
Lecture 5

Thermohaline Variability

Paola Cessi

1 Stochastic Forcing

The 2-box model analyzed in the prvious section (as well as Stommel’s box-model) is gov-
erned by a deterministic equation, i.e. the time evolution of the salinity difference, σ, is
completely determined by the model equation given an initial condition. Moreover, the
system always reach one of two possible stable steady states. However, variability can be
forced by a time-dependent forcing.

Now, let us consider a case where the salt flux, γ, has a component, γ ′, that is random
in time, γ = γ̄ + γ′(t). With the noise, σ is no longer a deterministic variable, but becomes
a random variable. In this case, σ can be written as σ = σ̄ + σ′(t).

Here, we consider two cases. For a weak agitation, or in a short time scale, the system
oscillates near the stable steady states (See Figure 1). For a large agitation, it will shift
from one stable point to another. In this section, we describe the behavior of the 2-box
system using stochastic methods.

2 Rattle near stable points

For weak agitation, the system rattles almost linearly around each equilibrium. Assuming
that the perturbation is small, we linearize the model equation around a stable solution,
say σ̄ = σc. The time-dependendent perturbation satisfies

∂σ′

∂t
= −∂2V

∂σ2
(σc)σ

′ + γ′ (1)

We use Fourier transforms to solve for the spectrum of σ′. The Fourier transform, σ̃(ω),
of σ′(t) is defined as:

σ̃(ω) ≡ 1

2π

∫
∞

−∞

σ′(t) exp(−iωt) dt (2)

σ′(t) =

∫
∞

−∞

σ̃ exp(iωt) dω (3)
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Figure 1: Rattle near stable points: Potential V is a function of σ. For weak noise, the
system rattles around the steady states, σa, and σc.
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And similarly, the Fourier transform pair of γ ′(t) is:

γ̃(ω) ≡ 1

2π

∫
∞

−∞

γ′(t) exp(−iωt) dt (4)

γ′(t) =

∫
∞

−∞

γ̃ exp(iωt) dω (5)

Applying these relationship to (1), we obtain,

σ̃ =
γ̃

Vσσ + iω
(6)

γ′(t) is the stochastic noise, and is randomly picked at every timestep, dt, from a gaussian
distribution with zero mean and variance ξ2. The auto correlation of γ ′ is,

< γ′(t)γ′(t + τ) >≈ δ(τ)dt ξ2. (7)

where δ(τ) denotes a delta function in τ . The Fourier transform of a delta function is a
constant, therefore, the spectrum (given by the ensemble average of the Fourier transform
of the auto correlation function) < |γ̃|2 > is constant for all ω. Thus the spectrum of σ can
be calculated by taking the product of (6) with its own complex conjugate and ensamble
averaging to obtain:

< σ̃σ̃∗ >=
< γ̃γ̃∗ >

Vσσ(σc)2 + ω2
=

dt ξ2

Vσσ(σc)2 + ω2
. (8)

This spectrum is red since it decreases with increasing frequency, starting at a frequency of
the order of the linear damping term.

3 Jumps between equilibria

On longer time scales or with larger variance of the noise, jumps between σa and σc can
occur occasionally. To study the stochastic behavior of the model with the noise-induced
jumps between equilibria, we go back to the nonlinear model equation with the noise term.

σ̇ = −∂V (σ)

∂σ
+ γ′(t). (9)

The probability distribution function (hereafter, PDF), φ(σ, t), describes the probability of
finding a particular value for σ at time t. The Fokker-Plank Equation (hereafter, FPE)
describes the time evolution of the PDE of the stocastically forced system [Gardiner 1990].
The FPE of the 2-box model is,

∂φ

∂t
= (Vσφ)σ + Dφσσ (10)

where D ≡ ξ2

2 dt. Taking the right hand side of the FPE to zero we obtain the steady state
solution, φs, which is the probability of finding a state with a particular value of σ when
time goes to infinity. The steady distribution is given by

57



10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ω

S
(ω

)

Vσσ(σ
c
)

Figure 2: Power spectrum of small perturbation around stable points

φs(σ) = N exp(
−V (σ)

D
). (11)

where N is a normalization constant which is determined by the constraint
∫
∞

−∞
φs dσ = 1.

