suggested, we have added a concluding sentence at the end of
661 the abstract to summarize the main findings.

662 3. *L49: The recent paper by Mehling et al. (2024) investigated (multi-)centennial AMOC*
663 *variability in a multi-model ensemble and it seems appropriate to cite it here.*

664 **Responses:** Thank you for your comments. We have added it to the citation.

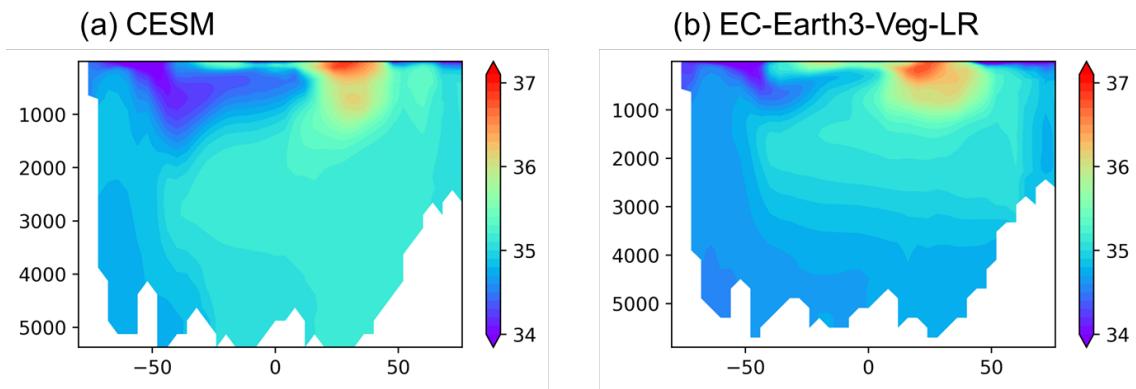
665 4. *L56: Jiang et al. and Meccia et al. (already mentioned in the previous citation bracket) also*
666 *showed the importance of salinity anomalies in the deep-water formation regions.*

667 **Responses:** Thank you for your comments. We have added them to the citation.

668 5. *L58: "generated" -> "amplified" (by definition of a feedback)*

669 **Responses:** Thank you for your comments. We have revised this.

670 6. *L106: I don't think "prove" is the correct word here - the existence of the eigenmode is already*
671 *demonstrated by the analysis of the deterministic equations in Section 2b.*


672 **Responses:** Thank you for your comments. Section 5 has been removed as suggested in point 23,
673 along with the related sentence.

674 7. *L129: Please mention here that q is not yet defined, and the closure will only be introduced*
675 *later (for the linearized system).*

676 **Responses:** Thank you for your comments. We have revised this.

677 8. *L141: It seems rather unintuitive that the upper-ocean salinity in the subpolar North Atlantic*
678 *(S_1) should be equal to the deep-ocean salinities (Eq. 2d). Is this an artifact of the*
679 *simplifications in this model or actually supported by the two CMIP models shown in Appendix*
680 *A? Unfortunately, only the upper-ocean salinities are reported there.*

681 **Responses:** Thank you for your comments. This is a very thoughtful consideration. We assume that
682 vertical mixing in the NADW formation region is sufficiently strong and that the combined effects
683 of NADW advection and deep-ocean diffusion are adequate to mix surface and deep waters. We
684 have also examined this in the coupled model simulations. Fig. R2 shows the equilibrium salinity
685 section in the Atlantic basin, where the salinity in the NADW formation region (around 60°N) is
686 clearly similar to that of the deep ocean, particularly between 2000 and 4000 meters. Therefore, we
687 believe that our choice of equilibrium salinity values is reasonable.

688

689 **Fig. R2.** Equilibrium salinity section in the Atlantic basin from CESM1 and EC-Earth3-Veg-LR
690 simulations.

