
1. Introduction
Multi-centennial-scale climate events (or oscillations) appear to be one of the characteristics of the Holocene 
climate superimposed on the long-term Holocene evolution history (e.g., Dansgaard et  al.,  1993; Fleitmann 
et al., 2003; Kathayat et al., 2017; Y. Wang et al., 2005). Understanding the processes and mechanisms behind 
these multi-centennial climate events is important for attesting to and improving climate models, and for assess-
ing future climate change as well (e.g., Bakker et al., 2017; McDermott et al., 2001). In the Northern Hemisphere 
(NH), proxy records from speleothems (e.g., Cheng et al., 2015, 2022; Y. Wang et al., 2005; Zhu et al., 2017), 
lake sediments (e.g., H. Li et  al.,  2021; Stebich et  al.,  2015; Xu et  al.,  2014,  2019), ice cores (e.g., Stuiver 
et al., 1995), peatlands (e.g., N. Li et al., 2020) and ocean sediments (e.g., Chapman & Shackleton, 2000; Roth 
& Reijmer, 2005) have documented ∼500–550-yr climate cycles in the Holocene. These cycles may have played 
an important role in some aspects of Chinese cultural history. As an example, modern climate observations and 
paleoclimate evidence have shown that the flourishing time of the Tubo Dynasty in the southern Tibetan Plateau, 
as well as the cultural phases in North China, were closely related to the ∼500–550-yr cycles during Holocene 
(e.g., H. Li et al., 2021; Xu et al., 2019). Therefore, understanding the ∼500–550-yr cycle and its forcing factor 
is an important issue at the research forefront of climate change. Previous palaeoclimatic studies in the Asian 
summer monsoon region (e.g., Stebich et al., 2015; Xu et al., 2014, 2019, 2020; Zhu et al., 2017) have already 
revealed a number of quasi 500–550-yr precipitation and/or temperature cycles. However, significant inconsist-
encies concerning the origin and timing of the 500–550-yr climate periodicity between various regions remain 
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unresolved. As such, the reconstruction of high-resolution and precisely dated records that can well characterize 
the ∼500–550-yr cycle is critical to better understand these multi-centennial climate oscillations and their causal 
relationship to external and internal forcings.

The Yunnan-Guizhou Plateau (YGP) in China is well known for its extraordinary biodiversity, warm and humid 
climate, and abundance of stone materials and caves, which made it a “paradise for hunter-fisher-gatherers” 
(Chen, 2020). The Neolithic culture in the region however, appears to be lagging and sporadic compared with 
other regions in China, which is possibly due to the mountainous and riverine barriers, as well as the superior 
prehistorical living environments (e.g., Chen, 2019, 2020; K. Li et al., 2014; W. Wang, 2021). Intriguingly, corre-
sponding with the cultural development in the plain areas in China (W. Wu et al., 2017; Xu et al., 2019), multiple 
lines of evidence (e.g., Chen, 2019, 2020; W. Wang, 2021; Xue et al., 2022) show that the evolution of the tools of 
production during the Neolithic Age in the YGP widely occurred between ∼5,500 and 5,000 years before present 
(yrs BP, where the “present” is 1950 CE). It has also been suggested that the YGP's prehistorical culture during 
the mid-Holocene may have been particularly sensitive to climate change due to its large impact on the efficiency 
of production and the living environment of hunter-fisher-gatherers (e.g., Chen, 2020; Hoelzmann et al., 2001). 
However, this hypothesis lacks a test from direct paleoclimate evidence.

In this study, we report high-resolution carbon (δ 13C)-oxygen isotope (δ 18O) and lamina thickness records of spele-
othem from Guizhouxinv Cave (GZXN) in the YGP, southwestern China, spanning from ∼5,870 to ∼3,670 yr 
BP. These records are precisely dated by a combination of U-Th dates and annual lamina accounting results, 
which allow us to precisely characterize the regional temperature and vegetation variations on a multi-centennial 
timescale in the context of climate records from the other regions in NH. Our results provide new insights into 
the ∼550-yr climate cyclicity in NH, as well as the possible teleconnection and underlying mechanism. Addition-
ally, in comparison with archeological data, we suggest that the multi-centennial climate oscillations in the YGP 
region may have played a role in the development of Neolithic production tools during the mid-Holocene period.