Figure 3 shows an example of stationary distribution, φs, as a function of σ.

4 Average transit times

In this section, we calculate the average time for the system to shift from one stable equi-
librium to another. First, let us calculate the probability, Nac, of finding σa ≤ σ ≤ σc at
time t.

Nac =

∫ σc

σa

φ(x, t) dx (12)

The probability Nac can also be viewed as the probability that the time, τ , to exit the
interval [a, c], exceeds t. Indeed, finding σ in the range [σa, σc] at time t implies that σ must
leave the region after the time t. We define q(τ) as the PDF for the exit time, τ , from the
region [σa, σc].

Nac =

∫
∞

t

q(τ) dτ (13)

Then, the average exit time is given as the first moment of the PDF, q(t). Denoting with
Ta→c the average time for σ to escape from the region [σa, σc], we find:
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Figure 3: Steady state of the PDF : φs(σ)

Ta→c =

∫
∞

0
tq(t) dt

= −
∫

∞

0
t
dNac

dt
dt

=

∫
∞

0
Nac dt. (14)

To find Ta→c we integrate the FPE with boundary conditions in time and space. The mean
escape time from σc to σa, denoted with Tc→a can be also find using a similar procedure.
The boundary conditions will specify the direction of the shift between equilibria.

Here, consider a case where σ moves from σa to σc. We assume that at t = 0, the model
state, σ, is at σa, so that the PDF is a delta function. We also assume that as time goes
infinity, the PDF goes to zero. Defining the time-integrated PDF, φ̄ ≡

∫
∞

0 φ(σ, t) dt and
integrating (10) in time from 0 to ∞ we find

−δ(σ − σa) = (Vσφ̄)σ + Dφ̄σσ. (15)

We also assume that φ̄ → 0 as σ → −∞ because σ moves from σa to σc, implying that once
the particle has moved to σc, it should not return to the original location. This condition
gives φ̄(σc) = 0. With these boundary conditions, one can solve equation (15), and obtain
Ta→c.
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Ta→c =
1

D

∫ σc

σa

dx

φs(x)

∫ x

−∞

φs(y) dy

≈ 1

D

∫ σc

σa

dx

φs

∫ σb

−∞

φs dy (16)

We calculate Tc→a using the same equation with different boundary conditions. In this case,
the model state, σ is initially concentrated at σc and the PDF is delta function there. We
assume that φ̄ → 0 as σ → ∞ because σ moves from σc to σa (with σa < σc as in figure
1). Also we set φ̄(σa) = 0, assuming that once particles arrive at σa they never come back.
With these boundary conditions, we solve the equation (15), and obtain Tc→a.

Tc→a ≈ 1

D

∫ σc

σa

dx

φs

∫
∞

σb

φs dy (17)

5 Random Telegraph Process

On long timescales we can assume that the system simply jumps between the two equilibria.
We ignore the rattle around each equilibrium and only allow σ to be in one equilibrium or
another. In this case, we can approximate the system with a Random Telegraph Process
: σ is in σa with probability Na

N
or in σb with probability Nb

N
. The sum of Na

N
and Nb

N
is

unity. We can now use the average escape times Tc→a and Ta→c to estimate the rates of
transitions between equilibria. Specifically we have

Ṅa = −ωaNa + ωcNc (18)

Ṅc = −ωcNc + ωaNa (19)

where ωa = T−1
a→c and ωc = T−1

c→a. Steady solutions are found equating the right hand sides
to zero, so that

Na = N
ωc

ωa + ωc
(20)

Nc = N
ωa

ωa + ωc
(21)

We can compute the low frequency spectrum by taking the Fourier Transform of the
auto-correlation function. First, we define the auto-correlation function of the Random
Telegraph process.