691 9. *L145: "nearly agree": in which variables? Surely this is not the case for all?*

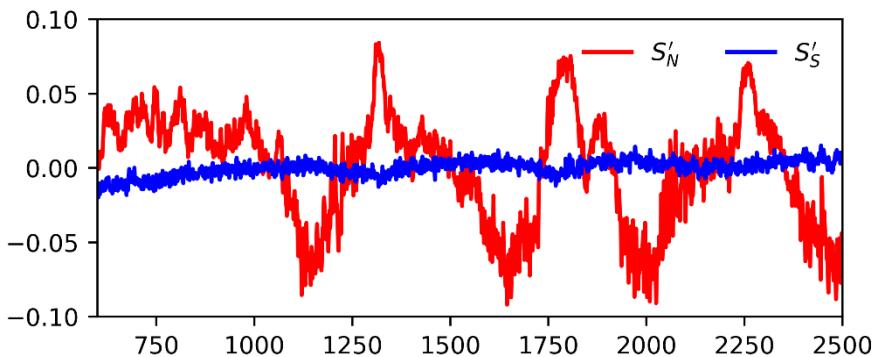
692 **Responses:** Thank you for your comments. The equilibrium salinities and mean AMOC strength
693 have been tuned to match the CESM1 values. We have also revised the corresponding statement in
694 the manuscript accordingly.

695 10. *Table 1: An equilibrium AMOC strength of 24 Sv appears rather high (the observed value,
696 albeit not strictly in equilibrium, is around 17 Sv). Is this tuned to the CESM1 value?*

697 **Responses:** Thank you for your comments. An equilibrium AMOC strength of 24 Sv is tune to our
698 CESM1 control run. As the equilibria values follows the results in our model, we choose the mean
699 AMOC strength to keep consistence.

700 11. *L167: "obtained numerically": with which software/method?*

701 **Responses:** Thank you for your comments. The eigenvalues were computed using Python's NumPy
702 library (numpy.linalg.eig), which employs LAPACK's QR algorithm for general matrices. We have
703 included the relevant information in the paper.


704 12. *L219: "gradually enhancing amplitude": It could be mentioned that it grows exponentially*

705 **Responses:** Thank you for your comments. We have revised this.

706 13. *L261: "minor role of the Southern Ocean": Is this consistent with the CMIP models shown in
707 the Appendix?*

708 **Responses:** Thank you for your comments. We acknowledge an error in the manuscript: "Southern
709 Ocean" should be corrected to "South Atlantic." In addition, we have examined the variability of

710 salinity anomalies in the North and South Atlantic using CESM1, as illustrated in Fig. R3. The
711 amplitude of salinity anomalies in the South Atlantic is significantly smaller than that in the North
712 Atlantic. This result from the climate model is consistent with the findings from our box model.

713

714 Fig. R3. Salinity anomalies in the North (red) and South (blue) Atlantic, integrated over the upper
715 4000 meters. The averaging regions correspond to the boxes defined in the Appendix.

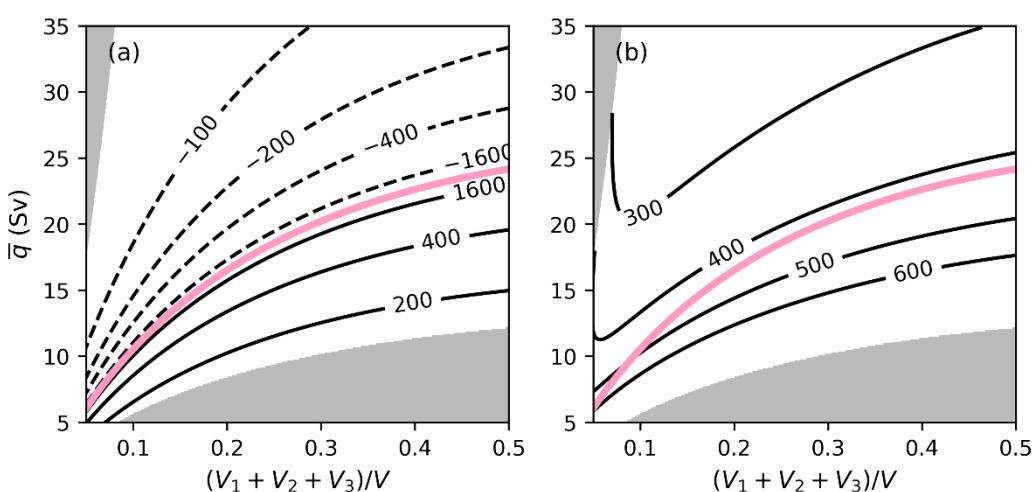
716 14. L271: *It seems unnecessary to introduce an additional model ("5S") here that is never used*
717 *afterwards, and which doesn't seem too relevant for these results. Please consider removing it*
718 *for more clarity.*

719 **Responses:** Thank you for your comments. We agree that the introduction of the 5S model at this
720 point was unnecessary and potentially confusing, so we have removed it. Instead, it will now be
721 introduced in the new Section 4.

