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ABSTRACT

A low-dimensional dynamical systems model of the North Atlantic thermohaline circulation has been developed
in order to better understand the mechanism underlying the so-called Dansgaard–Oeschger oscillation that is so
clearly evident during the late glacial period (oxygen isotope stage 3) of the most recent ice-age cycle. The
reduced system is designed to describe the evolution of the salinity distribution in this region that has previously
been analyzed using both two- and three-dimensional models of the deep ocean circulation. The drastically
simplified model described herein is shown to accurately represent the essence of the Dansgaard–Oeschger
oscillation as this was previously revealed through detailed analyses performed with a model in which the deep
circulation was described using a set of linked interacting two-dimensional (latitude–depth) basins. The authors’
analyses with the reduced dynamical system reinforce their previous contention that the Dansgaard–Oeschger
oscillation is driven by low–midlatitude salt accumulation and controlled by high-latitude freshening, as suggested
in previous investigations performed with the more complex model. The dependence of the response of the
reduced dynamical systems model to time-dependent external forcing is also investigated. These analyses dem-
onstrate that the mechanism underlying the Dansgaard–Oeschger oscillation that is supported by the model is
rather stable against relatively short timescale perturbations, but that the oscillation is effectively modulated by
relatively long timescale perturbations such as those that Greenland ice-core data suggest to have existed on
the timescale of successive Heinrich events. The dynamical systems model is thereby shown to provide a viable
explanation of the Bond cycle that consists of packets of Dansgaard–Oeschger oscillations.

1. Introduction

Climate variability during the late Pleistocene epoch
was unmistakably dominated by prominent 100 000-yr
ice age cycles (e.g., Imbrie et al. 1984), each of which
consisted of a relatively brief warm interglacial period
followed by a considerably longer and increasingly cold
glacial period that was terminated by a rapid warming
that returned the system to the interglacial state. Recent
investigations of the last glacial–interglacial cycle, how-
ever, have provided new information concerning the de-
tailed characteristics of the glacial state. Isotopic ana-
lyses of Summit, Greenland, ice cores by the GRIP
(1993) and GISP2 (1993) collaborations, in particular,
demonstrate that the North Atlantic region experienced
an intense millennial timescale climate oscillation dur-
ing the late glacial period. This epoch, which extended
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from 60 kyr BP (1 kyr 5 1000 years, BP 5 before
present) to 35 kyr BP, is usually referred to as oxygen
isotope stage (OIS) 3. When the time series of d18O
variability in the Greenland ice cores is mapped into a
history of atmospheric temperature change (e.g., John-
sen et al. 1992), one finds that the amplitude of the
temperature change of the millennial timescale oscil-
lation apparently exceeded 68C, which is more than half
of the glacial–interglacial temperature change itself in
the North Atlantic geographical region. This millennial
timescale oscillation, herein referred to as the Dans-
gaard–Oeschger (D–O) oscillation, is composed of a
cycle that begins with a sudden warming from the cold
glacial state toward warm quasi-interglacial conditions.
The warm stage of a single cycle of the D–O oscillation
may persist as long as several millennia after onsetting
on a timescale as short as a century. Superimposed upon
this basic D–O oscillation, there appears to be a further
characteristic of the OIS 3 variability; Bond et al. (1993)
have demonstrated that individual cycles of the D–O
oscillation are apparently clustered so as to form a lon-
ger timescale sawtooth-shaped cycle with a timescale
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of order 104 yr. This will be referred to herein as the
Bond cycle. Each such Bond cycle has been shown to
be initiated by an individual Heinrich event (Heinrich
1988). These events are defined in deep sea sedimentary
cores from the North Atlantic as horizons containing
large quantities of ice rafted debris. The Bond cycle
thus consists of a modulation of the basic D–O oscil-
lation in which the amplitude of successive D–O phases
in a single Bond cycle gradually decreases. This O(104)
yr modulation of the D–O oscillation is very apparent
in the ice core records, but the underlying mechanism
has never been explained.

The evidence for the above-described D–O climate
oscillation is not limited to that derived on the basis of
proxies for temperature such as d18O in continental ice
sheets. Keigwin and Jones (1994), for example, have
demonstrated that similar variability existed in the North
Atlantic (NA) Ocean that is well correlated with the
Greenland oxygen isotopic information. Although the
phase relation between the d18O time series measured
by GRIP and GISP2, and the proxy for North Atlantic
Deep Water (NADW) activity analyzed by Keigwin and
Jones (1994) is still unclear, the role of the thermohaline
circulation of the North Atlantic Ocean in the D–O os-
cillation would appear to be well established. Given the
magnitude of the heat transferred to the atmosphere that
accompanies the process of deep water formation, ap-
proximately 100 W m22 on annual average (e.g., Bunker
and Washington 1976; Hsiung 1986), it is clear that
fluctuations in thermohaline circulation (THC) strength
would be accompanied by large fluctuations in atmo-
spheric temperature. The characteristic timescale of the
deep ocean circulation is a further factor that suggests
that the NADW formation process must be a very im-
portant contributor to long timescale climate variability,
for the characteristic timescales that may be inferred
from the geometry of the NA basin and the observed
strength of the overturning circulation (;18 Sverdrups,
1 Sv [ 106 m3 s21) range from centuries to millennia.
This has been demonstrated explicitly in the recently
published analyses of Sakai and Peltier (1997), hereafter
referred to as SP97.

It is therefore very reasonable on physical grounds
to hypothesize that the processes that are involved in
NADW formation play a very important role in the D–O
oscillation. If the oscillation were also observed under
modern climate conditions, we could obtain much more
detailed information that would enable us to clearly un-
derstand the underlying mechanisms. Following degla-
ciation, however, the large-amplitude millennial time-
scale climate variability corresponding to the D–O os-
cillation entirely disappeared, and only much weaker
fluctuations have been observed through the current Ho-
locene period (e.g., Stuiver 1980; GRIP 1993; GISP2
1993; but see Bond et al. 1997). Our detailed knowledge
of the functioning of the late glacial climate regime
during the last ice age cycle thus remains rather limited.
In this circumstance, perhaps the only means we have

at our disposal by which to better understand late glacial
climate is through the construction of appropriate math-
ematical models of the climate system that are integrated
subject to appropriate boundary conditions.

The timescale of a typical cycle of the D–O oscil-
lation, which ranges from a millennium to several mil-
lennia, is still sufficiently long as to make the use of
full three-dimensional atmosphere–ocean general cir-
culation models prohibitive due to present limitations
on the availability of computational resources. Only
very limited analyses of this kind have been performed;
the work of Winton and Sarachik (1993) provides one
example based upon the use of a modestly configured
ocean general circulation model that demonstrated that
the intense millennial timescale oscillations of the ther-
mohaline circulation were possible under appropriate
conditions but no possible link to the D–O oscillations
was recognized or considered. Concerning the previ-
ously discovered THC oscillation that consists of
‘‘flush’’ and ‘‘collapse’’ phases, which was originally
discovered by Marotzke (1989) and later rediscovered
in a three-dimensional ocean general circulation model
by Weaver et al. (1993), this work was primarily focused
on century timescale variability and again no possible
connection of the flush–collapse oscillation to the Dans-
gaard–Oeschger oscillation was recognized. Because of
the computational resources that would be required to
perform the tens of thousands of year integrations need-
ed to fully investigate this phenomenon, there is clearly
an important role to be played by dimensionally reduced
models of the physical process. Such models are capable
of being integrated over such long timescales and may
therefore serve an extremely useful purpose.