C(τ) =< σ′(t)σ′(t + τ) > (22)

where σ′ = σ− < σ >. The average value for σ is < σ >= 1
N

∑N
1 σ = σa

Na

N
+ σc

Nc

N
. We

need the time-dependent equation for C(t). First, let us consider the equilibrium value at
τ = 0,
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C(0) =
1

N

N∑

1

σ′2 (23)

=
Na

N
σ′

a
2
+

Nc

N
σ′

c
2

(24)

=
NaNc

N2
(σa − σc)

2 (25)

=
(σa − σc)

2ωaωc

(ωa + ωc)2
(26)

Next we consider the state of the system at time, 0 + dt. We can calculate the auto-
correlation, C(dt), by counting the expected number of jumps between the two states.
During the time period, dt, the switch σa → σc occurs with a probability of Na

N
ωa dt.

Similarly, the switch σc → σa occurs with a probability of Na

N
ωc dt.

We can count all the possible states of the system at time, 0+dt. First, we can estimate
the number of states where σ is at σa during the interval [0, dt]. The number of this
particular state is Na(1 − ωa dt). Secondly, we can estimate the number of states where σ
is at σc during [0, dt]. The number of this particular state is Nc(1 − ωc dt). Finally, we can
estimate the number of states in the transition between the equilibrium. The number of
this particular state is (Naωa + Ncωc) dt. Taking these together, we find

C(dt) =
N∑

1

σ′(dt)σ′(0) (27)

=
Na

N
(1 − ωadt)σ′

a
2

︸ ︷︷ ︸

σa at 0 and dt

+
Nc

N
(1 − ωcdt)σ′

c
2

︸ ︷︷ ︸

σc at 0 and dt

+ (
Na

N
ωa +

Nc

N
ωc)dtσ′

aσ
′

c
︸ ︷︷ ︸

in transit

(28)

We can now form the differential equation for C at time, t = 0.

∂C
∂t

|τ=0 = − 1

N
(ωa + ωc)(Naσ

′

a
2
+ Ncσ

′

c
2
) (29)

= −(ωa + ωc)C(0) (30)

The solution of this equation is C(τ) = C(0)e−(ωa+ωc)τ , with C(0) given by (28).
Thus, the low-frequency end of spectrum for the box-model subject to noise is given by:

S(ω) = C(0)2
2(ωa + ωc)

(ωa + ωc)2 + ω2
(31)

Given the dependence of the espace times on the noise variance, the amplitude of the
spectrum increases as the noise variance decreases.

S(0) =
2(σa − σc)

2ωaωc

(ωa + ωc)3
(32)

∝ exp(Aξ−2) (33)
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Figure 4: The comparison of the short-time timescale and the long-timescale power spectrum

Figure 4 compares the low-frequency and the high-frequency approximations. Note
that the short-timescale spectrum represents the rattling around the stationary points,
and saturates at higher frequency. The long-timescale spectrum approximates the jumps
between the stationary points. Neither of the spectra show a peak because the associated
deterministic system has only fixed points.

6 The Howard-Malkus-Welander loop

The next conceptual model that we will consider is the Howard-Malkus-Welander loop. A
circular ring of fluid with temperature T and salinity S flows with angular velocity ω = φ̇,
with φ the angle to the vertical. The ring is immersed in a bath at constant temperature
TE and salinity SE (see Fig. 5). The outer radius of the ring is r, the inner radius is a and

g is gravity. For a thin loop with (r− a) � a, the fluid can be assumed to be well mixed in
the radial direction, so that all variables become independent of r. In this case, the angular
velocity satisfies the following equation

ω̇ = − pφ

ρ0a2
− ρgk̂ · φ̂

ρ0a
− Γω. (34)

Γ is the friction coefficient, k̂ the unit vector in the vertical direction and φ̂ the unit vector
in the tangential direction. Again we assume a linear equation of state, so that ρk̂ · φ̂ =
ρ0(βS − αT ) sin φ.
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Figure 5: Sketch of the Howard-Malkus-Welander loop.

Equation (34) can be integrated around the loop to eliminate p and this yields

2πaω̇ = g

∫ 2π

0
dφ (αT − βS) sin φ − 2πaΓω (35)

where we have used that, for a two-dimensional incompressible fluid, the angular velocity
cannot depend on φ, if ωr = 0.