722 15. L274: *"regardless of the presence of enhanced vertical mixing": Is this for a fixed value of the*
723 *mixing coefficient \kappa or for varying values?*

724 **Responses:** Thank you for your comments. Region three has been removed from the manuscript in
725 response to the suggestions of all reviewers. However, we provide an explanation here for clarity.
726 The original region three represented a regime where the oscillation remained unstable even under
727 extremely strong mixing. This implies that the mixing coefficient, \kappa, must take variable values
728 and could become very large in this regime.

729 16. L292: *Varying the depth of the upper-ocean boxes could be better motivated by linking the scale*
730 *depth of the AMOC to its mean strength (Nayak et al., 2024).*


731 **Responses:** Thank you for your comments. We agree with the general view that the scale depth of
732 the AMOC is linked to its mean strength. However, we have chosen not to include this relationship
733 in our model or add a corresponding figure for the following reasons:

734 (1) This study focuses on small amplitude multacentennial oscillations of the AMOC. In this
735 context, variations in scale depth associated with oscillation strength may be negligible. While the
736 mean AMOC strength, which is connected to the broader climate state, could indeed relate to scale
737 depth, this idea is acknowledged but not the central focus of our paper.

738 (2) Exploring the relationship between mean AMOC strength and scale depth provides limited
739 insight in our model because the closure parameter is fixed. Our previous work (LLY24) has
740 already demonstrated that the AMOC multacentennial mode is sensitive to both the mean AMOC
741 strength and the closure parameter. However, simultaneously changing all three factors, namely
742 mean AMOC strength, scale depth, and closure parameter, in the 6S model would introduce
743 unnecessary complexity without offering additional explanatory value.

744 (3) Instead, we consider the 3S model to be a useful tool for investigating this question and have
745 examined the relationship between scale depth and mean strength within that framework. As shown
746 in Eq. (X) in the main text, the period of the AMOC multacentennial oscillation is influenced by the
747 closure parameter and a prescribed mean state, both of which are treated as independent parameters
748 in our model. Although the oscillatory period is sensitive to the closure parameter over a broad
749 range, its variation becomes small near the minimum value. Therefore, we use this minimum period
750 as an estimate. This approach links the closure parameter to the climate mean state, allowing us to
751 reduce the number of independent variables. Fig. RX shows the theoretically estimated oscillation
752 period under the changed mean AMOC strength and depth. With both the increase of AMOC
753 strength and depth, the e-folding time and period increase slowly.

754 (3) However, we have chosen not to include these results in the main text, as introducing this new
755 relationship would significantly increase the complexity of the model and deviate from the paper's
756 primary focus.

757

758 **Fig. R4.**

759 17. L313: This dependence on the temperature gradient is only motivated 2 pages later, please
760 mention this here to avoid confusion (e.g., "which will be motivated later in Eq. 11").

761 **Responses:** Thank you for your comments. We have revised this.

762 18. L445: It would be good to provide a short take-home message at the end of this paragraph. For
763 example, is the addition of the (somewhat artificial) additional vertical mixing in the subpolar
764 North Atlantic still necessary to obtain self-sustained oscillations? If yes, what does the
765 inclusion of the wind-driven component change qualitatively?

766 **Responses:** Thank you for your comments. In our box model, the inclusion of wind-driven
767 circulation does not introduce a nonlinear mechanism; therefore, enhanced vertical mixing in the
768 subpolar North Atlantic boxes remains essential. Rather, the wind-driven circulation contributes by
769 dampening the multicentennial oscillation through a reduction in its amplitude. We have clarified
770 this point in the revised manuscript.

771 19. L484: Are these feedbacks realistic? Could you try diagnosing some of them from any of the two
772 CMIP models?

