
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ggaf20

Geophysical & Astrophysical Fluid Dynamics

ISSN: 0309-1929 (Print) 1029-0419 (Online) Journal homepage: https://www.tandfonline.com/loi/ggaf20

The catastrophe structure of thermohaline
convection in a two-dimensional fluid model and a
comparison with low-order box models

Olivier Thual & James C. Mcwilliams

To cite this article: Olivier Thual & James C. Mcwilliams (1992) The catastrophe structure
of thermohaline convection in a two-dimensional fluid model and a comparison with low-
order box models, Geophysical & Astrophysical Fluid Dynamics, 64:1-4, 67-95, DOI:
10.1080/03091929208228085

To link to this article:  https://doi.org/10.1080/03091929208228085

Published online: 19 Aug 2006.

Submit your article to this journal 

Article views: 92

View related articles 

Citing articles: 74 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=ggaf20
https://www.tandfonline.com/loi/ggaf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03091929208228085
https://doi.org/10.1080/03091929208228085
https://www.tandfonline.com/action/authorSubmission?journalCode=ggaf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ggaf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03091929208228085
https://www.tandfonline.com/doi/mlt/10.1080/03091929208228085
https://www.tandfonline.com/doi/citedby/10.1080/03091929208228085#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/03091929208228085#tabModule


Ceophvs. Asrrophys. Fluid Dynamics, Vol. 64, pp. 67 95 
Reprints available directly from the publisher 
Photocopying permitted by license only 

I 1992 Gordon and Breach Science Publishers S A 
Printed in the United Kingdom 

THE CATASTROPHE STRUCTURE OF 
THERMOHALINE CONVECTION IN A 

TWO-DIMENSIONAL FLUID MODEL AND A 
COMPARISON WITH LOW-ORDER BOX MODELS 

OLIVIER THUAL and JAMES C.  McWILLIAMS 

NCAR, PO Box 3000, Boulder, CO 80307, USA 
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We impose a surface forcing on the 2D, Boussinesq, thermohaline equations in a rectangular domain, in 
the form of equatorially symmetric cosine distributions of salinity flux and temperature. This system may 
be seen as  an  idealization of the ocean thermohaline circulation on the global scale over intervals of 
centuries or millenia. Multiple steady states are found numerically. They reflect the competition between 
the opposite signs of the temperature and salinity-driven equatorially symmetric circulations. There are 
also pole-to-pole, equatorially asymmetric circulations. In the control space of the temperature and 
salinity-flux forcing amplitudes, these equilibria form two cusp catastrophes, and transitions between 
stable equilibria occur through several distinct bifurcations. These catastrophes can be reproduced in 
simple box models connecting stirred reservoirs through capillary pipes. This steady-state analysis may 
provide a framework for a better understanding of climatic transitions between different stable regimes 
of the ocean-atmosphere system. 

KEY WORDS : Thermohaline convection, ocean circulation, climate models. 

1 .  INTRODUCTION 

Several recent studies are concerned with the existence of multiple stable equilibria 
for the oceanic thermohaline circulation. This phenomenon was first shown by 
Stommel (1961 ) with a simple two-box model comprising one equatorial box, which 
is heated and loses fresh water, and one polar box, which is cooled and receives fresh 
water (see Figure 5 ). 

Generalizing this approach to a three-box model with north and south polar boxes, 
Rooth (1982) suggested that, even with symmetric forcing, a symmetric solution 
could become unstable and develop into a single asymmetric pole-to-pole circulation. 
Some variants of this box model have been constructed by adding more boxes, 
considering alternative forcings, or changing the transfer laws between boxes (Walin, 
1985; Huang et al., 1990; Birchfield, 1989; Marotzke, 1990). In a review of these 
box models, Welander (1988) showed that the equilibria of a certain class of three-box 
models, or even n-box models (see Figure 7), could be viewed as the “superposition” 
of elementary two-box model equilibria. He showed, for instance, that an asymmetric 
pole-to-pole circulation was the combination of a temperature-driven two-box cell 
in one hemisphere, and a salinity-driven two-box cell in the other hemisphere. 

* Present address: CERFACS, 42 av. Coriolis, 31057, Toulouse Cedex, France. 
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Based upon this and geological evidence, Broecker et at. (1989), among others, 
suggested that the ocean-atmosphere system has more than one stable regime. Part 
of the interest in multiple equilibria for thermohaline circulation comes from its 
probable role in multiple equilibria for climate. 