Sakai and Peltier (1995, 1996), the latter of which
will hereafter be referred to as SP96, have in fact re-
cently developed a model of this type and have per-
formed a variety of analyses with it. Their model of the
global THC consists of a linked set of two-dimensional
basins in which a thermohaline circulation develops in
response to surface forcing that may be taken to rep-
resent either glacial or interglacial (modern) conditions.
In the context of the analyses of the D–O oscillation
performed with this model, it has been successfully
demonstrated that the THC is actually expected to os-
cillate on precisely the D–O timescale even under steady
boundary conditions characteristic of the late glacial
state. The more recent work described in SP97 further
embellished this original analysis. Whereas the former
investigations were performed with an ocean-only ver-
sion of the model, in SP97 the multibasin model of the
THC was coupled to a global model of the atmosphere
and further detailed reanalyses of the D–O oscillation
performed. The results obtained with the coupled model
clearly show that the intense oscillation of THC drives
an oscillation of atmospheric temperature of precisely
the amplitude inferred on the basis of oxygen isotope
data from the Greenland ice cores. Furthermore, the
form of the oscillation delivered by the coupled model
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was found to be in much closer accord with the ice
core–based inference than that obtained with the ocean-
only version of the model.

According to the results obtained in these analyses,
a cycle of the millennial timescale oscillation of the
THC, which comprises the oceanic component of the
D–O oscillation, consists of two entirely distinct stages:
one involving intense NADW formation, and a second
in which very little NADW is produced at all. During
a typical intense stage of NADW formation, the warm
saline water that constitutes the upper layer of the low–
midlatitude North Atlantic is transported northward,
cooled, and sinks to form NADW. When the surface
freshening of the high-latitude NA is increased, due,
say, to enhanced surface runoff from the ice sheets, a
more intense overturning circulation is required to pro-
vide sufficient salt to sustain the strength of the THC.
In the presence of such THC overintensity, midlatitude
high-salinity water becomes strongly depleted of salt,
which causes the circulation to be arrested; in this state
deep water becomes stagnant. In the stagnant state of
the deep circulation, little high-salinity water is removed
from midlatitudes, and salt accumulation builds up,
leading eventually to an unstable state in which deep
water abruptly begins to form once more. The model
therefore provides a detailed fluid mechanical proof of
the salt oscillator concept that had previously been hy-
pothesized on qualitative grounds and establishes that
the conditions required for its operation are precisely
those that are expected to have obtained under full gla-
cial conditions.

If the quantitative picture at the Dansgaard–Oeschger
oscillation provided by this previous work is correct, it
is sufficiently simple that we should be able to describe
the essence of the physical process using a mathematical
structure that is further reduced from that of the multi-
two-dimensional basin ocean model employed in these
original analyses. The purpose of this paper is to develop
this further reduced form of our theory of the D–O
oscillation and to employ the reduced theory to provide
an initial investigation of the Bond cycle.

In section 2, we formulate the dynamical systems
model of the NA THC that will be investigated there-
after. In section 3 we discuss the equilibrium solutions
of the reduced system and analyze their linear stability.
The analyses presented in this section also demonstrate
the existence of a regime of nonsteady solutions in the
control parameter space of the model, which is of course
required if the model is to support an oscillatory solution
of the kind required to understand the D–O oscillation.
In section 4 we show typical integrations of the model
in the region of parameter space in which it delivers
oscillatory solutions on the millennial timescale. Section
5 briefly describes the response of the dynamical sys-
tems model of the North Atlantic THC to a range of
periodic perturbations, the period of which ranges from
O(1) to O(105) yr. Our conclusions are summarized in
section 6.

2. A new dynamical systems model of the
North Atlantic thermohaline circulation

The deep ocean thermohaline circulation is a hydro-
dynamic flow driven by density variations in which the
(potential) density of sea water is primarily controlled
by two variables, namely, the temperature and salinity.
Although the potential temperature is almost a materi-
ally conserved quantity in the deep ocean, that of the
upper mixed layer is strongly influenced by the surface
distribution of atmospheric temperature. The salinity
distribution, on the other hand, is not so strongly con-
trolled by atmospheric conditions, mainly due to the
absence of feedbacks involved in the processes of evap-
oration, precipitation, and runoff from the continents
that control sea surface salinity. Although it is the den-
sity distribution that controls the THC flow, we pri-
marily attribute it to variations of salinity for this reason.
The influence of temperature variations will be included
implicitly in the following discussion through two
means: the first of these will be via the assumption that
it is in the high-latitude cold region of the North Atlantic
where NADW forms, whereas the second is that weak
damping (based upon the use of a characteristic time
that is short compared with that employed in control
case analyses) due to air–sea interaction may be em-
ployed in place of the strong damping that we use in
the standard analyses. One may, for the most part in
this paper, therefore interchange the word density for
the word salinity wherever it appears except in the scal-
ing analyses.

a. Formulation of the model

In formulating the dynamical systems model that we
will employ to capture the essence of the Dansgaard–
Oeschger oscillation, it is useful to start from the general
form of the advection–diffusion equation for salinity as

]s
1 v · =s 5 S 1 Ds. (1)

]t

This equation may be expressed in spectral form by
introducing a complete set of basis functions as

]si 5 S 1 D s 2 A s C . (2)O Oi ij j ijk j k]t j j,k

Here we choose to take a somewhat empirical and a
posteriori ‘‘box-model’’ approach to obtaining the ap-
propriate basis functions. Based upon the analysis in
SP97, the question of which subdomains of the ocean
play actively important roles in the D–O oscillation is
already understood: it is the upper layer water of the
low–midlatitude North Atlantic as well as the high-lat-
itude region in which NADW forms to drive the THC
and the abyssal water itself that have been established
as being principally involved. We will therefore choose
box-model basis functions that are nonzero over these
domains but otherwise vanish. Furthermore, we will re-
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FIG. 1. Schematic overview of subdomain dividing in the NA for
the reduced dynamical system model of the NA THC. The boxes
indicate the extent of nonzero distribution for each component.

strict consideration to only these subdomains in devel-
oping this reduced description of the THC.

Figure 1 schematically illustrates the way in which
the North Atlantic basin is subdivided based upon those
considerations. We employ three corresponding basis
functions to represent this division, which are such that
on each subdomain the basis is assumed to be positive
but otherwise is zero. Region 1 denotes the upper do-
main, which includes the low–midlatitudes of the North
Atlantic, whereas region 2 represents the high-latitude
domain in which the North Atlantic THC is driven by
the production of NADW, and region 3 represents the
abyssal water, which is included in order to allow us to
represent the spatial heterogeneity in NADW.

The diffusive exchange between those subdomains of
the basin will be assumed to be controlled by Fick’s law
and idealized in terms of two parameters, K and L, in
which K is the coefficient controlling diffusive exchange
between each of the domains (1, 2, 3) and the back-
ground water and L is the coefficient controlling ex-
change between the subdomains (1, 2, 3) themselves.
One may then immediately assert the following gov-
erning equations for salinity of our somewhat idealized
model of the North Atlantic THC based upon (2) as

ds1 5 R 2 K(s 2 s ) 2 L(s 2 s )1 1 bg 1 2dt

2 F(s )(s 2 s ) (3)2 1 bg

ds2 5 R 2 2K(s 2 s ) 2 L(s 2 s )2 2 bg 2 1dt

2 L(s 2 s ) 2 F(s )(s 2 s ) (4)2 3 2 3 1

ds3 5 2K(s 2 s ) 2 L(s 2 s )3 bg 3 2dt

2 F(s )(s 2 s ), (5)2 3 2

in which we will hereafter assume that the transport
function F assumes the following simple form:

ba |s 2 s | if s . s2 bg 2 bgF 5 (6)50 otherwise.