The temperature and salinity are determined through:

Ṫ + ωTφ = r(TE − T ),

Ṡ + ωSφ = rs(SE − S).

where r and rS are the diffusion rates of temperature and salinity, respectively. With
antisymmetric forcing (TE , SE) = (T0, S0) sin φ (heating and salting on the right side of the
loop, cooling and freshening on the left side), we decompose temperature and salinity into
a symmetric part and a antisymmetric part

T = T1 cos φ + T2 sin φ, S = S1 cos φ + S2 sin φ.

Substitution of these relations in equation (36) yields

Ṫ1 + ωT2 = −rT1, Ṫ2 − ωT1 = r(T0 − T2),

Ṡ1 + ωS2 = −rsS1, Ṡ2 − ωS1 = rs(S0 − S2).

For long time scales inertia will be much smaller than friction, ω̇ � Γω and it follows
directly from equation (35) that ω then satisfies

ω =
g

2Γa
(αT2 − βS2). (36)
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In the limit where the relaxation rate of temperature is much greater than the relaxation
rate of salinity, i.e. r � rs, the temperature is clamped to the forcing, so that T1 ≈ 0,
T2 ≈ T0. The salinity evolves on a slower time-scale according to:

Ṡ1 +
g

2Γa
(αT0 − βS2)S2 = −rsS1,

Ṡ2 −
g

2Γa
(αT0 − βS2)S1 = rs(S0 − S2).

We introduce new variables y1,2 =
βS1,2

αTE
and t̂ = gαTE

2Γa
t, so that

ẏ1 + (1 − y2)y2 = −δy1 (37)

ẏ2 − (1 − y2)y1 = δ(y0 − y2) (38)

where a dot indicates now differentiation with respect to t̂ with δ = 2rsΓa
gαTE

.
The limit of a fixed salinity flux is given by δ → 0 with δy0 ≡ F finite. In this limit

there is only one fixed point (the others are at ∞), given by

y1 = −F, y2 = 0.

We can look at its linear stability by setting

y1 = −F + ε1(t), y2 = ε2(t).

Neglecting O(ε2) terms we find:

ε̇1 + ε2 = 0, ε̇2 − ε1 − Fε2 = 0

These are the equations for an oscillator with damping −F :

ε̈2 + ε2 − F ε̇2 = 0.

There is linear growth when F > 0, i.e. when the forcing is warm-salty and cold-fresh. When
F < 0, the oscillations are damped out. Oscillations can only occur if the temperature and
salinity forcing are opposing each other. Similarly, the Stommel 2-box model only admits
multiple equilibria when there is competition between thermal and haline forcings.

The physical mechanism of the oscillation can be described as follows. As the fluid on
the left flows downwards, it slows down due to the freshening. At the bottom it is now
lighter and thus rises more rapidly on the right. Thus, it acquires less salt going up than it
lost going down and at the next cycle it slows down even further. This leads to a growing
alternation of slowing on the left and speeding on the right while going around the loop.

This oscillation occurs through a Hopf bifurcation at a certain value of the flux F , as
illustrated in Figure 7: as the parameter F passes a certain value (in this case 0), the steady
solution becomes oscillatory.

The period of this oscillation, 2π/ω, is the advection time around the loop and set by
the thermally driven flow (see equation (36). For the North Atlantic, a similar advection
time can be defined, which is about 100 years.

It is left to the reader to show that without salinity, but for general forcing, the steady
state transport vanishes as r → 0 when there is heating from above.
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Figure 7: Schematic plot of a Hopf bifurcation

The effect of noise

Suppose now that the salinity flux consists of an average part F̄ and a random part F ′(t),
where the noise has variance < F ′2 > dt = σ2. This noise can excite oscillations even
when F̄ < 0, that is when the associated deterministic system has a stable fixed point. We
compute again steady states and perform linear stability analysis to get

ε̈2 + ε2 − F̄ ε̇2 = F ′.