The existence of multiple equilibria for a 3D oceanic circulation model was 
demonstrated by Bryan (1986) for an idealized sector geometry and an equatorially 
symmetric geography and surface forcing. He found two stable steady states : one 
thermally driven symmetric circulation, with formation of deep water in the polar 
regions, and one pole-to-pole circulation. The methodology was to make a first 
calculation with “restoring boundary conditions” (fixed temperature and salinity 
imposed at the surface) and then diagnose the surface salinity flux of the equilibrium 
state to impose “mixed boundary conditions” (fixed temperature and fixed salinity 
flux) in a second calculation, initiated with a perturbation of the equilibrium state. 
With a similar methodology, multiple equilibria also have been demonstrated in a 
coupled ocean-atmosphere general circulation model (Manabe et al., 1988 ). 

In a model with complexity intermediate between the box models and the 3D 
numerical simulations, Marotzke et a!. ( 1988 ) studied 2 D  thermohaline circulations. 
After following the methodology of Bryan (1986), they concluded that the thermally 
driven symmetric circulation is unstable, and that only the pole-to-pole circulation 
is stable under mixed boundary conditions. When equatorial symmetry is imposed, 
this model also exhibits a stable salinity-driven symmetric circulation, and its 
temperature-driven circulation become stable (Marotzke, 1989). 

There thus seems to be a conflict between the 3D and 2D solutions concerning 
the stability of the steady states. To settle this issue, we started by trying to reproduce 
the Marotzke et a/ .  (1988) calculations. It appears that with the choice of zero 
horizontal diffusivities the solutions become singular in a time integration. We posit 
that their numerical scheme indeed generates a horizontal diffusivity as an essential 
element in obtaining non-singular solutions, and we then explore this additional 
parameter for the problem. We thus count properly in Section 2 the number of 
parameters in the 2D Boussinesq model. Besides reproducing an example of the 
restoring and mixed boundary conditions methodology, we focus more on the direct 
imposition of a cosine surface salinity flux as well as a cosine surface temperature. 
However, the two procedures can be connected with a simple argument given at the 
end of Section 3. In Section 3 we perform a systematic exploration of the control 
space, and come to the conclusion that, depending on the choice of the parameters, 
the conclusions of both Bryan (1986) and Marotzke et a!. (1988) can be correct in 
2D flow. 

To give a global picture of these steady states in the control space, we refer to the 
theories of catastrophes (Arnold, 1984) and of bifurcations (Arnold, 1989) for 
dissipative dynamical systems, more for their aptness of language than for all their 
mathematical power. Indeed, only the simplest catastrophes occur here, the fold 
catastrophe (for instance the projection of a sphere on a plane) and the cusp 
catastrophe, which corresponds to the intersection of two folds. The fold is said to 
be a codimension 1 catastrophe, as one must vary one parameter to cross it. The 
cusp is of codimension 2, since it is the intersection of two codimension 1 surfaces. 
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We also deal with the simplest bifurcations of an equilibrium, the saddle-node 
bifurcation, when two equilibria coalesce, and the pitchfork bifurcation, when an 
equilibrium invariant under a symmetry (about the equator here) is destabilized and 
two asymmetric, bifurcated states (here the pole-to-pole circulations) appear that 
can be transformed into each other by the symmetry; thus, the pitchfork bifurcation 
is said to break the symmetry. For this bifurcation only two cases are possible : the 
supercritical case, for which the bifurcated states are stable and are found at the 
values of the control parameter such that the bifurcating equilibrium is unstable, and 
the subcritical case, for which the bifurcated states are unstable and coexist with the 
stable equilibrium. (Here we find only subcritical pitchfork bifurcations. ) The 
saddle-node bifurcation is generic (i.e., among the most likely kinds of bifurcation) 
in the space of dissipative systems unconstrained by any symmetry, but the pitchfork 
bifurcation is only generic in systems admitting a symmetry invariance. In our analysis, 
where we have incomplete dynamical information, we will complete it based on 
likelihood arguments about generic bifurcation behavior. 

We also apply this global view to several box models that have both many 
precedents (see above) and many fewer degrees of freedom than the fluid model. Of 
course, the value of a box model comes from its simplicity, but only if its solution 
behavior can be shown to be apt. We solve analytically the catastrophe structure of 
the original Stommel two-box model, and it appears to match surprisingly well the 
catastrophe structure of the equatorially symmetric 2D fluid model (Section 4). We 
investigate in the same way the three-box model in Section 5 and formulate the 
“superposition principle” of Welander (1988) in this catastrophe language: in an 
asymptotic limit, associated with small horizontal diffusivity, the cusp corresponding 
to the pole-to-pole circulation is identical to the cusp of the symmetric states. In 
Section 6, we present a hierarchy of box models, within which the two-box and 
three-box models appear as limit cases. This increase in the number of parameters 
helps to make a more plausible physical connection with the fluid model. Their 
solutions also exhibit qualitatively the same catastrophe structure. 

’ 

2. THE 2D BOUSSINESQ MODEL 

We consider a 2D thermohaline model in which the temperature and salinity flux 
are imposed at the surface. We choose a dimensionless form that is convenient for 
the asymptotic limits that we will consider later. We indicate how this model can 
be seen as an idealization of oceanic thermohaline convection. 