2. Cave and Modern Climatology
GZXN (27°4′N, 105°5′E, ∼1,000 m above sea level) is located in northwestern Guizhou province, southwest-
ern China (Figure 1). The cave, ∼250 m in length, was discovered in 2017 at a depth of ∼1,000 m in a newly 
developed cable tunnel. Due to the well-closed environment, the cave's microclimate is relatively stable, with a 
temperature of ∼16°C and a relative humidity of ∼99% (measured by a hand-held hygrometer three times during 
winter, summer, and spring in 2020 and 2021). The cave site is in eastern Wumeng Mountain. Vegetation types 
in the area are primarily subtropical evergreen broad-leaved and plateau mountain coniferous forests, dominated 
by C3-type plants, such as Pinus, Taxodiaceae, as well as some shrubs (based on a field survey). Except for some 
crops planted by the local farmers, no C4-type plants are found in the cave area.

In modern climatology, GZXN Cave is located in the core of the Asian summer monsoon (ASM) region, which 
is influenced by both the Eastern Asian summer monsoon and the Indian summer monsoon subsystems (e.g., S. 
Y. Tao & Chen, 1987). The region has a warm and wet climate with an average annual temperature of ∼15°C 
and an average annual precipitation of ∼1,050 mm. The majority of the annual precipitation, ∼70%, occurs from 
May to September (MJJAS) during the ASM season (Figure S1a in Supporting Information S1). The precipitation 
variations in this area is strongly influenced by the El Niño-Southern Oscillation (ENSO), and show diversity in 
north and northwestern China (see Figure 1 and Text S4 in Supporting Information S1).

In comparison to precipitation, observations show that annual temperature variations in China are more consist-
ent on a large spatial scale (Figure  1b), although there are still regional discrepancies to some extent in the 
amplitude (e.g., Cao et al., 2013). Previous studies have shown that the increase in the amplitude of mean annual 
temperature in mainland of China is around 1.12°C over the past 115 years, which is similar to the NH averages 
(Ding & Dai, 1994; Ren et al., 2017), with one-third of which contributed by the unprecedented level of urbani-
zation (Sun et al., 2016).

3. Materials, Age Model and Results
3.1. Stalagmite Sample

The stalagmite sample (GZXND21-1) was collected in a small cave hall in GZXN in 2021. The sample (∼37-cm 
long), composed of light brown calcite, was cut along the growth axis, and polished (Figure S2 in Supporting 
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Information S1). 16  230Th dating subsamples, 1,342 δ 13C and δ 18O subsamples, 19 fluorescent images and 1,117 
trace element data were analyzed (see Text S1 in Supporting Information S1 for detailed methods). There is no 
apparent hiatus observed in the fluorescence images of the entire sample.

3.2. Age Model

The stalagmite sample GZXND21-1 has high  238U and low  232Th concentrations (Table S1 in Supporting Infor-
mation S1). As a result, the errors of the  230Th dates were small (10–28 yr) (Cheng et al., 2013). The age model 
was reconstructed using the method of least-squares fitting of the annual lamina counting results to the  230Th 
dates, with uncertainties of ∼26 yr (Domínguez-Villar et al., 2012; Dong et al., 2022; Y. W. Li et al., 2022) (Text 
S2 in Supporting Information S1). The result is consistent with the age model based on the COPRA software 
(Breitenbach et al., 2012) (Figure S2 in Supporting Information S1). This age model shows that the sample spans 
continuously a period from ∼5,866 to 3,665 yr BP, covering the late part of the mid-Holocene and the early part 
of the late-Holocene.