In the event that b 5 1, the THC is then linearly pro-
portional to salinity differences, as is approximately the
case in existing two-dimensional THC models such as
that of SP96. This is expected to be a highly simplified
representation of actual THC transport. The factor 2 that
appears in the first diffusion term in the governing equa-
tion for the salinity of region 2 is rather artificially in-
troduced to simplify the analytical procedure. We have
performed several sets of numerical integrations with
different values of this factor (not shown in this paper)
and thereby obtained essentially the same conclusions
as will be discussed in what follows.

It is useful to nondimensionalize this system in order
to clarify its mathematical structure. Such nondimen-
sionalization may be performed using the following rep-
resentations, which define new independent variables x,
y, and z: s1 2 sbg 5 s0x, s2 2 sbg 5 s0y, s3 2 sbg 5 s0z,
t 5 t t*, t 5 (K 1 L)21, m 5 L/(K 1 L), and 5 (Kbs0

1 L)/a. This nondimensionalization reduces the gov-
erning ordinary differential equations to the much sim-
plified forms

dx
b5 X 2 x 1 my 2 |y| x (7)

dt*

dy
b5 Y 2 2y 1 m(x 1 z) 1 |y| (x 2 z) (8)

dt*

dz
b5 2z 1 my 1 |y| (y 2 z). (9)

dt*

Here the |y|b terms will be assumed to vanish when y
is negative. The timescale t may be roughly evaluated
as follows: based upon the assumption that it is con-
trolled by lateral diffusion, the basinwide salinity dis-
tribution changes over a length scale of O(106);O(107)
m and a typical eddy-diffusion coefficient employed in
low-resolution ocean general circulation models in
which mesoscale eddies are not resolved is
O(102);O(103) m2 s21 (e.g., Bryan and Lewis 1979).
This leads to the previously stated characteristic time-
scales ranging from decades to millennia, when the
square of the characteristic length is divided by the char-
acteristic value of the diffusion coefficient. Similarly,
based upon the intensity of vertical diffusion, and by
using a typical depth of the thermocline layer of the
ocean, for example, O(103) m (e.g., Levitus 1982), and
a typical vertical diffusion coefficient for this layer, for
example, O(1024) m2 s21 (e.g., Bryan and Lewis 1979),
one may obtain a second estimate of the characteristic
timescale that turns out to be several hundred years.

b. The physically plausible region of parameter space

The value of m is expected to lie in the range from
zero to unity based upon the above definition and the
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positive definiteness of the diffusive exchange coeffi-
cients. If the diffusive exchange between the domains
(1, 2, 3), and that between the domains (1, 2, 3) and
the background water are not of radically different in-
tensity, then m should be close to the value 0.5.

The forcing terms that we have added to the above
system, that is, X and Y, which respectively derive from
R1 and R2 in (3)–(5), are at least constrained with respect
to sign on the basis of the observed distribution of evap-
oration minus precipitation over the surface of the North
Atlantic Ocean (e.g., Peixoto and Oort 1992). Here X
represents the salinity forcing over low–midlatitudes
where very strong evaporation is caused by the sub-
tropical atmospheric divergence, and it should therefore
have a relatively large positive value. In dimensional
form R1 is of the order of 1 m yr21 when it is expressed
in terms of evaporation minus precipitation. Parameter
Y corresponds to the salinity forcing over the high-lat-
itude North Atlantic, where the combined influence of
precipitation and surface runoff from the surrounding
continents produce a negative salinity forcing so that Y
should have a negative value when boundary conditions
are realistic. In their nondimensional forms, X and Y are
expected to lie in a certain range constrained by modern
observations. The overall salinity of the oceans is not
far removed from 0.035 g kg21. The global THC, how-
ever, is driven by very small differences of density (and
thus salinity). We may quite safely assert that the deep
water formation process that drives the THC is induced
by relative differences in salinity of 1021 or 1022. This
leads directly to an estimate of the amplitude of the
nondimensional forcing functions X and Y, namely, they
should be close to the inverse of the relative differences,
that is, of the order of 101 to 102. Later we will see that
it is not the absolute amplitudes of X and Y but rather
the ratio Y/X that determines the nature of the solutions
to this dynamical systems representation of the North
Atlantic THC.

In terms of the power low exponent b that appears
in the representation of THC transport, it is expected
not to be greatly different from unity considering that
successful existing 2D THC models exist that are based
upon the assumption of a proportionality between pres-
sure gradient and velocity. Clearly there should be no
THC-induced transport at all if there is no density gra-
dient. It must therefore follow that the THC transport
in the governing system can vanish when y is negative.

Before closing this section, we briefly review the re-
lationship between the dynamical systems model of the
THC just described and low-dimensional models of the
THC that have been developed by others. The first ex-
ample of interest is that by Stommel (1961) in terms of
which the existence of multiple equilibria in the THC
was first demonstrated. For the problem of the large-
scale thermohaline circulation, the influence of double
diffusion may be ignored and Stommel’s model in non-
dimensional form may be written as

ds
5 1 2 s 2 a |s |s,

dt

in which s is the density difference nondimensionalized
by the forcing of the two boxes. Our model can be
reduced to Stommel’s model when x is held fixed to the
value of background water, z 5 y, and m 5 1 (renon-
dimensionalization required); Stommel’s model may
then be seen to represent an idealized circumstance in
which midlatitude salinity is assumed constant and
NADW is homogeneous. Investigations using multibox
models of the THC that are somewhat similar to our
own, however, continue to provide interesting insight
into a variety of ocean dynamical problems. One of the
most recent contributions in this kind is that by Gargett
and Ferron (1996). This work was focused upon the
problem of double diffusion rather than upon the long
timescale evolution of the large-scale THC. Employing
a four-box THC model, they demonstrated the plausible
existence of an instability that supports periodic solu-
tions of century timescale and that is closely related to
equatorial convective events. Another example of the
application of models in this class is that by Nakamura
et al. (1994) in which the influence of atmospheric feed-
back was incorporated into a three-box model of the
THC and employed to demonstrate that the system may
be destabilized by atmospheric eddy transports of both
heat and moisture such that a steady state of intense
NADW formation might be transformed to an essen-
tially stagnant state. The possible existence of such a
connection between the atmosphere and the THC may
require us to modify our analysis of the bifurcation point
beyond which a THC oscillation begins (as presented
in SP96 and SP97) and will warrant attention in our
future work.

There have also been a number of interesting contri-
butions to the understanding of the THC using ‘‘hula
hoop’’ models. Since models with this geometry are
relatively easily analyzed, both analytically and quasi-
analytically, and may also yield insights, they have often
been invoked. Winton and Sarachik (1993) suggest that
the oscillation that is observed as a limit cycle in the
loop model may be the mechanism underlying the cen-
tury timescale weak oscillation in their three- and two-
dimensional fluid dynamical models. A most recent
analysis of this kind is that by Huang and Dewar (1996),
in which they have presented chaotic solutions of the
loop model of the THC as well as periodic solutions
(limit cycles). The loop model has therefore been em-
ployed primarily in the context of analyses of the var-
iability of the THC on century or shorter timescales.