773 The sheared Ekman component AMOCE has almost no low-frequency variability

774 The compensation between thermohaline and wind-driven circulations has been verified in the Fast
775 Ocean-Atmosphere Model (FOAM) (Yang et al. 2013)

776 20. L485-497: This paragraph is quite long for essentially saying (from my understanding, I might
777 have misread!) "the feedbacks in the Southern hemisphere are the same as in the Northern
778 hemisphere, but with a weaker magnitude". It might be possible to shorten this paragraph
779 considerably.

780 **Responses:** Thank you for your comments. We fully agree with your viewpoint and have revised
781 the paragraph.

782 21. L527, L602 and elsewhere (especially Appendix B): By "theoretical", you mean "analytical"?

783 **Responses:** Thank you for your comments. We clarified that "theoretical solution" refers to
784 "analytical solution". Since "analytical solution" is a more precise term, we have replaced
785 "theoretical solution" with "analytical solution".

786 22. L533: "sufficient and necessary" seems like a too strong statement, since other mechanisms
787 could be at play (as mentioned in the Introduction). At least add "in this model" to this sentence.

788 **Responses:** Thank you for your comments. We have revised this section and made similar changes
789 elsewhere.

790 23. L535-L567: I would suggest removing Section 5 entirely. As far as I can see, it does not really
791 yield new insights compared to Li & Yang (2022), adding relatively little to an already very
792 long article. In addition, the approach of adding red noise directly to the temperature and
793 salinity equations is not really consistent with the literature, where white noise is usually just
794 added to the surface freshwater flux (e.g., Cessi, 1994; Mikolajewicz & Maier-Reimer, 1990) or
795 surface temperature where no salinity equations exist (e.g., Griffies & Tziperman, 1995).

796 **Responses:** Thank you for your comments. We have removed this section as it does not offer
797 substantial new insights.

798 24. L576: Is it a coincidence that both the AMOC strength and total ocean volume are twice as
799 large here as in LY22? Does this have to do with the tuning choices taken here (maybe to match
800 a given period)?

801 **Responses:** Thank you for your comments. This is an insightful question. It is indeed a coincidence
802 that both the AMOC strength and total ocean volume in our current setup are approximately twice
803 as large as those in LY22. The mean AMOC strength is tuned to match the results from coupled
804 models, while the total ocean volume is adjusted to reflect more realistic values. Although the mean
805 AMOC strength and total ocean volume are among the most important factors in determining the
806 oscillation period, we believe that the matched period between the one-hemisphere and two-
807 hemisphere models is partly coincidental, since other model parameters such as basin geometry and
808 freshwater forcing also influence the period. Nonetheless, this agreement shows that it is possible to
809 reproduce similar timescales in both models, which further supports the consistency of the
810 theoretical framework.

811 25. L596-L607: It is a bit unusual to introduce new results with figures, and even a new box model,
812 in the Discussion. I would suggest moving the results of the 3-box model to a dedicated section
813 in the Results, if they are deemed relevant for the overall message of the article.

814 **Responses:** Thank you for your comments. We have added a new section presenting the results of
815 the 3-box model, with a focus on providing more detail about the timescale of the multicentennial
816 mode.

817 *26. L615: The Okazaki et al. reference discusses (relatively short-lived) deep-water formation in the
818 North Pacific 15 thousand, not 15 million years ago. Maybe the review by Ferreira et al. (2018)
819 would be more appropriate to cite here?*

820 **Responses:** Thank you for your comments. We agree that the review by Ferreira et al. (2018) is
821 more appropriate to cite in this context, and we have updated the citation accordingly in the revised
822 manuscript.

823 *27. L619: I don't want to open a can of worms, but from my understanding D-O events in the
824 paleoclimatic record are not described as periodic oscillations but rather as a jump process
825 with exponentially distributed waiting times (Ditlevsen, 1999). However, some climate models
826 do show millennial-scale "D-O-like" oscillations which are often quite regular (Malmierca-
827 Vallet et al., 2023). Maybe these model simulations would provide a better motivation to study
828 millennial-scale oscillations from a conceptual viewpoint.*

829 **Responses:** Thank you for your comments. As the conceptual model alone is not sufficient to
830 provide a convincing new insight and this topic is only a secondary focus of the paper, we have
831 removed the discussion of the millennial mode from the manuscript.