2.1 Boussinesq equations 

We consider a 2D (y, z )  layer of fluid in a rectangular basin of width L and depth 
d .  The thermohaline equations are 

d,u + u.Vu = -p;’Vp + B ( T ,  S ) e Z  + vV2u, 
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d,T + u.VT = K ~ V ~ T ,  

d,S + u vs = KSVZS, 

where u is the velocity vector field, p is the pressure, po is an average value of the 
density p,  T and S are the temperature and salinity scalar fields, and e,  is the vertical 
unit vector. The dissipation parameters are the viscosity v and the thermal and saline 
conductivities K~ and K ~ .  The bouyancy B( T,  S )  is expressed by the linear equation 
of state 

where g is the gravitational acceleration, and y T  and - y s  are the thermal and saline 
expansion coefficients. 

2.2 Non-dimensionalization 

In order to write these equations in a dimensionless form, we choose the following 
units: d for length, 2 r c d 3 / L ~ ,  for time, L ~ c ~ / k d '  for velocity (as a consequence of 
the previous choices), v ~ ~ L ~ / ( 4 n ' d ~ g y , )  for temperature, and v ~ ~ ~ ~ / ( 4 r c ~ d ~ g y , )  for 
salinity. The same units of length and velocity are used in both spatial directions. 
We also eliminate the pressure by introducing the streamfunction Y such that 
u = -Yz  and w = Y, are the horizontal and vertical velocities. With the notation 
J ( f ,  y ) = f ,g, - f,g, for the Jacobian operator, the dimensionless equations are 

( k ~ ) - ' [ d , V 2 Y + + ( Y , V z Y ) ]  = k - ' ( T , - S S , ) + V 4 Y ,  

k - ' [d ,T+ J ( Y ,  T)] = V2T,  ( 2 . 3 )  

k - ' [ d , S  + J ( Y ,  S ) ]  = tV2S,  

where G = V / K ~  is the Prandtl number, t = K ~ / I C ~  is the Lewis number, and k = 2rcd/L 
is the fundamental wave number. 

2.3 Surface, forcing and boundary conditions 

We force the thermohaline convection by imposing the following surface boundary 
conditions, expressed in dimensionless form 

T = a cos k y  and S,  = b cos k y ,  (2.4) 

at z = 0. There is thus a strong discrepancy between the temperature forcing (fixed 
value) and the salinity forcing (fixed flux). This forcing is equatorially symmetric, 
since we choose the origin of y at the middle of the domain -1  < z < 0,  

On the other sides of the domain (bottom and lateral), we choose the no-flux 
- n / k  d y < r / k .  
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boundary conditions for the scalar fields 

d,T= 0 and 3,s = 0, ( 2 . 5 )  

where d ,  is the derivative in the direction perpendicular to the boundary. For the 
velocity field we choose free-slip boundary conditions on all the sides of the domain : 

For the present study, we have compared (2.5)-(2.6) to two variants. In one 
variant, we choose horizontally periodic conditions (period 27c/k) and check that 
they give the same results concerning the symmetric solutions. In the other we consider 
a periodicity of twice the width of the domain (4z/k), and observe that the symmetric 
and asymmetric solutions are nearly the same (with nearly the same stability 
properties) as for the free-slip and no-flux lateral boundary conditions in the closed 
domain of width (2nlk).  After these checks we have always used one of these two 
variants for numerical efficiency. 

Thus, our 2D thermohaline Boussinesq model is controlled by five dimensionless 
parameters, (a ,  b, k ,  u, t). In these coordinates of the control space, we can consider 
the infinite Prandtl number limit u + co, for which the vorticity equation is simply 

0 = k- ’ (Ty  - S,) + V4Y 

We have checked, for the present study, that there is only a modest difference (at 
most 5 % )  between the limit and the case IS = 1, for the steady states of the regions 
of the parameters that we have explored. Further exploration of this parameter, in 
particular in the limit u - 0 ,  could be interesting but is not undertaken here. We 
have also made the particular choice of t = 1 to reduce the control space to the 
parameters (a ,  b, k ) .  