We can solve the system using Fourier Transforms, so

−(ω2 − iωF̄ − 1)ε̃2 = F̃ ′.

Then the spectrum is

< |ε̃2|2 >=
< |F̃ ′|2 >

(ω2 − 1)2 + ω2F̄ 2
=

σ2

dt[(ω2 − 1)2 + ω2F̄ 2]
. (39)

A typical spectrum is plotted in Fig. 8. Characteristic of the spectrum of such a system
is that it peaks at the intrinsic frequency, which is ω = 1 in this case, and that the height
depends on the noise variance.
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7 Welander’s flip-flop oscillation

Another conceptual model of the thermohaline circulation is the so-called flip-flop model of
Welander. It consists of a box of temperature T and salinity S that can exchange heat and
salt vertically with a reservoir that is kept at temperature T0 and salinity S0 (see Fig 9).
The surface box is relaxed towards a temperature TA and is forced by a freshwater flux

T
o oS

AT

reservoir

ρ =β   −α

TT

TSoo o

T(t)

F

ρ=β  −αS T
S(t)

Figure 9: Welander’s flip-flop model

F . Again, a linear equation of state is used for both boxes, so that ρ = βS − αT for the
upper box and ρ0 = βS0 −αT0 for the reservoir. The equations that describe the evolution
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of temperature and salinity in the upper box are given by

Ṫ = −γ(T − TA) − κ(T − To),

Ṡ = F − κ(S − So). (40)

where γ is a relaxation coefficient, κ a mixing coefficient that is taken equal for heat and salt
and H is the thickness of the upper box. The mixing coefficient is taken to be dependent on
the density difference between the two boxes, to represent the effect of convection. Mixing
with the reservoir is much faster if the stratification is unstable than if it is stable:

κ =

{
κ1 if ρ − ρo ≤ ∆ρ
κ2 if ρ − ρo > ∆ρ.

with κ2 � κ1. Introducing new variables

x ≡ T − To

TA − To
, y ≡ β(S − So)

α(TA − To)
, t′ ≡ γt,

we can rewrite 40 to

ẋ = 1 − x − νx

ẏ = µ − νy.

Here we have definex µ = βF/(γαH(TA − T0)) and

ν =
κ

γ
=

{
ν1 if y − x ≤ ε
ν2 if y − x > ε,

with ε = ∆ρ/(α(TA − T0).
The steady states of the model are

x =
1

1 + ν
, y =

µ

ν
.

Thus there are steady states if the density satisfies

either y − x =
µ

ν1
− 1

1 + ν1
≤ ε

or y − x =
µ

ν2
− 1

1 + ν2
> ε.

In the first case, the stratification is stable and ’convection’ never occurs, in the latter case
the stratification is unstable and there will always be ’convection’. No steady states can
exist if

µ1 < µ < µ2

with
µ2 ≡ εν2 +

ν2

1 + ν2
, µ1 ≡ εν1 +

ν1

1 + ν1

For µ1 < µ < µ2 the fixed point disappears and the system has relaxation-oscillations
(Fig. 10). The system follows a slow relaxation towards the unstable, always convecting

67



Figure 10: Relaxation oscillations for Welander’s flip-flop model.

state, but before the steady state is actually reached the stratification becomes stable due to
the strong mixing in the convecting state. As soon as a stable stratification is reached, the
mixing coefficient becomes small (ν1) and convection stops. Now the surface freshwater flux
starts to increase the salinity of the upper box [ this corresponds to y ≡ β(S −S0)/(α(TA −
T0)) becoming larger], so that the density of the upper box increases strongly and the system
evolves towards the stable, never-convecting state. However, before this equilibrium is
reached, the stratification becomes unstable and convection will start again. The amplitude
of this type of oscillations is finite and the period τ is given by

τ = − ln δ

ν2
.

where δ = µ2 − µ and 0 < δ � 1. The period of the oscillation thus depends on the
distance from the critical parameter (in this case µ2). Note that type of oscillations differ
fundamentally from the oscillations in the Howard-Malkus-Welander loop that arose as the
system went through a Hopf bifurcation. Now the steady state does not become unstable,
it simply ceases to exist. Another difference with the Hopf bifurcations is that there are
no damped oscillations for µ > µ2 + δ, whereas damped oscillations exist in the case of the
Hopf bifurcation.