832 *28. L633: "highly likely": this cannot be concluded from a simple box model, please reword or
833 remove this statement.*

834 **Responses:** Thank you for your comments. We have removed this statement.

835 *29. L637: "believed" -> "showed"? (in their model)*

836 **Responses:** Thank you for your comments. We have revised this.

837 *30. L638-641: This discussion of multiple equilibria is a bit confusing. First, even very simple
838 models like the Stommel (1961) box model can have multiple equilibria under fixed freshwater
839 forcing. From my understanding, the box model in this study cannot have (physically
840 meaningful) multiple equilibria by construction, since the model is first linearized around an
841 equilibrium before introducing the closure for q . That being said, unless the authors see a need
842 to clarify their idea, this part of the discussion could also simply be omitted.*

843 **Responses:** Thank you for your comments. We agree that the discussion of multiple equilibria is
844 not appropriate in the context of our linearized model, which focuses on small-amplitude
845 oscillations around a single equilibrium. Accordingly, we have removed this discussion in the
846 revised manuscript.

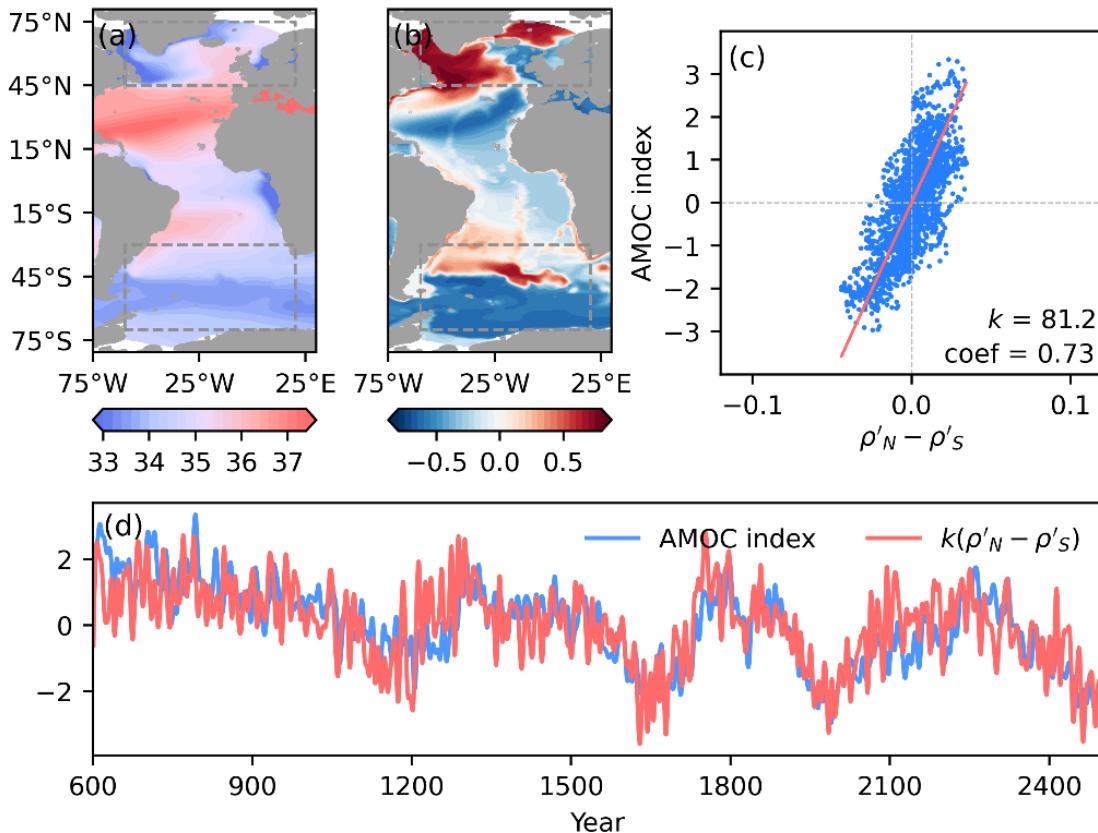
847 *31. L644: I don't understand why there is "interaction between the surface freshwater flux and [the]
848 closure parameter". Surely this can only be a one-way interaction (i.e., the freshwater flux
849 influencing the closure parameter and not the other way round), since the freshwater flux is a
850 prescribed forcing that doesn't change? After clarifying this, what is the relevance of this
851 interaction?*