3.3. The GZXN Proxy Records

In the GZXND21-1 records, δ 13C values range from −10.3 to −12.4‰ and annual lamina thickness varies 
between 0.02 and 0.7 mm (Table S2 in Supporting Information S1). While the long-term trend of both δ 13C and 
lamina thickness appears stable, a significant periodicity of ∼550 yr in both records is outstanding with large 
amplitudes of ∼2‰ and ∼0.35 mm, respectively (Figure S4 in Supporting Information S1). There is a significant 
correlation between GZXND21-1 δ 13C and lamina thickness data (r = −0.15, p < 0.001). Cross-wavelet analysis 
reveals a prominent anti-phased relationship between the two proxies at the 550-yr period, where more negative 
δ 13C values correspond to thicker laminae (Figure S4 in Supporting Information S1). Considering that band-pass 
filtering on a specific band can help to eliminate noise and visually compare the phase relationship, a 400–600 FFT 
band-pass filter (B.P.400–600) was implemented and the results also show a significant muti-centennial co-variance 
between δ 13C and lamina thickness from ∼5,866 to 3,665 yr BP (Figure S6 in Supporting Information S1). A 
principal component analysis (PCA) was performed on the δ 13C and lamina thickness datasets to efficiently 
discern multi-centennial-scale co-variation patterns (Figure S5 in Supporting Information S1). The first principal 
component (PC1) clearly shows a ∼550-yr periodicity and an in-phase relationship between δ 13C and lamina 
thickness (Figures S6 and S7d in Supporting Information S1). However, the ∼550-yr periodicity does not appear 
significant in the δ 18O, Mg/Ca, and Sr/Ca records (Figures S7a–S7c and S8a in Supporting Information S1).

Figure 1. The climate correlation maps between the research site and elsewhere. (a) and (b) The spatial correlations of mean annual precipitation (a) and temperature 
(b) between the research site and elsewhere (1950–2016). The data are from the Climatic Research Unit (CRU TS v4.05, Harris et al., 2020) with a grid resolution of 
0.5 × 0.5° for precipitation and 1 × 1° for temperature. Stipplings indicates a significant correlation (p < 0.1 level). The sites of climate records and archaeological 
sites are labelled: GZXN: Guizhouxinv cave; XLW: Xiaolongwan lake; HS: Heshang cave; NP: Niupo cave site; KM: Kongmingfen site; YS: Yinsuodao site; HM: 
Haimenkou site.
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4. Discussion
4.1. Interpretation of Proxies

Carbon isotopes in stalagmites can provide important insights into changes in the local hydroclimate and vege-
tation (e.g., Fohlmeister et  al.,  2020; Lechleitner et  al.,  2021). The carbon in speleothem is derived mainly 
from three sources: atmospheric CO2, biogenic soil CO2, and bedrock. During the growth period of stalagmite 
GZXND21-1, both the atmospheric pCO2 (less than 5 ppmv) and isotopic composition of atmospheric CO2 (a 
few tenths of a per mil) were virtually constant (Bereiter et al., 2014; Schmitt et al., 2012). Thus, the influence of 
atmospheric CO2 on stalagmite δ 13C is negligible. The remaining two carbon sources in the bedrock and biogenic 
CO2 are characterized by heavy (usually larger than or close to 0‰) and light δ 13C (usually between −26 and −10 
‰), respectively (e.g., McDermott, 2004). Therefore, variations in stalagmite δ 13C can be influenced in principle 
by changes in the relative contribution of biogenic soil CO2 and bedrock, which can be affected subsequently by 
changes in the local hydroclimate and vegetation conditions.

Similar to most regions in the monsoonal China, our research area is presently covered by C3-type plants, and 
no evidence has been found that indicates a replacement of C3 plants by C4 plants occurred during the Holo-
cene (e.g., Gong et al., 2019; K. Li et al., 2014). Hence, it is unlikely that the observed δ 13C variations in the 
speleothem are caused by a shift from C3 (∼−32 to −20‰) to C4 (∼−16 to −9‰) plants due to hydroclimate 
change in the area. As such, variations in the GZXND21-1 δ 13C record are most likely controlled by the amount 
of biogenic carbon in the soil. This interpretation is reinforced by the significant negative correlations (r = −0.15, 
p < 0.001) and the prominent co-variation on the ∼550-yr periodicity between the δ 13C and lamina thickness 
records (Figure S4, S6a, and S6c in Supporting Information S1). This is because both δ 13C and speleothem growth 
rates (lamina thickness) are influenced by the amount of biogenic CO2 available in the soil. Generally, increased 
concentration of soil CO2 due to the high amount of soil biogenic matter can lead to the enhanced dissolution 
of carbonate bedrock, resulting in higher levels of calcium (Ca 2+) in drip water. This, in turn, can cause higher 
speleothem growth rates and more negative δ 13C (e.g., Fohlmeister et al., 2020; Genty et al., 2001; Kaufmann 
& Dreybrodt, 2004). The 50–100 cm thick soil layer above GZXN Cave can also increase the residence time of 
water in the soil and contribute to the equilibrium of carbon isotopes between the dissolved inorganic carbon and 
soil CO2, further enhancing the biogenic carbon signal in the dripping water (e.g., Genty et al., 2003, 2006; Jiang 
et al., 2012). In other words, the various epikarst processes may relatively have minor impacts. This is consistent 
with the observation that the GZXND21-1 δ 18O (a monsoon intensity proxy, e.g., Cheng et al., 2016, 2022), and 
trace element ratio (Mg/Ca and Sr/Ca) records exhibit distinct patterns and periodicities different from the δ 13C 
record (see Section 3.3 for details).