Aside from the above-mentioned box models of the
THC, a number of climate models have been proposed
that support oscillations on timescales longer than cen-
turies. One example that is especially strongly con-
nected to the Dansgaard–Oeschger oscillation is a model
that combines an ice sheet component with an Atlantic
THC component and that was discussed by Broecker et
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al. (1990) and by Birchfield and Broecker (1990). The
oscillation in this model is enabled by incorporating
meltwater produced by runoff from the continental ice
sheets onto the surface of the Atlantic ocean. The THC
in this model is actually independent of the salinity dis-
tribution within the Atlantic basin and thus is free of
even the lowest-order THC dynamics. Considering that
our box-model analyses are being designed to reproduce
the results obtained with the more complex hydrody-
namic models, the ice sheet–salinity oscillator model
developed by these authors is clearly fundamentally dif-
ferent from our own. Their analyses were nevertheless
directed toward the development of a salt oscillator of
the same kind as we have discovered to exist in the
ocean-only version of our own model, where the THC
is forced by an appropriate high-latitude freshwater
anomaly that is presumably due to ice sheet runoff. The
oscillation mechanism in our model of the THC does
not require any coupling to the freshwater runoff from
the continental ice sheets that controls the onset and
shutdown of NADW formation in the model of Birch-
field and Broecker.

3. Equilibrium solutions and their linear stability

In the present section our purpose will be to explore
the properties of the equilibrium solutions of the box
model of the THC embodied in (7)–(9). These will be
enumerated and their stability properties explored.

Equilibrium solutions

Because of its simplicity, the dynamical systems mod-
el embodied in (7)–(9) is amenable to analytical char-
acterization. The equilibrium solutions of this reduced
model are those that obtain when the left-hand sides of
the equations (7)–(9) are set to zero, namely,

b0 5 X 2 x 1 my 2 |y| x (10)
b0 5 Y 2 2y 1 m(x 1 z) 1 |y| (x 2 z) (11)

b0 5 2z 1 my 1 |y| (y 2 z). (12)

Recall that the |y|b terms are assumed to vanish when
y is negative. Considering first the case in which y ,
0, the system reduces to a linear system in x, y, and z.
The solution, (x0l, y0l, z0l), may be written as

22 1 mY 2 m X
x 5 (13)0l 22(1 2 m )

Y 1 mX
y 5 (14)0l 22(1 2 m )

m(Y 1 mX )
z 5 . (15)0l 22(1 2 m )

Since y0l , 0, the conditions 0 , m , 1 and Y 1 mX
, 0 are required in order that the solution remain phys-
ical. The meaning of the latter condition is that, when

it obtains, the high-latitude NA is receiving too much
freshwater to allow for the maintenance of an intense
NA THC. The local stability of this equilibrium solution
is determined by the characteristic equation

(l 1 1)(l2 1 3l 1 2 2 2m2) 5 0, (16)

in which l denotes the rate of exponential growth of a
small-amplitude fluctuation superimposed upon the
equilibrium solution. Apparently the equilibrium solu-
tion (x0l, y0l, z0l) is always locally stable and thus rep-
resents the global attractor regardless of the sign of Y
1 mX.

When y $ 0, (10), (11), and (12) yield the following
solution for the nonlinear equilibrium (x0n, y0n, z0n):

X 1 my
x 5 , (17)0n b1 1 y

b11my 1 y
z 5 , (18)0n b1 1 y

and

1 (2 2 2 (Y 1b11 b2b11y m)y X )y0n 0n 0n

1 2(1 2 m2)y0n 2 (Y 1 mX ) 5 0. (19)

When b 5 1, (19) may be solved analytically and de-
livers three solutions. Any solution for y0n that is either
negative or complex is aphysical. We will therefore be
interested only in the real positive solutions and their
linear stability.

Suppose that we have found such an equilibrium so-
lution (x0n, y0n, z0n), then the corresponding linearized
system, which determines the fate of small-amplitude
fluctuations superimposed upon it, is

dx9
5 2(1 1 y )x9 1 (m 2 x )y9 (20)0n 0ndt*

dy9
5 (m 1 y )x9 1 (x 2 z 2 2)y90n 0n 0ndt*

1 (m 2 y )z9 (21)0n

dz9
5 (m 1 2y )y9 2 (1 1 y )z9, (22)0n 0ndt*

so that the exponential growth rate l of a small-ampli-
tude perturbation is determined by the characteristic
equation

(l 1 1 1 y0n)(l2 1 a1l 1 a2) 5 0 (23)

with

a 5 3 1 y 1 z 2 x (24)1 0n 0n 0n

a 5 (1 1 y )(1 1 z 2 x ) 2 (m 2 x )(m 2 y )2 0n 0n 0n 0n 0n

2 (m 2 y )(m 1 2y ).0n 0n (25)

Obviously one of the eigenvalues is negative when y0n

. 0. The remaining two eigenvalues are also negative
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FIG. 2. Equilibrium solutions for y under different X and Y. Two
cases for different values of b (1.0 and 1.4) are shown.

if a1 , 0 and , 4a2, or if 2a1 1 ( 2 4a2)1/2 ,2 2a a1 1

0. When the real part of any of the eigenvalues is pos-
itive, the equilibrium is locally unstable. Although the
existence of a locally stable solution does not guarantee
that the solution will be a global point attractor, the
nonexistence of a locally stable solution generally
means there exist either orbits or chaotic attractors in
the system so long as the solution can be shown to be
bounded.

Before we proceed with further analysis, it will there-
fore be useful to determine whether or not solutions of
the system remain bounded. Returning to the original
system, (7)–(9), in the domain in which y , 0, the
transport terms vanish. In this domain, z is bounded if
y is bounded, and so in what follows we will assume
that z remains near y. Any solution converges to the
equilibrium solution if there exists a stable equilibrium
solution in the y , 0 domain, and thus the solution is
bounded in this case. Even if an equilibrium solution
does not exist in the y , 0 domain, solutions in the y
, 0 domain do not diverge. From (16), y0l appears to
attract all the solutions in the y , 0 domain even when
y0l $ 0, in which case all solutions in the y , 0 domain
shift to the complementary domain (y $ 0).

When y $ 0, on the other hand, the transport terms
become important. From the evolution equation for x,
dx/dt* , 0 for all x if X, m, y . 0: all the solutions
initially in y $ 0, x , 0 eventually enter the first quad-
rant. The only remaining question, then, is whether or
not all the solutions in the first quadrant are bounded.
Indeed, they are bounded if b $ 1: first, the solution is
bounded in the x . 0 direction. From (7), for all y .
0, there exists an xb . 0 such that dx/dt* , 0 for all x
. xb. Eventually, all solutions remain in the domain to
the left of the curve,

X 1 my
x 5 . (26)

b1 1 y

For y k 1, this behaves asymptotically as x ; my12b.
Second, solutions remain bounded in the y . 0 direction.
From (9), for a given x there exists yb such that the
equation eventually yields large zb ; yb, zb k x after
a certain time [x eventually remains in the domain to
the left of the curve (26)]. Since x cannot be very large
for large yb, the diffusion term remains negative, while
the transport term assumes a large negative value. This
is true for all y . yb.

This analysis demonstrates that the dynamical sys-
tems model consisting of (7), (8), and (9) has a stable
equilibrium solution when Y 1 mX , 0 in the y , 0
domain, and that, regardless of the local stability of the
equilibrium solutions in y $ 0, all the solutions are
bounded so that the solution is expected to become an
orbit (possibly a limit cycle) or to become chaotic when
the equilibrium solution is locally unstable. In the re-
mainder of this section we will present a detailed dis-
cussion of the previously discussed linear analyses. If
all of the equilibrium solutions were stable, then the
situation is expected to be very similar to that originally
discussed by Stommel (1961), who for the first time
demonstrated the existence of multiple equilibria in a
simple dynamical systems model of the thermohaline
circulation. In Stommel’s analysis the system that he
constructed allowed only point attractors that corre-
spond to steady states. We will herein demonstrate that
both steady multiple equilibrium solutions and non-
steady bounded solutions can exist in the present model
depending upon the choice of parameters.