852 **Responses:** Thank you for your comments. We greatly appreciate your careful reading and for
853 pointing out the incorrect expression, which has been very helpful to us. As shown in Eq. (X) in the
854 main text, the period of the AMOC multicentennial oscillation is influenced by both the surface
855 freshwater flux and the closure parameter, which are treated as independent parameters in our
856 model. Although the oscillatory period is sensitive to the closure parameter over a broad range, its
857 variation becomes small near the minimum value. Therefore, we use this minimum period as an
858 estimate. In this context, the freshwater flux influences the value of the closure parameter required
859 to achieve the minimum period, rather than the closure parameter affecting the freshwater flux. This
860 is because the freshwater flux is prescribed as an external forcing in our model. This interpretation
861 aligns with your comment and underscores the important role of surface freshwater flux in
862 determining the oscillatory period. We have revised the corresponding expression in the manuscript
863 accordingly.

864 *32. L652: It is unclear what is meant by "its sustainability in the real world is a serious concern".*

865 **Responses:** Thank you for your comments. We have revised this statement to emphasize that the
866 multicentennial oscillation is influenced by numerous climatic factors beyond the thermohaline
867 circulation itself.

868 *33. L661-L669: This outlook reads almost like the abstract of another paper. It would be good to
869 shorten it a bit.*


870 **Responses:** Thank you for your comments. This part about the millennial mode has been removed,
871 as suggested by all reviewers. We have also made major revisions to the discussion. A summary of
872 these changes is provided at the beginning of our response letter.

873 34. L677: To facilitate replication, it would be great to make the scripts used for the numerical
874 solutions available.

875 **Responses:** Thank you for your comments. We have revised the ‘Data Availability Statement’.
876 Anyone interested in reproducing the results is welcome to contact us to obtain the codes.

877 35. L692-694: Why specifically this choice for the northern and southern boxes? They seem quite
878 small and their limits are somewhat arbitrary (especially in the South). Does the linear density
879 scaling still hold for differently defined boxes?

880 **Responses:** Thank you for your comments. We selected the box boundaries based on the regression
881 pattern of AMOC onto density anomalies (Fig. R5b). The northern box corresponds to a region with
882 a strong positive regression and the southern box corresponds to a region with a negative regression.
883 However, we acknowledge that the choice of box boundaries is somewhat arbitrary. To test the
884 robustness of our results, we explored alternative box definitions and found that the main
885 relationship is not significantly affected by the specific box ranges. For example, using CESM
886 model output, we tested larger northern and southern boxes: the North Atlantic box covers 60°W-
887 20°E, 45°-75°N, and the South Atlantic box covers 60°W-20°E, 30°-70°S. As shown in Fig. R5c
888 and R5d, the linear relationship still holds under these alternative definitions. We also tested other
889 regions with positive regression in the North Atlantic, and the results were very similar; therefore,
890 they are not shown here.

891

892 **Fig. R5.** (a) Climatology of sea-surface salinity (units: psu) in CESM 1.0. Dashed boxes outline the
 893 subpolar North, tropical, and subpolar South Atlantic boxes, respectively. (b) Regression of AMOC
 894 anomaly (units: Sv) on density anomaly integrated above 4000-m depth (units: kg m^{-3}). (c) Scatter
 895 plot of AMOC anomaly (ordinate) versus the difference of density anomaly (abscissa) averaged
 896 between the two regions in subpolar North and South Atlantic oceans, respectively. The red line
 897 represents the reduced major axis regression with a coefficient of 0.73 and a slope of 81.2 Sv kg^{-1}
 898 m^3 . (d) Time series of AMOC anomaly (blue curve) and its estimation (red curve) from the reduced
 899 major axis regression. In (c) and (d), the anomalies of AMOC index and density are lowpass-
 900 filtered with a cutoff period of 10 years.