According to modern observations and modelling results, the temperature is the primary driving force behind 
variations in vegetation and soil microbial activity for a large part of the ASM domain including our research area 
(e.g., H. Liu et al., 2018, 2020; W. Liu et al., 2020; S. Tao et al., 2022; Z.-Q. Zhang & Zhai, 2022). A record of 
loss on ignition (a proxy used to calculate variations in organic matter in sediments) from a peat core drilled in the 
Wumeng Mountain region also suggests that productivity in this area was strongly affected by temperature during 
the late Holocene (Z.-Q. Zeng et al., 2022). Regarding the dimensionality reduction analysis of local climate, we 
utilize the PC1 results for our discussion. A strong correlation is also evident between temperature records in 
central and northern monsoonal China and Greenland ice core δ 18O (a temperature proxy) on a multi-centennial 
timescale (Figure S4 in Supporting Information S1). Therefore, we propose that the multi-centennial variations 
in our δ 13C and lamina thickness records are strongly influenced by regional temperature and its impact on 
soil productivity. Considering the relationship between paleoclimate proxies and the controlling factors of the 
regional climate model, local rainfall may have merely a weak influence on the multi-centennial variations of 
δ 13C and lamina thickness (see Text S4 in Supporting Information S1 for details). Nonetheless, it remains an open 
question to what extent the rainfall has affected the δ 13C and lamina thickness.

4.2. Mechanisms and Teleconnections of the ∼550-Yr Temperature and Vegetation Periodicity

The GZXND21-1 δ 13C and lamina thickness records show significant multi-centennial periodicities between 
5,870 and 3,670 yr BP (Figures S4b–S4d in Supporting Information S1), superimposed on their long-term trends. 
As mentioned above, we suggest that these cyclic changes indicate mainly the temperature and vegetation vari-
ations in southwestern China. The B.P.400–600 filtered PC1 data from δ 13C and lamina thickness show that warm 
climate “optima” occurred around 5,500, 4,900, 4,350, and 3,800 yr BP, and cold climate at around 5,750, 5,200, 
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4,600, and 4,050 yr BP (Figure 2). Such quasi-periodic ∼500–550-yr oscillations of temperature and vegetation 
are also documented in other well-dated records from northern to central China. For example, in the northwestern 
margin of the Changbai Mountain in northeastern China, a pollen (Quercus and Pinus) record from an annually 
laminated maar lake shows vegetation zones and temperature fluctuations with a quasi-period of ∼500 yr (Xu 
et al., 2014), which exhibits an in-phase relationship with the filtered (B.P.400–600) GZXND21-1 PC1 data. In 
addition, the filtered (B.P.400–600) δ 13C record of the acid-soluble organic matter (δ 13CASOM) from Heshang Cave, 
central China (X. Li et al., 2014) also exhibits the ∼500–550 yr cyclicity with a nearly in-phase relationship with 
our PC1 data (Figure 2). Taken together, the ∼500–550 yr cyclicity of temperature and vegetation manifests a 
large spatial scale in monsoonal China around the transition from the mid-to late-Holocene.