The effect of noise

To study the effect of noise we suppose again that the salinity flux consists of an average part
that is now called µ̄ and a random part µ′(t), where the noise has variance < µ′2 > dt = σ2.
This noise excites oscillations in the fixed point regimes, µ̄ < µ1 and µ̄ > µ2 (see Fig. 11).
If there is no noise, the system goed to a stable, always convecting state (see the dashed

68



line in Fig. 11). If noise is added to the system, there will be fluctuations that make the
fluid in the upper box light enough to give a stable stratification so that convection stops.
At this moment the system goes towards the other equilibrium.

Figure 11: The solid line gives the relaxation oscillations for Welander’s flip-flop model in
the stable regime µ̄ > µ2 in the case with noise. The dashed line gives the solution for the
same parameter values, but without noise.

To make the computations easier, we now replace the fast relaxation to the convecting
state with an instantaneous adjustment, so that the equations for the system with noise
become

ẏ = µ̄ + µ′ − ν2y if y ≥ µ2/ν2

y → ymax if y < µ2/ν2.

where ymax is the value of y after the adjustment to the convecting state. Define now
φ(y, t)dy as the probability that a certain realization of this experiment gives a salinity
gradient between y and y + dy at time t, so that φ(y) is again the probability distribution
function (PDF). The average frequency of pulses is the probability flux J(ymax) through
the point ymax. The PDF is governed by the Fokker-Planck equation (Gardiner, 1985):

φt = Jy, J = (ν2y − µ̄)φ + σ2φy/2,

with boundary conditions

φ(y <
µ2

ν2
) = 0

and
J(y =

µ2

ν2
, t) = J(ymax, t)

69



The first boundary condition says that y cannot take values under µ2/ν2, because as soon
as y < µ2/ν2 we have y → ymax. The second condition states the adjustment rule, which
in turn corresponds to requiring that any member of the ensamble that goes through the
threshold µ2/ν2 reappears with a value ymax. This is equivalent to say that the flux of
states for these two values must coincide.

We can solve the steady Fokker-Planck equation using the normalization condition

∫ ymax

µ2

ν2

dy φ(y) = 1.

For weak noise and µ ≈ µ2 we obtain (Cessi, 1996)

J(ymax) ≈ −ν2 ln
σ√
ν2

,

The average frequency of pulses is given by ωav = 2πJ(ymax), and so this depends on σ/
√

ν2,
which is the noise amplitude. The spectrum peaks at a frequency that depends on σ, but
the height is independent of σ.

8 Summary

Both in the Howard-Malkus-Welander loop and in Welander’s flip-flop model oscillations
can be found that are either self-sustained, or that can be excited by noise. However, the
characteristics of these two types of oscillations are quite different. Self-sustained oscillations
in the Howard-Malkus-Welander loop occur through a Hopf bifurcation, the amplitude is
proportional to the distance between the parameter and the critical value of that parameter
and the period is finite.

The oscillations in Welander’s flip-flop model instead occur because the steady state
ceases to exist (global bifurcation). The oscillation arising through this global bifurcation
are characterized by a finite amplitude even at onset and a period which depends logarith-
mically on the distance to the critical parameter value. Noise-induced oscillations in the
Howard-Malkus-Welander loop have an amplitude that is proportional to the variance and
a finite period, while noise-induced oscillations in the flip-flop model have finite amplitude
and a period that depends logarithmically on the variance of the noise. This behavior is
summarized in Table 1.

Notes by Taka Ito and Lianke te Raa
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Dynamical behavior Hopf bifurcation Global bifurcation
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√
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Period finite ∝ ln δ
Example HMW loop Flip-flop model

Noise-induced oscillations
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Period finite ∝ ln σ

Table 1: Characteristics of the oscillations in the Howard-Malkus-Welander loop and in
Welander’s flip-flop model
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