901 *36. L725: It is unclear why a model with only a 500-year control simulation is chosen here when
 902 a >1200-year control run from the same model family (EC-Earth3) is also available on the
 903 ESGF.*

904 **Responses:** Thank you for your comments. We have now included a control simulation using the
 905 EC-Earth3-LR model, which spans 2000 years. The relevant text in the manuscript has also been
 906 revised accordingly.

907 **Technical comments**

908 1. *L168/169: units for \omega missing* Revised.

909 2. *Table 2: "Year" should be "Year ^-1"* No, we have converted the value to have the unit 'year.'

910 3. *L182: Remove "under"* Since lambda does not represent the eigenvalue, we have replaced
911 "under" with "for" instead of removing it.

912 4. *L305: "with" missing after "consistent"* Revised.

913 5. *Fig. 2: Please put the units directly on the y-axis labels instead of only in the figure caption.*
914 Revised. We have also revised Fig. 5 and Fig. B2.

915 6. *L537: "killed" is maybe not the most scientific wording here* Revised in L527.

916 7. *L638: Remove "largely"* Revised.

917 8. *L658: "become the" -> "shift towards"* Revised.

918 9. *L693 and elsewhere: subtropic -> subtropical* Revised.

919 10. *L711: scattering -> scatter* Revised.

920

921 *Additional references*

922 11. *Cessi, P. (1994). A Simple Box Model of Stochastically Forced Thermohaline Flow. Journal of*
923 *Physical Oceanography, 24(9), 1911-1920. [https://doi.org/10.1175/1520-0485\(1994\)024<1911:ASBMOS>2.0.CO;2](https://doi.org/10.1175/1520-0485(1994)024<1911:ASBMOS>2.0.CO;2)*

925 12. *Ditlevsen, P. D. (1999). Observation of α -stable noise induced millennial climate changes*
926 *from an ice-core record. Geophysical Research Letters, 26(10), 1441-1444.*
927 *<https://doi.org/10.1029/1999GL900252>*

928 13. *Ferreira, D., Cessi, P., Coxall, H. K., de Boer, A., Dijkstra, H. A., Drijfhout, S. S., et al. (2018).*
929 *Atlantic-Pacific Asymmetry in Deep Water Formation. Annual Review of Earth and Planetary*
930 *Sciences, 46(1), 327-352. <https://doi.org/10.1146/annurev-earth-082517-010045>*

931 14. *Malmierca-Vallet, I., Sime, L. C., & the D-O community members. (2023). Dansgaard-*
932 *Oeschger events in climate models: review and baseline Marine Isotope Stage 3 (MIS3)*
933 *protocol. Climate of the Past, 19(5), 915-942. <https://doi.org/10.5194/cp-19-915-2023>*

934 15. *Mehling, O., Bellomo, K., & von Hardenberg, J. (2024). Centennial-Scale Variability of the*
935 *Atlantic Meridional Overturning Circulation in CMIP6 Models Shaped by Arctic-North Atlantic*
936 *Interactions and Sea Ice Biases. Geophysical Research Letters, 51(20), e2024GL110791.*
937 <https://doi.org/10.1029/2024GL110791>

938 16. *Mysak, L. A., Stocker, T. F., & Huang, F. (1993). Century-scale variability in a randomly*
939 *forced, two-dimensional thermohaline ocean circulation model. Climate Dynamics, 8(3), 103-*
940 *116. https://doi.org/10.1007/BF00208091*

941 17. *Nayak, M. S., Bonan, D. B., Newsom, E. R., & Thompson, A. F. (2024). Controls on the Strength*
942 *and Structure of the Atlantic Meridional Overturning Circulation in Climate Models.*
943 *Geophysical Research Letters, 51(11), e2024GL109055.*
944 <https://doi.org/10.1029/2024GL109055>

945 18. *Stommel, H. (1961). Thermohaline Convection with Two Stable Regimes of Flow. Tellus, 13(2),*
946 *224-230. https://doi.org/10.1111/j.2153-3490.1961.tb00079.x*

947 19. *Wolfe, C. L., & Cessi, P. (2015). Multiple Regimes and Low-Frequency Variability in the*
948 *Quasi-Adiabatic Overturning Circulation. Journal of Physical Oceanography, 45(6), 1690-*
949 *1708. https://doi.org/10.1175/JPO-D-14-0095.1*