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Abstract 
Free convection between two interconnected reservoirs, due to density differences main- 

tained by heat and salt transfer to the reservoirs, is shown to occur sometimes in two different 
stable regimes, and may possibly be analogous to certain features of the oseanic circulation. 

The density of sea-water is modified while 
at the surface by two distinct processes: heating 
and cooling, which change the temperature, 
and precipitation and evaporation, which 
change the salinity. In many important oceanic 
regions these two density modifying processes 
work contrarily to one another. For exam le, 
the water in and above the main thermoc P,, . e 
in all subtropical oceans is able to float on 
top of the denser deep water (we neglect 
here all consideration of the “salt-fountain” 
effect) because its density is depressed through 
surface heating - but the excessive evaporation 
in these same latitudes is able to increase the 
salinity of the surface waters to such an extent 
that in general their density contrast with deep 
waters is only one half of what it would be 
on the basis of temperature alone. In some 
large semienclosed seas (e.g. Mediterranean 
and Red Seas) subject to similar surface 
heating and evaporation, the salinity can have 
a predominant influence on the density field. 
By qualitative comparison of these cases we 
form an impression that the heat transfer 
mechanism has a more rapid effect on the 
density of a newly arriving parcel of water, 
but that in the long run, given sufficient time, 
evaporation can reverse the thermal influence. 

We do not know enough about the details 
of oceanic circulation to pursue these questions 
in their full complexity in nature but we can 
explore their implications in simple idealized 
systems. That is all we propose to do here. 

First, let us consider a very simple system: 
a vessel of water stirred so as to maintain 
uniform tem erature T and salinity S.  (fig. I ) .  
The walls o P the vessel are made of a porous 

substance which permits transfer of heat and 
salt in a simple linear fashion: 

dT - = c ( T -  T )  
dt 

=d(S-  S) 
ds 
dt 
- 

T and S are the temperature and salinity out- 
side the wall and are regarded as fixed. 

The equations may be made non-dimen- 

4 o r o u s  wa1Is-l 
Fig. I .  The idealized experiment, consisting of a well 
stirred vessel of water with temperature T and salinity S 
(in general variable in time) separated by porous walls 
from and outside vessel whose temperature 7 and sali- 

nity S are maintained at constant values. 
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d x  
d t  - =d(1- x) 

The quantity 6 is considered to be a small 
quantity, that is we are most interested in 
situations where the salinity transfer coefficient $ 
d is less than the temperature transfer coefficient p 
t, or 6 < I. No matter what the initial values a 
of x and -say x o  and y o  at t = o -the initial 

the solutions of the above equations being, 
in general 

final equJbrium state as t + 00 is x = I, y = I, c” 

y = I + (yo - I) e-? 
x = I + (xo - I) e-dr 

Moreover, the temperature approaches its 
as mptotic value more quickly than the 
s a L t y  . 

Now let us consider a simple form of 
equation of state 

e = e o  (I - a T + B S )  
which, when expressed in terms of the non- 
dimensional quantities x and y is 

e = e o  t(I+T) ( - r+Wl 
where R = B S/aT, a measure of the ratio of 
the effect of salinity and temperature on the 
density in the final equilibrium state x = I, y = I. 
We are interested primarily in cases where 
R >I, because this corresponds to the case 
where the density at x = I, y = I is greater than 
that at x = 0, y = 0. The time rate of change of 
density at any time is 

dQ - = e 0 T [  - I + y + Rd (I - x)] dt 

If in the special case x o = y 0 = o ,  the quantity 
R6 < I, but R >  I then in the beginning at t=o 
the density at first decreases, but eventually 
increases again until at t = m it is greater than 
at the beginning. The entire process can easily 
be visualized on an S,T diagram or in non- 
dimensional terms, the x ,  y plane. In figure 
2, the lines of constant density anomaly 

/(aT) are drawn for the case R =z. 

The density anomaly is o at the initial condition 
x = 0, y = 0, and at the asymptotic limit t +m, 
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Fig. 2. Non-dimensional salinity-temperature diagram 
show lines of constant density (u is density anomaly) 
for the case R = 2. The points marked T = 0, I, 2, 
3 ,  5 ,  00 illustrate values of temperature and salinity at 

successive instants of time for 6 = I/6. 

the density anomaly is +I ,  therefore the fluid in 
the time dependent process in the case where 
6 =‘Is are plotted as points along a curve for 
increasing z. During the early stages the 
density decreases, until at Z=I it begins to 
increase again. At about t=4 the density is 
back at its initial value and henceforth in- 
creases to its asymptotic limit as z+m. 