2.4 Oceanic pertinence of the model 

For the idealized 2D Boussinesq problem just posed, one may ask what its relevance 
is for 3D oceanic thermohaline convection, and the answer we give here is more 
heuristic than rigorous. First, the 2D fluid can be thought of as a zonally averaged 
equation of motion, relevant for the longtime scale (of order thousand years), global 
spatial scale, meridional circulation. Because of this averaging and due to the existence 
of zonal boundaries of oceans, the zonal velocity is approximately zero and the 
Coriolis force can be neglected. The viscosity v and conductivities K* and K~ in the 
model must be seen as turbulent, or “eddy” diffusivities, representing the transports 
by smaller scale motions, spanning the scale range from molecular dissipation to the 
wind-driven gyres. If one believes that the small scale turbulence can be modeled by 
eddy diffusivities on time scale of the order of months or years, there is no reason 
in principle why the same parametrization should not be used for longer time scales. 
On the contrary this parameterization may be even more pertinent on very long time 
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scales, especially if there is an energy gap in the temporal spectrum. Because of the 
rotation and the stratification of the ocean, this turbulent viscosity should be 
anisotropic. However, in the simple 2D model presented above, this anisotropy can 
be removed by a stretching of the horizontal coordinate e.g., 

where y = j j a .  Thus, anisotropy of diffusivities and the aspect ratio of the 
domain combine in the model parameter k .  We assume that the anisotropies of the 
turbulent scalar conductivities are all equal to the viscosity anisotropy, or that the 
turbulent Prandtl and Schmidt numbers are independent of direction. Finally, we 
argue that all scalar properties have roughly equivalent “eddy” transports to justify 
the choice o f t  = 1 in the model. The choice of CT = a can be rationalized by saying 
that the nonlinear transport terms of the momentum equation have been parametrized 
as diffusion, with a turbulent viscosity that is large compared to the diffusivity of 
material properties. This is perhaps the boldest of our assertions. The insensitivity 
of our solutions to CT, mentioned in Section 2.3,  is our second line of defense. 

The choice of mixed boundary conditions in the model is a idealization of the 
actual forcing of the ocean. The atmosphere acts somewhat like a thermostat which 
damps any deviation in the surface temperature of the ocean (and vice versa, of 
course), and its meridional structure is hot at the equator and cold at the poles i.e., 
a > 0 in (2.4). But the evaporation and precipitation processes only imposes a flux 
of fresh water at the ocean surface (or, equivalently, a salinity flux), without regard 
to the local value of surface salinity. On the global scale, an excess of fresh water is 
removed at the equator by evaporation and an excess of precipitation occurs at the 
pole (Bryan and Oort, 1984), hence b > 0 in (2.4). 

We do not pretend to reproduce exactly the glaciation/inter-glaciation transitions 
with this idealized model. Our aim is only to understand and reproduce the basic 
phenomenon of multiple equilibria and isolate the basic mechanism responsible for 
it. This simple model is more likely to predict the instabilities of the multiple equilibria 
than it is to depict accurately the switching behavior between them; so we do not 
investigate this feature. The patterns of these transitions are likely to be dependant 
on effects which are ignored in this model, such as the Coriolis force, the topography, 
the complexity of the surface forcings, etc. 

3 .  THE STATIONARY STATES OF THE FLUID MODEL 

The diffusive regime, for small values of the surface forcing, can be computed 
analytically. For large enough values of the forcing, numerical simulations are required 
to include nonlinear effects due to advection. Cusp catastrophes (i.e., two folds 
meeting in a cusp) are found in the nonlinear regime in the space of the two forcing 
parameters, reflecting the competition between several stable equilibria. 

3.1 The diflisive regime 
When the surface forcing is small (a ,  b << 1 ), the nonlinear terms can be neglected 
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in (2.2). Thus T and S are harmonic fields subject to simple boundary conditions, 
and can be expressed analytically 

cosh k(z + 1 )  cosh k ( z  + 1 )  
T(y, Z )  = a cos k y  and S(y, z )  = b cos ky - . (3.1) 

cosh k k sinh k 

The associated stream function is 

Y((y,z) = [ b  - ak tanh k ]  sin(ky)6(kz)/k4, (3.2) 

where 4 ( Z )  is given in Appendix A. Contours of the temperature, salinity and 
streamfunction fields are displayed in Figure 1 .  Note that this solution is equatorially 
symmetric. 

We see from (3.2) that the surface b = ak tanh k corresponds to a null 
streamfunction field. This surface separates thermally (TH ) and salinity-( SA ) 
driven symmetric circulations in the space of the control parameters. In fact this 
separation extends to arbitrary large values of a and b, as can easily be seen in the 
equations, since (3.1) and (3.2) also describe a stationary solution when only Y is 
small (i.e., in the vicinity of b = ak tanh k ) .  The particular example in Figure 1 is of 
type SA. 