The coincidence of the ∼550-yr cyclicity in the cosmogenic nuclide record (atmospheric Δ 14C), and climate 
records from northern and central China in the early- and late-Holocene (e.g., Stebich et  al., 2015; Y. Wang 

Figure 2. Comparison of multi-centennial variations in different climate records and tree-ring Δ 14C data. (a) and (b) are Jeita Cave δ 18O and δ 13C records (Cheng 
et al., 2015). (c) The Quercus percentage record from Lake Xiaolongwan (Xu et al., 2019). (d) The δ 13CASOM record from Heshang Cave (X. Li et al., 2014). (e) The 
GZXND21-1 PC1 results (this study). (f) North Atlantic Meridional overturning circulation (AMOC) strength data (Ayache et al., 2018; Jomelli et al., 2022). (g) Total 
solar irradiance (TSI) data (C.-J. Wu et al., 2018). All the records are filtered data (B.P.400–600). The pink and blue vertical bars represent peak periods of warm (W) 
and cold (C). (h) and (i) are results of cross-wavelet analysis (calculated using the Acycle package (M. Li et al., 2019)) of the PC1 results with AMOC and TSI records 
respectively. The black arrows (right/left) indicate the phase relationship of the two records (in/anti-phased). The areas inside the thick line mark the 95% significance 
level.
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et al., 2005; Xu et al., 2019, 2020; Zhu et al., 2017) suggests that the presence of the ∼550-yr cycle revealed in 
the vast ASM domain could be causally linked to solar activity and/or the related atmosphere-ocean processes in 
the early- and late-Holocene. However, the multi-centennial climate variations from 5,870 to 3,670 yr BP appear 
complex (Roth & Reijmer,  2005; Zhu et  al.,  2017). Similar to previous studies (Roth & Reijmer,  2005), the 
B.P.400–600 filtered recent data of the total solar irradiance (TSI) (C.-J. Wu et al., 2018) show a nearly anti-phased 
relation with the proxy data mentioned above (Figures 2e, 2g, and 2i). This observation implies that the ∼550-yr 
temperature oscillation during the mid-Holocene is caused by internal (but may be not external) climate forc-
ing(s) (e.g., Y. Li & Yang, 2022). A recent study by Jomelli et al. (2022) suggests that changes in the intensity of 
the Atlantic meridional overturning circulation (AMOC) can have a significant impact on NH temperature during 
the mid-and late Holocene. In fact, fluctuations in the North Atlantic Deep Water (NADW), which is closely 
related to the changes in the AMOC, have also shown a periodicity of ∼550 yr during the Holocene (Chapman 
& Shackleton, 2000). To test this possible teleconnection, we compared our filtered (B.P.400–600) PC1 results with 
filtered (B.P.400–600) AMOC strength reconstructions (Ayache et al., 2018; Jomelli et al., 2022), and found an 
in-phase relationship between both records (Figures 2e, 2f, and 2h), supporting the idea that the variation of the 
AMOC may have caused the ∼550-yr oscillation in the YGP during 5,870 to 3,670 yr BP.

Model simulations have shown that the multi-centennial oscillations of the AMOC may be initially stimulated 
by the solar irradiance (Weber et al., 2014), and in turn instigated by internal mechanism(s), such as the merid-
ional propagation of salinity anomalies in the Atlantic, changes in the Southern Ocean, tropical dynamics, and 
Arctic sea-ice changes (e.g., Abram et al., 2016; Delworth & Zeng, 2012; Menary et al., 2012). The AMOC 
oscillations largely affect heat transport to the North Atlantic, and sequentially contribute to the fluctuations in 
surface air temperatures at different latitudes in NH (Delworth & Zeng, 2012). Moreover, these processes may 
lead to multi-centennial changes in the North Atlantic Oscillation (e.g., Czaja & Frankignoul, 2002; Rahmstorf 
et al., 2015; Trouet et al., 2012), which may enlarge the influence of AMOC on China temperature (e.g., Xu 
et al., 2014). Previous studies also suggest that the AMOC oscillations may be amplified by changes in Antarctic 
ice sheet discharge, leading to a larger AMOC fluctuation equivalent to ∼1–3 Sv (1 Sv = 10 6 m 3 s −1) fresh-
water impact or a global temperature fluctuation of ∼0.2–0.6 K (Bakker et al., 2017). Pollen records indicate 
that the present climate is near the middle phase of a consistent 500–550-yr cycle with a downward trend (Xu 
et al., 2019). This observation aligns with the recorded weakening of the AMOC by ∼3 ± 1 Sv over the past 
century (Caesar et al., 2018). Recent modelling results (Jomelli et al., 2022) show this weakening of AMOC may 
cause a potential cooling of about 0.5°C north of 30°N compared to preindustrial values. If this trend continues, 
the AMOC weakening may lead to a potential cooling, which in turn would dampen the global warming process 
to some extent (Jomelli et al., 2022).