In this investigation, we will be primarily concerned
with the dependence of the behavior of the dynamical
system upon the two forcing parameters, namely, X and
Y, and the impact of these parameters will be examined
over the range X ∈ [0, 100], Y ∈ [2100, 0]. We will
also be interested in the way in which the structure of
the solution depends upon b, which determines the na-
ture of the relation between the overturning circulation
and the density (salinity) contrast. According to the
analysis by Hughes and Weaver (1994) using a three-
dimensional ocean general circulation model, b is ex-
pected to be near 1. In our current work, we will loosely
restrict the parameter range for b, and b will be varied
through the sequence of values 1.0, 1.2, 1.4, and 1.6.
As shown later, the structure of the solution changes
drastically as b increases. Another parameter that will
prove to have interesting effects is m, which modifies
the contribution of diffusion to some extent. This pa-
rameter will be varied through the sequence 0.3, 0.5,
and 0.7 for the purpose of sensitivity analysis.

The equilibrium solutions of our dynamical systems
model of the North Atlantic THC may be classified into
three categories. One category corresponds to the con-
dition y # 0. This category corresponds to solutions in
which NADW formation effectively ceases and it will
hereafter be referred to as the stagnant regime. The
second and third categories have equilibrium solutions
in y . 0. Figure 2 shows the equilibrium solutions for
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FIG. 3. Solution classification diagrams over the parameter space
of X and Y. Two regimes are presented: one is the intense NADW
forming regime, which has stable solutions when 2Y is relatively
small, and the other is the stagnant NADW regime (linear regime),

←

which has stable solutions when 2Y is set relatively large. From the
top to bottom panels, b is varied through the sequence as (a) 1.0, (b)
1.2, (c) 1.4, and (d) 1.6, respectively; m is held fixed to 0.5. The
numbers and letters in each region indicate the corresponding status
of the solutions within the domains separated by the lines of de-
marcation; the number 1 indicates that the following (alphabetical)
status index corresponds to the stagnant NADW state, whereas 2
denotes that it is that of the intense NADW formation state. The
letters n, u, and s indicate the status of the solution respectively as
nonphysical, unstable, and stable. The dashed lines denote the sta-
bility criteria (Y 1 mX 5 0) for the linear regime, and the regime in
which no stable equilibrium solution exists is shown as a hatched
region.

y as a function of X and Y for two values of b in the y
. 0 domain. In this region of parameter space the sys-
tem allows multiple equilibria for some values of the
parameters. Since the stagnant solution also exists for
Y 1 mX , 0, at maximum three equilibria may exist
simultaneously. We classify the y . 0 solutions into two
types: respectively, the intense NADW formation and
the weak NADW formation regimes. The weak NADW
formation regime, however, turns out to be always un-
stable over the range of control parameters investigated,
and the discussion of solution regimes will focus upon
these two (possibly stable) regimes, that is, the stagnant
regime and the intense NADW formation regime, unless
explicit mention is made to the contrary.

Figure 3 summarizes the classification of solutions
on the XY plane when m 5 0.5 and for a value of the
parameter g 5 0 (the definition and physical meaning
of g will be introduced shortly). On the figure, the results
are shown for four different values of b. The situation
for the case b 5 1 is shown in the top plate. Clearly
evident is the fact that the local stability of the equilib-
rium solution of the dynamical system is split into two
regimes by the condition Y 1 mX 5 0: when Y 1 mX
, 0, only solutions in the stagnant regime are stable,
and when Y 1 mX . 0, only solutions in the intense
NADW formation regime are stable (the line Y 1 mX
5 0 is plotted as dashed). The nomenclature employed
in this figure is such that the number 1 refers to the
stagnant steady state, whereas the number 2 refers to
the state of strong NADW formation. Each of these
states is classified as either s (steady), u (unsteady), or
n (nonphysical) in each of the regions into which the
X–Y plane is divided.

Near the value b 5 1.2, a Hopf bifurcation occurs
for a value of Y slightly smaller than 2mX. In Fig. 3b
the intense NADW formation regime becomes unstable
for a value of Y just below 2mX. As we have discussed
previously, in the absence of a stable equilibrium so-
lution, even if it is only locally stable, the solution ob-
tained by direct integration should become either a sim-
ple orbit or a chaotic orbit in phase space. The existence
of the region of parameter space in which no stable
equilibrium solutions exist is more clearly visible in
parts Figs. 3c,d.
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FIG. 4. Solution classification diagrams over the parameter space
of X and Y. Two regimes are presented: one is the intense NADW
forming regime, which has stable solutions when 2Y is relatively
small, and the other is the stagnant NADW regime (linear regime),
which has stable solutions when 2Y is relatively large. From the top
to bottom panels, m is varied through the sequence as (a) 0.3, (b)
0.5, and, (c) 0.7, respectively; b is held fixed to 1.4. The meaning
of the numbers and letters in each panel is the same as in Fig. 3. The
dashed lines denote the stability criteria (Y 1 mX 5 0) for the linear
regime, and the regime in which no stable equilibrium solution exists
is shown as a hatched region.

The forcing applied to the low–midlatitude NA, X,
may not have experienced any significant change even
under glacial conditions, as assumed in SP96 and SP97,
and thus it may suffice to consider only one particular
value of X in Fig. 3; as is evident from the figure, the
stability structure does not significantly change when
Y/X is constant. According to the hypothesis in SP96
concerning the hydrological cycle, the high-latitude NA
was subject to anomalously high freshwater flux under
full glacial conditions due to the existence of the huge
Laurentide ice sheet that covered all of Canada (the
Fennoscandian ice sheet is also expected to have con-
tributed to high-latitude freshening); therefore we might
imagine Y to change somewhat proportionally to ice
sheet coverage. When 2Y remains small, at least a lo-
cally stable equilibrium solution exists and the system
may settle onto the equilibrium point. This situation
coincides with the modern NA THC in the dynamical
systems model and reproduces exactly the same situa-
tion as that described in SP96. When 2Y become large,
but not so large that the system allows only the stagnant
solution, the reduced dynamical systems model of the
NA THC has no stable equilibrium solution but may
perhaps deliver a limit cycle as we shall see. This bi-
furcation structure is very similar indeed to that revealed
in the considerably more complicated model of SP96,
and we may therefore claim that the dynamical systems
model developed herein accurately captures the essential
mechanism of the millennial timescale oscillation pre-
viously revealed. Typical integrations of the model to
be discussed in the next section will demonstrate that,
beyond the bifurcation point, the model delivers the
same millennium timescale oscillation as that obtained
in the more complicated model of SP96.

A further set of sensitivity experiments has also been
performed and is summarized in Fig. 4. In this set, m
is varied between 0.3 and 0.7, whereas b is held fixed
to 1.4. One can clearly see that increasing m causes
enlargement of the range of forcing parameters for
which the condition of unstable solution exists for the
intense NADW formation regime. When m 5 0.3, not
only does the reduced dynamical system always have
stable equilibrium solutions but it also allows stable
multiple equilibria. When m 5 0.7, on the other hand,
the domain of unstable solutions for the intense NADW
formation regime becomes noticeably larger.