3.2 Three competing stable equilibria 

When the forcing is increased (i.e., a and b are no longer small), the nonlinear terms 
usually cannot be neglected, and multiple steady states can occur. With a numerical 
solution of (2.3), we are able to reach three different types of stable steady states 
for equal values of the control parameters. Since the phenomenon is present in the 

0 

2 

- I  -* 0 lr - -  0 

Y Y 

- - 
k k k  

lr - t ' I  0 
k k  k 

Y 

- -  

Figure 1 Diffusive regime for the fluid model at small surface forcing ( a  = 6, b = l.6), given by the 
analytical expressions (3.1) and (3.2). We have chosen k = 0.4 to match Figure 2. ( a ) :  Streamfunction 
Y (y, 2 ) .  with a contour interval of 0.005, ( b ) :  Temperature T ( y ,  z )  and ( c ) :  Salinity S ( y ,  z ) ,  with contour 
intervals of 1 for the scalar fields. 
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limit CJ = co, we deduce that the temperature and salinity advection terms are the 
pertinent nonlinear terms responsible for this effect. 

Figure 2 shows a typical example of multiple stable steady states. A thermally 
driven symmetric equilibrium, denoted by TH, consists of formation of deep water 
at the poles and upwelling at the equator. Notice the strong circulation, the occurrence 
of a thermocline in the equatorial half of the domain, and the weak salinity gradients. 
A salinity-driven symmetric circulation, SA, has circulation in the opposite sense. 
The gradients of its temperature and salinity fields are more horizontal than in TH, 
and its circulation is very much weaker. The third type of steady state is a pole-to-pole 
circulation, denoted by PP, which consists of downwelling at one pole and upwelling 
at the other pole. There are in fact two such steady states PP because of the equatorial 

T S 

-t 0 - 
k 

* -* 0 
T T  

T -7 0 
-cT 

T - 
k 

Y Y Y 

Figure 2 Three stable equilibria for the fluid model. The parameters are a = 600, b = 160, k = 0.4, t = I ,  
o = x. Contour intervals are 0.3 for the stream function Y and 50 for the scalar fields T and S .  ( a ) :  
Thermally driven circulation TH. ( b ) :  Salinity-driven circulation SA. ( c )  : Pole-to-pole circulation PP. 
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symmetry of the problem. By looking at these countour plots, one can qualitatively 
interpret this P P  steady state as the “superposition” of half a TH symmetric 
circulation (southern hemisphere for Figure 2)  and half a SA symmetric circulation 
(northern hemisphere). For a rough correspondence with the present state of the 
Atlantic Ocean. one should reverse north and south in this P P  solution. 

3.3 The symmetric and asymmetric catastrophe surfaces 

When we follow an experimental path in the control space (e.g., varying b and fixing 
all the other parameters as indicated in Figure 3c), we obtain a bifurcation diagram 
for the equilibria, which looks schematically like Figure 3ab. This diagram is drawn 
from a collection of numerical experiments in which only the stable states could be 
reached (with or without imposing equatorially symmetry). We infer the existence 
and qualitative structure of the unstable states, which connect together the known 
stable states, by likehood arguments. We have not built a non-evolutionary, 
steady-state solver to compute these unstable states. 

When equatorial symmetry is imposed, the two stable symmetric equilibria SA 
and TH destabilize through saddle-node bifurcations for the values f l  and f ,  of the 
varied experimental parameter (e.g., b) .  When asymmetric perturbations are allowed, 
SA and TH can be destabilized through symmetry-breaking pitchfork bifurcations 
at g1 and g2. These bifurcations are subcritical (i.e., both of the bifurcated equilibria 
are unstable). The bifurcated asymmetric states restabilize through saddle-node 
bifurcations, at e l  and e, to the observed stable pole-to-pole equilibria PP. We have 
observed that these symmetry-breaking bifurcations at g1 and g2 are slow instabilities 
compared to the symmetric saddle-node bifurcations at f l  and f,: the critical real 
eigenvalue, representing the growth rate of modal perturbations, crosses the zero 
value more slowly when varying the control parameters. It is thus time consuming 
to determine exactly the position of these pitchfork bifurcations by direct integration 
of the model, and, except for few cases, we have achieved only a crude estimation. 
But we have observed cases ( e g ,  Figure 2 )  for which the relative positions of g1 
and g, are as shown in Figure 3, allowing the competition between two stable 
symmetric states and the asymmetric stable states, hence three stable equilibria for 
same values of (a ,  b ) .  

If we now consider several experimental paths (e.g., several values of a ) ,  we can 
draw the loci of the saddle-node bifurcations, which are codimension 1 surfaces in 
the control space. They are four curves f l ,  f 2 ,  e l  and e2 in a ( a ,  b )  projection of the 
control space, as drawn schematically on Figure 3c. In the language of catastrophe 
theory, they correspond to folds, which are codimension 1 catastrophes. Also shown 
are the pitchfork bifurcation curves g1 and g2, which in fact must belong to the same 
differentiable curve g. Its shape and position with respect to f l  and f, are the simplest 
configuration consistent with our experiments. 