Another way of visualizing the different 
rates of the salt and temperature transfer 
processes in controlling the density is to 
consider a simple steady state process, in which 
water at T= 0, S = o flows into the vessel 
at rate q, and the mixture is withdrawn at 
the same rate. The arrangement for this ex- 
periment is shown in figure 3. The equations 
describing this state are 

d T  
- dt = o =  c (7-  T )  -qT 

d s  
dt - = o = d ( S - S ) - q S  

and reduced to non-dimensional form as before 

I - (I +f’)y= 0 

6 -  ( 6 + f ’ ) x  = 0 
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inflow - 

c 
- outflow 

Fig. 3. The idealized steady state experiment. 

where f = q/c  denotes a dimensionless flow rate. 
The equilibrium values of x, y which obtain 
in the vessel are 

I 
Y = q  

The water which enters the vessel has zero 
density anomaly. When it leaves its density 
may be greater or less than that entering 
depending upon the flow ratef.. The points x, 
y corresponding to the salinity and tempera- 
ture of the outflow lie along the curve: 

I - Y  -- S ( I - 4  
Y X 

depicted in figure 4 for the value 6 = The 
actual points x, y for certain choices of flow 
ratef’. The shape of the curve depends only 
upon 6. The position of the points x, y on 
this curve depends only on f’. If we now 
choose R = z as before we can draw the same 
lines of density anomaly as in figure 2. Hence 
the most dense outflow occurs €or very 
small discharge rates f’ + 0, the outflowing 
water being denser than that flowing into 
the vessel. On the other hand, the position 
of points for whch ‘/4 <: f ’ s m  indicates 
that in this range of discharge the outflow is 
less dense than the inflow. The purpose of 

- X  

Fig. 4. Values of non-dimensional temperature y and 
salinity x for steady state experiment (fig. 3) for different 

rates of flow, f’. 

exploring these extremely simple models has 
been to lay a groundwork for the remarks 
made in the introduction where it was stated 
that the very different density structure in 
the Atlantic and Mediterranean might be 
simply due to different rates of flow, but the 
models are obviously too idealized for direct 
application to natural conditions. 

They are, however, suitable to use as a 
basis for exploring further consequences of 
the density transforming processes : in partic- 
ular the fact that the flow rates in free con- 
vective systems depend upon the density 
differences themselves. There is a kmd of 
“feedback” of the density difference produced 
upon the flow rate which produces it, that 
now must be introduced into the system in a 
simple way. The easiest way to accomplish 
t h s  is to introduce another stirred vessel 
surrounded by a resevoir at - T,  and - S, as 
shown in figure 5. 

The two vessels are connected by a large 
overflow at the top so that free surface of 
water is level across the top of each vessel. 
Connecting them at the bottom is a capillary 
tube whose resistance k is such that the flow q 
in the tube is directed from the h g h  pressure 
(hgh density) vessel toward the low pressure 
(low density) vessel by a simple linear law 

kq=e1-e2 
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Vessel I vessel 2 

I copillory 
-c 
9 

Fig. 5 .  Two vesselexperiment, with rate of flow, q. through 
capillary determined by the density difference between 
the two vessels. The upper overflow is provided so 
that the surface level in each vessel remains the same. 
The density difference between the two vessels depends 
on the flow rate as well as the nature of the transfer 

through the walls. 

The flow 4 is positive if directed from vessel I 
to vessel 2, and negative otherwise. There is, 
of course, a counterflow of the same amount 
returning through the overflow, so that the 
volume of water in each vessel remains the 
same. 