In a first set of sensitivity tests we have set b 5 1.4
(see Fig. 4) in order to view a region of parameter space
in which no stable equilibrium solutions exist as stan-
dard. We would nevertheless have the unstable domain
even when b 5 1 for a large region in X–Y parameter
space if m were set to be sufficiently larger than 0.5.
Since m is the ratio of the local rate of diffusive ex-
change (between x, y, and z) to the global rate [here
global implies between one of (x, y, z) and the back-
ground] of diffusive exchange, increasing m means that
the diffusive exchange among x, y, and z is more im-
portant than diffusive exchange between the main res-
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FIG. 5. Solution classification diagrams over the parameter space
of X and Y. Two regimes are presented: one is the intense NADW
forming regime, which has stable solutions when 2Y is relatively
small, and the other is the stagnant NADW regime (linear regime),

←

which has stable solutions when 2Y is relatively large. From the top
to bottom panels, g is varied through the sequence (a) 0, (b) 1, (c)
10, and (d) 100, respectively; b is held fixed to 1.4 and m to 0.5.
The meaning of the numbers and letters in each panel is the same as
in Fig. 3. The dashed lines denote the stability criteria (Y 1 mX 5
0) for the linear regime, and the regime in which no stable equilibrium
solution exists is shown as a hatched region.

ervoir and the background. Although determination of
the most realistic value of m must await further inves-
tigation, this case study suggests to us that over a rather
wide range of parameters the space contains a domain
in which no stable equilibrium solutions exist and in
which a limit cycle should characterize the nature of the
solution.

It is well worth pointing out that the Hopf bifurcation
is also suppressed and the system thereby stabilized
when we add an additional term to Eq. (9) of the form
2g(z 2 x), where g $ 0. This term obviously tends to
reduce the difference between y and z. For sufficiently
large g, the system is then expected to behave very
similarly to Stommel’s box model (Stommel 1961) in
which no such limit cycle exists.

Figure 5 summarizes the results of the analysis that
are obtained when we apply nonzero g to the reduced
dynamical systems model of the NA THC. As one will
clearly observe in Fig. 5, the region of parameter space
in which only unstable solutions for the intense NADW
formation regime exists shrinks, as g is increased from
0 to 100. In the bottom panel of Fig. 5, another param-
eter domain in which stable multiple equilibria exist will
be observed.

These analyses demonstrate that the spatial hetero-
geneity of NADW that drives the NA THC plays the
central role in the instability. Since it is rather unnatural
to imagine that the NADW domain is perfectly well
mixed so as to have homogeneous density, and its het-
erogeneity has indeed been demonstrated in two-di-
mensional models such as that of SP96 and in three-
dimensional models such as that of Winton and Sarachik
(1993), we have included this heterogeneity explicitly
and shown it to be critical to the physical phenomenon
of interest. This analysis also clarifies the existence of
orbital solutions of the dynamical systems model when
the freshening of the high-latitude NA is close to the
critical level above which it would suppress the NADW
formation process entirely.

4. Sample integrations

An important result obtained on the basis of the linear
analysis is that the system contains a transition from a
locally stable point attractor to unsteady bounded so-
lutions via a Hopf bifurcation. The bifurcation occurs
when b . 1.2 and Y 1 mX * 0 if m 5 0.5. In order
to examine the fully nonlinear behavior of the system,
in this section we will illustrate the results obtained on
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FIG. 6. Two integrations of the reduced dynamical system of the North Atlantic thermohaline circulation
when the transport is linearly proportional to the salinity difference between NADW and the background.
The equilibrium solution is locally stable. Two cases differ only by the initial conditions: Upper panels show
[left: time series of x and y; right: phase space trajectory of (x, y, z)] the result when the initial value is
close to the stable equilibrium solution, whereas the lower panels show the result when the initial condition
is set far from the equilibrium solution. X, Y, m, and g are held fixed to 100, 245, 0.5, and 0, respectively.

the basis of direct numerical integrations of the gov-
erning system (7), (8), and (9). In the results that are
presented in this section, all the model parameters ex-
cept b are held fixed: namely, we will assume m 5 0.5,
g 5 0, X 5 100, and Y 5 245.

a. Solutions corresponding to linear transport:
The case b 5 1

For the simplest case in which the power law expo-
nent is set to unity, the equilibrium solutions for either
the stagnant or intense NADW regimes are locally stable
whatever the combination of X and Y in the investigated
range. For the linear case (the stagnant regime, Y 1 mX
, 0) it is true that the equilibrium solution is a global
attractor. For the nonlinear regime (Y 1 mX . 0), it is
not guaranteed that the equilibrium solution will be a
global attractor.

Figure 6 presents sample integrations for the case
when b 5 1. Figures 6a,b present the result obtained
when the system is initialized near the equilibrium point.
Expectedly, the solution converges onto the local equi-
librium solution corresponding to the regime of intense
NADW formation. On the other hand, Figs. 6c,d exhibit
an obvious oscillation. The oscillation is on a timescale
that is several times larger than the characteristic time-
scale for diffusion, and the shape of the oscillation is

very similar to that delivered by the model of SP96 and
connected to the Dansgaard–Oeschger oscillation. The
only difference between the result shown in the lower
part of Fig. 6 and that in the upper part involves the
initial conditions. In the second example, the dynamical
systems model of the NA THC was initialized far from
the equilibrium solution and in this circumstance direct
integration shows that it remains removed from the equi-
librium solution.

These results for the case of linear transport dem-
onstrate that our dynamical systems model of the NA
THC may deliver millennial timescale oscillations even
when the equilibrium solution corresponding to the in-
tense NADW formation regime is linearly stable. It is
also important to note how easy it is with the model to
produce a millennium timescale oscillation that is very
similar to the Dansgaard–Oeschger mode that is pre-
dicted by the model of SP96 under similar circumstanc-
es. The linear analysis of the equilibrium solutions pre-
sented in the previous section shows that even when b
5 1, in which case the dynamical systems model best
approximates that of SP96, the model possesses a region
of parameter space in which no stable equilibrium so-
lutions exist when m . 0.5 (not shown). Here we have
shown that even under conditions such that the equilib-
rium solution in the intense NADW formation regime
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FIG. 7. Integrations of the dynamical system when the overturning transport is superlinearly proportional
to salinity difference. The equilibrium solutions are locally unstable. The upper panel shows the case when
b 5 1.4, whereas the lower panel shows that of b 5 1.8. For each case, the system is initialized near the
stable equilibrium solutions. X, Y, m, and g are held fixed to 100, 245, 0.5, and 0, respectively.

is locally stable, the system may nevertheless not con-
verge to the equilibrium solution, but rather may remain
on a limit cycle orbit in phase space.

b. Solutions with nonlinear transport:
The cases b . 1

When b is larger than unity, we may expect some
modification of the solutions obtained with linear trans-
port. Figure 7 presents the results obtained on the basis
of two representative integrations of the dynamical sys-
tems model in this regime. In these two experiments,
the initial values of (x, y, z) were initialized near those
corresponding to the equilibrium solution, but the phase
space trajectory is still repelled from the equilibrium
since this is no longer locally stable, and the trajectory
eventually forms a limit cycle that is illustrated on the
phase space diagram. It will be observed that the evo-
lution of the trajectory in each cycle of the oscillation
is essentially the same as in the oscillation that occurs
in the linear case (b 5 1), and of course it is very similar
to the results obtained using the considerably more com-
plicated model in SP96.