The intersection of two fold catastrophes, a cusp, is a codimension 2 catastrophe. 
It is assumed in Figure 3c that there are two. cusps, p = f ,  nf2 for the symmetric 
equilibria and q = e l  n e, for the asymmetric equilibria. But the curves el and e, 
could end by intersecting tangentially the curve g :  the domain of existence of the 
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Figure 3 Schematic representation of the catastrophe structure for the steady states of the fluid model. 
(a, b ) :  Schematic bifurcation diagrams for a generic experimental path in the control space. __ : stable 
steady state. ------: unstable steady state. unstable to asymmetric purturbation only. . . ’ . : 
unstable to both asymmetric and symmetric perturbations. Y3ynn(a) and Yasy,,,(b) are respectively some 
measures of the symmetric and asymmetric projections of the streamfunction. 
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b 

0 
a 

Figure 3 
cusps in the (a,  b )  plane. 

(cont.) ( c ) :  Schematic locations of the symmetric ( f l ,  fi) and asymmetric (e l .  e 2 )  folds and 

pole-to-pole circulation would then look like a “smoothed cusp”. Our numerical 
exploration of the control parameters does not have fine enough resolution to decide 
whether the asymmetric cusps are “smooth” or “sharp”. 

We show in Figure 4 an experimental determination of the symmetric and 
asymmetric cusps in the (a ,  b )  plane, for two values of k. We note that as k decreases, 
both cusp points p and q come increasingly close to the zero-circulation line, and 
they also appear to converge towards (a ,  b )  = 0. Also as k + 0, the lower branches 
of the symmetric and asymmetric cusps converge toward the zero-circulation line, 
which itself converges toward the b = 0 line. In this limit ( k  + 0), the symmetric and 
asymmetric cusps join together. Encouraged by the previously stated, qualitative 
interpretation of Figure 2 ,  we can conjecture a “superposition principle” to be strictly 
valid at small k : a stable pole-to-pole circulation PP is found whenever a symmetric 
thermally driven stable state TH and a symmetric salinity-driven stable state SA can 
be found for the same value of the control parameters. 

We have also considered the restoring and mixed boundary conditions model (see 
Section 1 ) where, instead of imposing the present cosine surface salinity flux, we first 
impose a cosine surface salinity, compute the associated steady state and its surface 
salinity flux, and then impose the latter for the mixed boundary condition. By this 
procedure we have also found multiple equilibria, but we do not report here the 
catastrophe structure of this model. Nevertheless, the two models coincide when 
z = 1 and b = ak tanh k, i.e., when the thermal and saline effects can balance exactly. 
Indeed, for these values of the parameters, the diagnosed salinity flux is a cosine 
function and the temperature and salinity fields are given by (3.1) with Y = 0. The 
three stable states TH, SA and PP which are found at these values of the parameters 
are thus common to the two models. 
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Figure 4 Numerically determined cusps for the fluid model, in the (u,  h )  plane. Solid symbols indicate 
the symmetric cusps, and open symbols indicate the asymmetric cusps. Dashed lines are zero-circulation 
surfaces. ( a ) :  Symmetric ( , f l ,  f2) and asymmetric ( e l ,  e , )  cusps for k = 0.4. (b ) :  Comparison of the cusp 
structures between k = 1 and k = 0.4. 

4. THE SYMMETRIC STATES AND THE TWO-BOX MODEL 

The simplest box model of thermohaline circulation reproduces the qualitative 
catastrophe structure of the fluid model. We focus here on the symmetric solutions 
which can be described with only two boxes. 

4.1 The two-box model 

We use the original two-box model studied by Stommel (1961 ), in which two well 
mixed reservoirs communicate through capillary pipes (i.e., with flow rate 
proportional to the forcing potential, here the density difference); see Figure 5. The 
model assumes a linear relaxation of the temperature and salinity to external values, 
in conjunction with nonlinear exchange between the boxes through the capillary pipes. 
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Figure 5 Configuration of the two-box model. 

Let V,, T, and S, be the volume, temperature and salinity of the polar box; we 
use the index e for their counterparts in the equatorial box. We suppose that the 
circulation Y in the capillary tubes, taken positive when it is thermally driven, is 
proportional to the temperature and salinity differences : 

The model equations are 

The relaxation times to the forcing are given by the inverse of the coefficients CTi  
for the temperature and Csi for the salinity. We will assume that these coefficients 
are proportional to the volumes, which implies that both R ,  = C,,/Vi and 
R ,  = Csi /  Vi are each the same for the two boxes. We will call 5: = R , / R ,  = CSi/CTi. 