The well-dated speleothem δ 13C and δ 18O records from the eastern Mediterranean coastline also show a signif-
icant ∼500-yr periodicity (Cheng et al., 2015) in-phased with our YGP records (Figure 2), suggesting that the 
∼550-yr cycle may be a large spatial-scale phenomenon. The potential mechanism might be attributed to the 
AMOC changes. This is because a strengthened (weakened) AMOC will not only result in a temperature increase 
(decrease) in China, but also lead to a weakened (strengthened) anticyclonic circulation over the Mediterranean 
via changing the surface temperature, contributing to a long-term increase (decrease) in the wet season Mediter-
ranean precipitation (e.g., Delworth et al., 2022; Stockhecke et al., 2016).

In short, we suggest that the large spatial-scale ∼550-yr climate cycle is likely attributed to the Earth's internal 
ocean-atmosphere oscillations. However, considering the possible lagged climate responses to external forcings 
due to the large oceanic memory (e.g., Scaife et al., 2013), we cannot exclude or well assess a potential impact 
or interplays to internal forcing (e.g., whether the internal forcing overwhelmed the external forcing) of the solar 
activity, which has a similar cycle of ∼500-yr. As such, more research is still needed to better understand the 
observed significant ∼500-yr cycles and the underlying internal-external forcings and climate dynamics.

4.3. The Possible Influence of Climate Change on the Neolithic Culture Evolution on the YGP

The unfavourable channel network in the YGP appears to have resulted in the prehistorical civilization in the 
region being several thousand years behind its neighbors. As a result, the Neolithic culture in the YGP retains 
many characteristics of the Paleolithic period, namely “Epipaleolithic” (S. Zhang, 2000). The complex topogra-
phy of the YGP has also led to the Neolithic culture being divided into numerous small cultural and geographic 
units due to the exchange difficulties among them (W. Wang, 2021). However, a line of evidence from various 
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archaeological sites in the YGP suggests that the development of instruments of production was widely synchro-
nous around ∼5,500–5,000 yr BP (Figure 3). For example, at the Kongmingfen archaeological site in the Beipan 
River basin (Figure 1), the polished stone tools and potteries are found in the fifth layer dated at ∼5,500–5,000 yr 
BP by  14C age (G. Zhang, 2013). At the Niupo cave site in central Guizhou, the percentage of chipped arti-
facts dropped significantly and the potteries appeared after 5,500–5,000  yr BP (W. Wang,  2021). Radiocar-
bon dating shows that the middle stage of the Neolithic culture in Yunnan, which includes the Haimenkou and 
Yinsuodao sites in the Erhai region and Jianhu basin, respectively, began around 5,500–5,000 yr BP (Wan, 2013; 
Xue et al., 2022), as evidenced by an increase in the number of polished stone tools and pottery (W. Wang, 2021; 
Yunnan Institute of Archaeology, 2009). This is consistent with the cultural phases identified by D. Wang (1994). 
Chen (2020) further suggests that the Neolithic culture in southwestern China commenced at ∼5,000 yr BP. In 
summary, a line of archaeological evidence suggests that 5,500–5,000 yr BP was a critical period in the evolution 
of prehistorical production implements in the YGP, which occurred in a relatively cold condition with reduced 
vegetation (Figure 3). This period is also corresponding with the cultural development in eastern China and the 
emergency of agriculture in both the Sichuan Basin and eastern Qinghai-Tibet Plateau (Jin et al., 2014; W. Wu 
et al., 2017; Xu et al., 2019).