The oscillation is apparently characterized as pos-
sessing two distinct stages in each cycle of the millennial
timescale oscillation: a stagnant stage, which occupies
most of the period of the cycle, and a very intense
NADW forming stage. Since the period during which

x decreases rapidly in association with the intense trans-
port accompanying the NADW formation process is
rather brief, the period of the complete cycle is deter-
mined primarily by the duration of the stagnant stage.
During the stagnant stage, x increases gradually, in a
way that is determined by the balance between X and
Y as expressed in (7) and (8), toward a virtual equilib-
rium state that lies in the y $ 0 domain.

c. Spectral analyses of the integrations for b 5 1.4

It is of interest to consider the impact upon the period
of the millennial timescale oscillations delivered by the
dynamical systems model of the THC due to changes
of the high-latitude freshening parameter Y. One of the
main results reported in SP96 and SP97 was that this
period increased abruptly with the increase in freshening
rate. In order to answer this question, we have performed
a spectral analysis of the y time series derived from
integrations of the system when b 5 1.4 for various
values of Y for fixed X 5 100.

Figure 8 summarizes the results obtained in this se-
quence of analyses. The oscillatory solutions exist in
the range of 2Y from near 40 to 50. At 2Y ; 40, the
period is approximately 2 in nondimensional time units.
In dimensional time, with the diffusion timescale of 500
yr, 2 is equivalent to 1 kyr. As 2Y increases, the period
increases to a value near 10 in nondimensional terms
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FIG. 8. Power spectra of the time series of y. X is held fixed to
100, b is held fixed to 1.4, m to 0.5, and g to zero. The horizontal
axes are the period of power spectrum and the high-latitude forcing
Y. Very high frequency perturbation (period ;1 yr) has been added,
and the perturbation lowers the lower boundary of the Y parameter
range in which the millennial timescale oscillations occurs.

→

FIG. 9. Response of the dynamical system when sinusoidal perturbations are applied to the high-latitude NA with various periods. The
amplitude of the perturbation is held fixed to a certain portion of X. The top panel shows the case when the amplitude is set to 0.1X (510),
the middle panel shows the case when the amplitude is set to 0.5X (550), and the bottom panel shows that of the amplitude set to X (5100).
Power spectra are shown in terms of the period of the perturbation and the period of the resulting time series. Power spectra, the

near 2Y 5 50. In dimensional time this corresponds to
a period of 5 kyr. Although our dynamical systems mod-
el is highly simplified, much more so even than the two-
dimensional THC models employed in SP96 and SP97,
the range of millennial timescale oscillations that is pre-
dicted by this model well fits the observed character-
istics of the Dansgaard–Oeschger oscillation as well as
the results obtained with our previously discussed mod-
els.

5. Response to periodic perturbations

To this point we have established that the dynamical
systems model does capture the essence of the D–O
oscillation. If the system were structurally unstable,
however, we would be in no position to conclude that
the mechanism embodied in the model was correct, ap-
parently because we have ignored many other climate
processes on various timescales in the process of for-
mulation of the multibox model. Furthermore, to this
point we have yet to consider the impact on the oscil-
lations of external perturbations such as that associated
with the annual cycle as well as, on very long timescales,
possible oscillations of the continental ice sheet–climate
system. In order to demonstrate the considerable ro-
bustness of the D–O regime in our model we will herein
consider the behavior of the system when it is subject
to perturbation, in particular to periodic forcing of pre-
scribed amplitude.

Two different types of periodic forcing will be con-
sidered: one that is sinusoidal and a second that is asym-
metric and of sawtooth form. In each experiment, the

amplitude of the perturbation is held fixed to values
comparable to X, a fairly large value considering the
amplitude of annual evaporation minus precipitation
(and runoff from the continents).

a. The response to sinusoidal perturbation

In a first set of experiments to investigate the impact
on the response of time-dependent forcing, we have
added an excitation of the form A sinvt to the dynamical
system so as to scan a range of amplitudes and fre-
quencies. The perturbation is applied solely to the high-
latitude domain, the representative variable for which
is y, considering that it is likely that the largest changes
to freshwater forcing occurred at the surface of the high-
latitude NA in association with the enhanced freshwater
forcing that was most probably characteristic of glacial
conditions (e.g., Crowley and North 1991).

The basic configuration of the system employed in
the context of these perturbation experiments has been
held fixed to a condition specified by the control pa-
rameters b 5 1.4, m 5 0.5, and g 5 0, and the forcing
parameters to X 5 100 and Y 5 245. In this state the
unperturbed model delivers a solution characterized by
a typical millennial timescale oscillation. The amplitude
of the perturbation added to this system was varied
through the sequence 0.1X (510), 0.5X (550), and X
(5100). Considering that these perturbations are of
comparable strength to the boundary forcing X and Y,
it is clear that the system must be considered to be
strongly perturbed in these experiments. The frequency
of the applied perturbation was also varied over the
range from 0.01 to 100 measured in terms of the char-
acteristic timescale of diffusion. This range corresponds
to a dimensional range of timescale from 5 yr to 50 000
yr when the characteristic timescale of diffusion is 500
yr.

Figure 9 shows a summary of the results obtained in
these experiments. On each of the three panels that show
the results for the three different choices of forcing am-
plitude, the power spectra of the y time series are plotted
for different forcing periods. It will be noted that even
when the amplitude of the forcing is set to 10, the nec-
essary condition for the occurrence of the millennium
timescale oscillation is always violated near the extrema
of the sinusoidal perturbation.

It is clearly shown in Fig. 9 that the behavior of the
system is radically transformed for a value of the period
of the forcing of unity in which case the period of the
applied perturbation coincides with the characteristic
timescale for diffusion. When the period of the applied
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amplitude of which exceed 1000, are out of the scope and therefore not shown in the lower
two panels.
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harmonic perturbation is shorter than 1, the same mil-
lennial timescale oscillation exists even when very large
amplitude perturbations are applied, whereas the box
model of the NA THC becomes locked to the period of
the forcing when this is longer than the characteristic
timescale of diffusion.

These results strongly suggest that the mechanism of
the millennial timescale oscillation of the NA THC is
extremely robust against periodic excitation when the
period of this excitation is shorter than the characteristic
timescale of diffusion. The annual cycle, for example,
satisfies this condition, and even the century timescale
variability that may exist in systems with more degrees
of freedom, such as that discussed, for example, in SP96,
also satisfies this condition. As we have demonstrated
through linear stability analysis, the millennial timescale
oscillation may exist over a very wide range in control
parameter space. The demonstrated robustness of the
model produced D–O oscillation would appear, a pos-
teriori, to further validate the model of the essence of
this process developed herein.

b. The response to sawtooth perturbations:
Implications for understanding the Bond cycle

In this section we will briefly describe a further series
of results obtained with the dynamical systems model
of the North Atlantic THC when it is perturbed with
considerably longer timescale periodic perturbations.
The motivation of this set of experiments was inspired
both by the results obtained in SP96 and SP97, and by
the analyses of Bond et al. (1993) of the information
on late glacial climate contained in the Summit, Green-
land, ice cores. According to the latter investigation, the
region surrounding the high-latitude NA experienced a
long timescale, sawtooth-shaped oscillation of temper-
ature with a period of approximately 10 kyr, as well as
the D–O oscillation itself. This longer timescale oscil-
lation appears to be connected to the Heinrich events
first described by Heinrich (1988), episodes during
which large armadas of icebergs were apparently re-
leased from the Laurentide ice sheet on the east coast
of North America, which were subsequently transported
into the region of NADW formation by the North At-
lantic drift. If some significant amount of Laurentide
ice was removed in each such event, it would be ex-
pected to affect the NADW formation process in two
different ways: first, anomalous freshwater flux asso-
ciated with the ice rafting itself was undoubtedly applied
to the high-latitude North Atlantic, which likely served
to help suppress the process of NADW formation di-
rectly. Second, the removal of ice from the eastern flank
of the Laurentide ice sheet may also have reduced the
non-sea level related contribution to anomalous fresh-
water input onto the NA that is required to induce the
D–O oscillation according to the hypothesis by SP96
and SP97. The first influence associated with the anom-
alous freshening accompanying the Heinrich events,