The advection terms in (4.2) and (4.3) do not depend on the actual sign of the 
circulation. Their expression may be explained by a simple mixing argument. In the 
time a t ,  an amount of fluid of volume 6V = 1'4'1 6 t ,  at the temperature T,, is injected 
in the box p .  It mixes with the volume V, - 6V to reach the new temperature 
pTe + ( 1  - p ) T p  where p = 6 V / V p .  The same argument applies for the injection of 
fluid into the box e, to conserve mass, so that the net effect is the same no matter 
what the sign of Y .  
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4.2 Two-box model catastrophe sfructure 

In the two-box model the sums of the temperatures and the salinities relax linearly 
to equilibrium values (e.g., pe + T,,), since the advection terms of (4.2) and (4.3) 
cancel when added. The more interesting variables are the differences 0 = T, - T,, 
and Z = S, - S,. We choose the following units for non-dimensionalization here: 
l/R,fortime, (l/V,, + l/Ve)-'Rr/D?Tfor temperature, (l/V,, + 1 / V e ) - ' R ~ / D ~ ~ f o r  
salinity, and ( 1 / V,, + 1 / V e ) -  Rr for streamfunction. The dimensionless model is thus 

d = a -  0 - IYI0, 

2 = f i  - gc - J Y  J X ,  

Y = @ - X .  

(4.4) 

where 5 = R,/Rr, a = Te - T,, and f l  = g($, - g,,) are the three dimensionless 
control parameters. We see that V,/V, is not a relevant control parameter after 
non-dimensionalization. 

The equilibria of this simple model are given by 0 = M/( 1 + IYI) and 
X = p / ( <  + IYI) and the solution of the implicit equation for Y :  

For fixed 5 the zero-circulation line in the plane ( M ,  b )  is f i  = <a. It is possible to 
determine analytically the domain for which multiple states exist (Figure 6a). For 
positive M (negative M is obtained by a symmetry argument), this domain has a 
cusp-like structure, starting from the point p = [t/( 1 - (), g 2 / (  1 - ( ) I  on the 
zero-circulation line, and lying between the zero-circulation line, which can be seen 
as f l ,  and a curve f z  whose analytical expression is given in Appendix B. We note 
that the contact (i.e., the rate of convergence between the two curves) at p between 
the fold f 2  and the zero-circulation line has a quadratic dependence on distance away 
from the intersection point, instead of the usual exponent of for a cusp as predicted 
by the catastrophe theory for differential systems (Arnold, 1984). This discrepancy 
is due to the non-differentiability of the box model coming from the I Y I term. However 
it is striking to notice that the cusp of the fluid model (Figure 4 )  looks like the one 
of the two-box model on the scale on which we have resolved the fold lines (i.e., on 
which the figure is drawn). 

When ( --f 0, the zero-circulation line converges to the line f i  = 0, the point p 
converges to (0 ,  0), and the fold f 2  converges to the parabola b = alcl/4, as can be 
seen from its analytic expression (Appendix B )  or from the asymptotic expansion 
of Sections 5.2 and 5.3 (Figure 9b).  

4.3 Connection with the fluid model 

It is heuristically plausible that the pipe circulation of the two-box model mimics the 
thermohaline circulation of the 2D Boussinesq model. However, the connection 
between the forcirigs of these models needs some explanation. The departure of the 
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Figure 6 Two-box model catastrophe structure from its analytical expression. ( a ) :  For < = 0.3 in the 
(a ,  p )  plane. ( b ) :  For = 0.002 in a (a, 6 )  plane obtained by the scaling a = 0.5 104a, h = 3.8 106fl, to 
fit the experimental points of the k = 0.4 fluid model as described in the text. 

quantity 5 from 1 (in particular, 5 < 1 )  is intended to mimic the difference in the 
nature of the temperature and salinity forcing for the fluid model : it is plausible that 
a scalar field relaxes faster when its value is imposed at a boundary (here fixed 
temperature) than when its flux is imposed (here fixed salinity flux). Thus 5 must 
be taken to be a small parameter to match the mixed boundary conditions of the 
fluid model, and this explains our choice of as a control parameter which mimics 
the intensity of the salinity forcing independently from the choice of 5. There is no 
difficulty in interpreting CI as the intensity of the temperature forcing. 

In order to find a better connection with the Boussinesq model, we can enrich the 
two-box model by introducing a horizontal diffusivity rc between the two boxes. This 
consists in changing 1'4'1 into 1'4'1 + rc in (4.4). However this new parameter can be 
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removed by rescaling the variables and the time in the following manner : 
0’ = @/(  1 + t i ) ,  C’ = C/(  1 + t i ) ,  and t‘ = t (  1 + t i ) .  The original form of the 
equation (with K = 0 )  is recovered by renaming the following quantities: 
a’ = a / (  1 + t i ) 2 ,  p’ = p / (  1 + t i ) 2  and t’ = ( t i  + t ) / (  1 + K ) .  Thus, the slope t‘ of the 
zero circulation line in a (a ’ ,  p ‘ )  plane is controlled by two physical effects : the ratio 
5 of relaxation times to forcing and the ratio K between horizontal diffusion and 
advection magnitude. 