During 5,700–4,800 yr BP, the population showed an overall growth trend, but experienced a significant decrease 
between 5,500 and 5,000  yr BP, which is consistent with the “warm-cold-warm” climate states recorded by 
our PC1 data (Figure 3a and Text S3 in Supporting Information S1). These results suggest that environmental 
degradation limited the growth of prehistoric populations and may lead to a potential resource scarcity during a 
colder and vegetation deterioration climate condition. Experimental studies have shown that the use of polish-
ing techniques in manufactures was generally a labor-intensive and time-consuming process in prehistory (e.g., 
Boydston, 1989). However, this technique had the advantage of producing durable tools and thus significantly 
improving production efficiency (e.g., Boydston,  1989). We suggest that improvements in technique during 
∼5,500–5,000 yr BP in YGP may be implying a possible strategy for ancient societies to adapt to the abrupt 
climate change in the region. While these results suggest a significant role of climate change in the cultural evolu-
tion in the YGP, many other factors, such as cultural influences from other regions and agricultural developments, 
that may have also contributed to this chapter of the prehistorical development in production implements in the 
region.

Figure 3. (a) Summed  14C probability (SCP) records in southwestern China over the last 10 kyr (this study). (b) The PC1 
results from the GZXN21-1 records. (c) Different stages in the development of the YGP Neolithic culture. The blue bar 
depicts the first cold event in our records (positive excursion) during ∼5,500–5,000 yr BP. The red dotted line and the blue 
thick line represent the original and Savitzky-Golay 100-point-smoothing SCP records respectively.
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5. Conclusions
High-resolution and precisely dated δ 13C and lamina thickness records from the YGP allow us to characterize 
local vegetation and temperature variations and their pronounced ∼550-yr cycle from 5,870 to 3,670 yr BP. Our 
analyses reveal that the periodic ∼550-yr temperature and vegetation variations observed in the YGP virtually 
coincided with the climate changes in northern-central China, the North Atlantic, and the eastern Mediterranean, 
suggesting that the ∼550-yr climate oscillations may be a large spatial-scale phenomenon. Based on our compar-
ison, the multi-centennial variations in the AMOC, instead of solar activity, may act as an underlying controller 
for these ∼550-yr climate cycles, possibly through changing the coupled ocean-atmosphere states. In addition, we 
observed that an evident Neolithic production tools development in the YGP coincides with the first cold event 
recorded in our record at ∼5,500–5,000 yr BP. This implies that abrupt climate change may play a significant role 
in the evolution of the prehistorical culture in the region.

Data Availability Statement
The Supporting Information  S1 is available through Zenodo (https://doi.org/10.5281/zenodo.7932124) and 
includes Texts S1–S4, Figures S1–S8 in Supporting Information S1. The speleothem geochemistry and lamina 
thickness data (Table S2 in Supporting Information  S1), the updated  14C database from archaeological sites 
in southwestern China (Table S3 in Supporting Information S1), the calculated minimal occupation events as 
the unit of analysis by combining more than one  14C data (Table S4 in Supporting Information  S1) and the 
summed  14C probability (SCP) records (Table S5 in Supporting Information S1) in this publication are available 
through Dryad (https://doi.org/10.5061/dryad.4tmpg4fg8). The CRU TS v4.05 data (Harris et  al.,  2020) was 
obtained from http://climexp.knmi.nl/CRUData/, temperature (1 × 1°) and precipitation (0.5 × 0.5°) data used 
by our study can be accessed by clicking “cru_ts4.05.1901.2020.tmp.dat_1.nc” and “cru_ts4.05.1901.2020.pre.
dat.nc,” respectively. Literature data for this research are available in Cheng et al. (2015), Xu et al. (2019), X. 
Li et al. (2014), Ayache et al. (2018), Jomelli et al. (2022), C.-J. Wu et al. (2018), C. Wang et al. (2014), Zhu 
et al. (2017). A Matlab-based time-series analysis software, Acycle (M. Li et al., 2019), used for the cross-wavelet 
analysis, is available through https://acycle.org/downloads/; Past 4.03 software (Hammer et al., 2001), used for 
the power spectrum analyses, is available through https://www.nhm.uio.no/english/research/resources/past/; 
OxCal v4.4 software used for calculate the summed  14C probability (SCP), is available through https://c14.arch.
ox.ac.uk/oxcal.html; Origin software used for PCA and band-pass filter, is available through https://www.origin-
lab.com/demodownload.aspx.
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