however, acts on a timescale that is short compared to
the period of the Bond cycle itself and may be best
thought of as a several kyr period of very high fresh-
water flux. Since the bundling of the D–O oscillation
within each of the Bond cycles can be observed through-
out the decamillennium cycle, we, as a first attempt to
investigate the origin of the Bond cycle with this highly
simplified model, have ignored this influence. The sec-
ond influence, on the other hand, might be expected to
act over the entire duration of the Bond cycle, although
this would also depend upon how much ice cover was
removed by each of the Heinrich events. In this case,
just prior to the initial sudden warming that initiates the
Bond cycle, the North Atlantic would have been subject
to maximum anomalous freshening. This qualitative de-
scription of the variation of anomalous freshwater forc-
ing that is expected to have occurred through a typical
Bond cycle suggests a simple sawtooth variation of this
forcing. The dominant period of this variation would
then have been on the 10-kyr timescale. With these con-
siderations as motivation, we applied a sawtooth-shaped
variation of freshwater flux to our dynamical systems
model of the NA THC. Again, the control parameters
were held fixed to b 5 1.4, m 5 0.5, and g 5 0. The
forcing parameters were set to X 5 100, and Y 5 241
in this series of analyses. Figure 10 shows the z time
series delivered by the dynamical systems model of the
NA THC when this is subject to sawtooth periodic per-
turbations with various amplitudes. What is clearly ob-
served in this sequence is the modulation of the mil-
lennial timescale Dansgaard–Oeschger oscillation on
the longer timescale of the applied perturbation. When
the amplitude of the perturbation is set to a large value,
intense millennial timescale oscillations appeared only
after each of the reductions in the strength of the fresh-
water perturbation, times that mimic the process that
occurs at the end of a typical Heinrich event. Since the
temperature proxy from Greenland ice cores indicates
that somewhat weaker Dansgaard–Oeschger oscillations
occur toward the end of each Bond cycle, the grouping
of the millennial timescale oscillations predicted by the
dynamical systems model does resemble, if crudely, the
observed bundling of D–O oscillations that character-
ized the Bond cycle. This is, of course, based upon the
assumption that episodes of intense NADW formation
correspond to higher atmospheric temperature as dis-
cussed in SP97.

Before we will be entitled to conclude that the Bond
cycle did in fact result directly from changes to the
hydrological cycle associated with episodes of calving
on the eastern flank of the Laurentide ice sheet asso-
ciated with the Heinrich events, further analyses will
clearly be required with more complete models of the
process. Here we wish simply to put on record the sug-
gestion that the Bond cycle may be thought as arising
due to modulation by time-dependent meltwater forcing
of a D–O oscillation that would exist under full glacial
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FIG. 10. Response of the reduced dynamical system of the NA THC when sawtooth-shaped
perturbations are applied to the high-latitude NA with various amplitudes. The time series of z
are plotted against time.

conditions even if the boundary conditions were time
independent.

6. Conclusions

We have developed herein a low-dimensional dynam-
ical systems model of the North Atlantic thermohaline
circulation in order to provide further clarification of

the mechanism that we have suggested to underlie the
so-called Dansgaard–Oeschger oscillations that are so
prominently observed during the late glacial stage of
the last ice age cycle as this is recorded in Summit,
Greenland, ice cores.

This reduced model apparently captures with some
accuracy the evolving salinity distribution of the basin
that has already been analyzed with the use of two- or
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three-dimensional thermohaline circulation models such
as those of Winton and Sarachik (1993) and Sakai and
Peltier (1995, 1996). The simplified model is shown to
reproduce important features of the mechanism of the
Dansgaard–Oeschger oscillation that we have previous-
ly discovered in the course of work based upon two-
dimensional thermohaline circulation models (SP96;
SP97). In terms of the results obtained using coupled
atmosphere–ocean systems, a further recent contribution
by Winton (1997) has also provided an interesting in-
sight on this issue, although the experiments performed
in that work are based upon somewhat unrealistic as-
sumptions. According to his analyses, the important fac-
tors that lead to the occurrence of the the D–O oscil-
lation are the colder climate over the northern part of
the North Atlantic basin and the very long relaxation
time of sea surface temperature toward the reference
temperature. There appears therefore to be a distinct
difference between the recent suggestion of Winton
(1997) and that embodied in the papers of Sakai and
Peltier (1995, 1996, 1997). In our opinion the most es-
sential ingredient that underlies the millennium time-
scale oscillation is common to both of these analyses,
namely, the control exerted by freshwater forcing on the
density of the surface water of the North Atlantic basin.
By increasing the influence of the surface density flux
relative to that of the boundary values, the THC system
can be forced to oscillate, a bifurcation structure of THC
systems that has been described in the earlier literature
by, for example, Quon and Ghil (1992) and Sakai and
Peltier (1993). Although most of the discussion in this
paper has followed the previous work in SP96 and SP97
in focusing upon the important role applied by salinity
forcing, an approach strongly motivated by the inference
of Duplessy et al. (1991) to the effect that high-latitude
NA salinity was strongly depressed during full glacial
conditions, our theory of the millennium timescale THC
oscillation would remain valid even if the role of the
temperature field were to prove to be more important
than we have assumed.

Our analysis of the dynamical systems model of the
North Atlantic thermohaline circulation demonstrates
that the Dansgaard–Oeschger oscillation has a simple
structure that is driven by low–midlatitude salt accu-
mulation and controlled by freshening in the northern
portion of the basin where deep water is formed. The
millennial timescale oscillation can exist even if the
equilibrium solution is locally stable when the over-
turning transport in the reduced system is linearly de-
pendent upon the density contrast, and the oscillation
is inevitable when the overturning transport is superli-
nearly dependent upon the density contrast. The period
of the oscillation ranges from a millennium to several
millennia, and the oscillation appears only when the
intensity of high-latitude freshening is slightly weaker
than that required to shut down the overturning circu-
lation entirely. This is fully consistent with the results
reported in SP96 and SP97.

We have also reported a series of analyses concerning
the way in which the variability of the deep circulation
is modified when the buoyancy forcing is time depen-
dent. These analyses have established that the model of
the Dansgaard–Oeschger oscillation is extremely robust
against relatively short timescale perturbations, but that
the system is easily modulated by relatively long time-
scale perturbations. On the basis of the latter results we
have suggested that the Bond cycle (Bond et al. 1993)
is simply a consequence of the variation of the fresh-
water forcing applied to the North Atlantic in associa-
tion with Heinrich events. A marked difference in the
nature of the response to periodic forcing occurs when
the forcing timescale exceeds the diffusion timescale
compared to that that obtains when the forcing timescale
is less than the diffusion timescale.

A very recent analysis of paleoceanographic data by
Bond et al. (1997) has provided very interesting and
potentially important new information on millennium
timescale climate variability. According to these anal-
yses the North Atlantic has experienced millennium
timescale variability even during the current Holocene
epoch following deglaciation. Although this variability
is much weaker than the glacial D–O oscillation, it ap-
pears to be characterized by the same timescale. GRIP
(1993) and GISP2 (1993) analyses and our previous
analyses using an ice age climate model have shown
that the glacial millennium timescale oscillation is ac-
companied by a large-amplitude temperature oscillation
that is not observed during the Holocene. We therefore
suggest that the mechanism underlying the Holocene
millennium timescale variability may well be different
from that responsible for the millennium timescale os-
cillation that occurred under full glacial conditions.
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