We are concerned with solution of symme- 
tric form, so we can define a single tem- 
perature T= TI= - T,  and a single salinity 
S = S, = - S,, so that the laws for conservation 
of temperature and salinity are simply 

d T  
dt - = c (T-  T )  - 1241 T 

ds 
dt - =d(S- S)- 1241s 

It is important to note that in the second 
term on the right hand side the flux enters 
with an absolute value sign. This means that 
the exchange of properties is insensitive to the 
direction of the circulation. Introducing the 
previous notation, and defrning 

I =  (L) k 
4 eoaT 

the a propriate non-dimensional forms of 
the re P ations describing the systems are 

dx 
dt - = 6 ( 1 - x ) - I f l x  

A . . = ( - y + R x )  

The last equation implies that the flow in 
the capillary is in a series of quasi-equilibrium 
states-since no time derivatives occur in it. 
Substitution of the last equation into the first 
two, to eliminate f; yields two non-linear 
equations 

dt $ 4 - y - ;  I - y + R x l  

dx X 

dt 

The points of equilibrium correspond to those 
values of x and y for which dy/dt and dx/dt 
vanish, thus leading to a cubic for y in terms 
of x. There will, therefore, sometimes be three 
real solutions, or three sets of values of x,  y 
which are equilibrium points. A simple graphi- 
cal construction enables us to see under what 
conditions several equilibria are admitted. 
Solving the first two equations for x and y, in 
stationary state, we obtain 

I 

Y = -  I+lf l  
and 

In figure 6 the function + (f; R, 6) has been 
plotted as a function of f for  R=2,  and for 
two choices of 6, 6 =I ,  and 6 =' Is .  

2 +(fAal T 

Fig. 6. Graph for determining the equilibria of the two 
vessel convection experiment (see text). 
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The solution (or real roots of the cubic) 
occur where this curve intersects the line AJ 
Two lines are drawn, one for 1 = I and one 
for 1 = 'Is. 2 is defined as positive. 

In the case R=2, S=l / , ,  A=l/b there are 
three intersections, located at points a, b and c; 
the corres onding approximate values of the 
roots are = - 1.1, -0.30, +0.23. These re - 

e simple convection can occur between the - 
coupled vessels without change in time. With a 
a somewhat larger value of 1 the line cuts the 
function 4 (fi 2, '/J in o d y  one point- ' 
in the case 1 =I, it cuts at d only. 

I 

resent three P different ways in which t R e g 

For certain choices of the parameters R 
and S there are forms of 4 (j R, 6) for which 
no choice of 1 can produce three real roots. 
For example, the choice R = 2, 6 = I gives ody  
one intersection (e or g) for any one choice 
of 1. It can be seen that this is always true 
when 4 (f; R, S) has no zeros. To explore 
the limitation on zeros of the 4 function, we 
note that if 4 = o then 

I I -=R- 
1 + If1 

(I - R) 6 = ( R 6 -  I)  I f 1  

1 + IflP 
or 

Thus the necessary condition for three inter- 
sections is 

R S < I  i f R > I  
or R ~ > I  i f o < R < I  

To be a sufficient condition A must also be 
small enough. 

Proceeding now to the x, y 
sionless, S, T diagram) we can 
the lines of equal density. These, of course, 
coincide with the lines of equal flow f in the 
capillary. In figure 7, the three equilibrium 
points a, b, c, are located for the particular 
case R=z, a='/,, The locations are 
computed from the values of fluxfas deter- 
mined in figure 6. The paths which temperature 
and salinity follow in the course of ap roaching 
equilibrium points can be plottecf by the 
method of isoclines as given in STOKER (IgSO), 
a few are sketched in figure 7. 

Both a and c are stable equilibrium points. 
U on detailed examination by the method 
o P PoincarC it can be shown that point a 

Salinity 

Fig. 7. The three equilibria a, b, and c for the two vessel 
convection experiment with R = 2, 6 = 116, 1=1 / s .  
A few sample integral curves are sketched to show the 

stable node (I, the saddle 6, and the stable spiral c. 

is a stable node, whereas point c is a stable 
spiral. Point b on the other hand is a saddle 
point, so that the system would not stay in 
that state if perturbed ever so slightly. 

A similar sketch for the system where only 
one equllibrium point (g in figure 6) in the 
system where R=z, 6=1, A = 1 / 5  is shown in 
figure 8. It is a single stable node. 

The fact that even in a very simple convec- 
tive system, such as here described, two 
distinct stable regimes can occur (as in figure 
7)-one (point a) where temperature differ- 
ences dominate the deiai differences and 

is from the 
cold to the warm vessel, and the other where 
salinity dominates the density difference so that 
the flow in the capillary is opposite, from 
warm to cold-suggests that a similar situation 
may exist somewhere in nature. One wonders 
whether other quite different states of flow 
are permissible in the ocean or some estuaries 
and if such a system might jump into on 
of these with a sufficient perturbation. If 
so, the system is inherently frought with 
possibilities for speculation about climatic 
change. Such a perturbation could be in the 
momentary state of the system-with all 
parameters remaining constant, or it could 

the flow through the capilary 7 
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be a slight change in the parameters. Refer- Moreover it is necessary to distinguish 
ring to figure 6 to see the effect of a Slight between two cases: (I) where the values 7 > 
increase in I we see that if 3, were to become R z ,  where < R z .  Equilibrium in 

and would vanish. in the One must allow, in this way for the absolute 

linearized perturbation equations, leads to 
the general form 

dy’ - ux’ + by’ 
dx‘ cx’ + dy’ 

where the coefficients a, b, c, d are defined 

S W ‘ Y  greater than ‘ / 4  9 the two intersections case (1) have negative J in case (2) positive 5 
value s i p  Forming the quotient of the two in figure a ‘light change in 

could cause the temperature dominated circda- 
tion at u to jump over to the reverse salinity 
circulation at c, and it would then sta there 
even when 1 was restored to its origina r value. 

Appendix 
The question of the stab&ty of the equili,.,- 

construction. We let x = X + x ‘ ,  y = Y + y ’  
where X and Y are values at a particular 

rium points is difficult to decide by graphical seParatelY for the as fO1lOWS 

e uilibrium point; hence they satisfy the 1 1 Case (1) Y> RX I Case (2) F< RX 
re f ation f < O  f > O  

a 

b 
c 

d 

- o = I - V - T ~ Y -  Y -  RXI R F / I  
- I - (2u- R X ) / I  
- 8 + ( 2 R X -  y)/I 
- x / I  

- 
X -  
I 0 = 6 (I  - x- - 1 Y - RJil 

The quantities x’ and y’ are regarded as 
s m a l l  departures from and Y and we form a 
linearized expression for dxn/d t  and dy’/dt  
which is valid in the neighborhood of X, Y 
by substitution and dropping all products of 
x‘ y‘. 

t 
Y 

- RF/I  
- I + ( z  y-  RE)/3, 
- 6 - ( z  RX- Y)/I 
%/I 

Fig. 8. The single stable node g for the case R - Z ,  6-1, 

Tellus XI11 (1961). 2 
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Table I. Numerical Calculations on Stability of Equilibrium Points. 

230 

System 

f 
Case 
X 
Y 

a 
b 

d 

- 
- 

C 

(b-c)' 
4 ad 
(b-c)' + 4 a J  

ad  
bc 
ad-bc 

b + c  

E 
3 
8 
a" 

e 

.- 

R = z  6 = ni = ' I s  

-1.10 

(1) 

0.13 
0.48 

4.80 
-4.50 
0.03 

-0.65 

20.5 
-12.5 

8.0 

-3.12 
4 . 1 3  
-2.99 

-4.47 

-0.30 

0.36 
0.77 

7.70 
-5.10 
3.18 

-1.80 

68.4 

(1) 

-55.5 
12.9 

-13.8 
-16.2 

2.4 

-1.92 

+0.23 
(2) 

0.42 
0.81 

-8.10 
2.90 

-4.52 
2.10 

55.0 
-68.1 
-13.1 

-1.62 

P = 2  6=1 A = ' / ,  

+ 1.76 
( 2 )  

0.36 
0.36 

-3.60 

-6.40 
I .80 

-1.00 

29. I 
-25.9 

3.2 

-6.48 
6.40 

-.08 

-7.40 

The Poincard conditions on the form of the equilibrium points are (STOKER, 1950) 

Stable if b + c < o 
Unstable if b + c > o (A) Node if ad- bc < o 

(B) Saddle if ad- bc > o 

(A) Center if b + c = o 
(B) Spiral if b + c # o 

Stable if b + c < o 
Unstable if b + c > o 

Type I ( b -  c)2+4ad>o 

Type I1 ( b  - c), + 4 ad < 0 

Type 111 ( b - ~ ) ~ + 4 a d = o  Node 
Stable if b + c < o 
Unstable if b + c > o 

The numerical values of all quantities are calculated in Table I for the systems shown in 
figures 7 and 8. 
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