With this enrichment, we can compare the catastrophe structures of the symmetric 
steady states of the fluid model and the two-box model. The cusp point p and the 
slopes of the zero-circulation lines, k tanh k for the fluid model and 5 for the box 
model-or 4’ = ( t i  + 4 ) / (  1 + t i )  if a horizontal diffusivity K is included-provide a 
first qualitative correspondence between the control parameters of the two systems. 
For small values of these slopes, the curve f l  of the fluid model converges toward 
the zero-circulation line (the two lines are the same in the two-box model for all 
values of t),  the cusp point p of both models converge toward the origin, and the 
curves f 2  of both models converge towards a parabola passing through the 
origin-i.e., for the two-box model the asymptotic curve is p = ala1/4 (Figure 9b), 
and for the fluid model f 2  has positive curvature, approximately parabolic, for small 
k (Figure 4a). 

For a given small value of k ,  a quantitative correspondence between the control 
parameters of the fluid model ( a ,  b, k )  and those of the two-box model (a ,  p, 5 )  
can be made by setting a = A a ,  b = B p  and k tanh k = Ct .  We can require that the 
abscissa up  of the fluid model cusp point p corresponds to the abscissa a p  of the 
two-box model p point, which leads to the first condition up = A t / (  1 - 5 ) .  It is 
natural to impose that the zero-circulaton lines correspond, which simply implies 
C = B / A .  (We cannot match both the abscissa and ordinate of p and the 
zero-circulation line, since these are distinct in the fluid model at  finite k and coincident 
in the two-box model for all 4 . )  The third and last condition in order to complete 
the correspondence can be achieved with a nonlinear regression of the fluid model 
fold f 2  by the analytically known, two-box model curve fi. We have performed this 
correspondence for k = 0.4, by a nonlinear regression with seven experimental points 
on the fluid model fold f 2 ,  and found a best fit for 5 = 0.002, which leads to 
A = 5.0 x lo4, B = 3.8 x lo6 and C = 76. Figure 6b shows how well the rescaled 
two-box model curve f 2  fits the experimental points from the fluid model in the plane 
(a ,  b ) .  The low value of 5 which comes out of this correspondence procedure reinforces 
the physical interpretation of this parameter given above. 

5. ASYMMETRIC STATES AND THE THREE-BOX MODEL 

We generalize the two-box model to a three-box model, in order to investigate the 
catastrophe structure when asymmetric solutions are permitted. This model yields 
the “superposition principle” exactly in the limit 4 -+ 0. 

5.1 The three box-model 

We now consider two polar boxes (index s for the southern box and n for the northern 
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Figure 7 Configuration of the three-box model 

box) surrounding the equatorial box (Figure 7). We call 0, = T, - T,, 0, = Te - T,, 
X, = Se - S,  and En = S, - S ,  the temperature and salinity differences (again the 
mean temperature and salinity simply relax to the averages of the forcing values ). 
The circulations in the pipes Y,  and '€', are governed by the same law (4.1) as for 
the two-box model. We assume that the two polar boxes have the same volumes 
and are forced with the same intensities. This equatorially symmetric forcing 
involves only two non-dimensional parameters, viz., x = ;ih - p, = 7, - p,, and 

For simplicity we choose the equatorial box volume to be twice the polar box 
volumes, but our analysis can be done the same way, with the same conclusions, for 
any other choice. After a suitable non-dimensionalization we obtain the following 
three-box model : 

p = < ( S e  - S,)  = ( ( g e  - 9,). 

Y, = 0, - C, and = 0, - C,, 

The symmetric solutions of this model are the solutions of the two-box model: 
0, = 0, = 0, C, = C, = C, and Y,  = Y,  = Y from (4.4). 

The analytical determination of the asymmetric fold surfaces of the three-box model 
seems cumbersome. Figure 8 shows a numerical determination of the catastrophe 
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Figure 8 Three-box model catastrophe structure in the ( a ,  /3) plane for 5 = 0.3. The curves , f l  and fi 
are those of the two-box model (see Figure 6) .  The curves e ,  and gz have been determined numerically; 
the curve e ,  can be determined analytically. The zero-circulation line, f , ,  and g ,  are the same. All these 
curves have been stopped at intersection points, which abscissas are denoted by the q’s. 

structure of the three-box model, for a typical value of 5 .  The curves f l  (also the 
zero-circulation line) and .f2 are the same as in the two-box model, and they delimit 
the domain of competing symmetric equilibria. The curves e l  and e2 delimit the 
domain of existence of stable asymmetric equilibria. The curve e ,  can be determined 
analytically by requiring that Y s  = 0 (or  equivalently Y n  = 0)  in (5.1). The fold e, ,  
corresponding to a saddle-node bifurcation of pole-to-pole equilibria, and the curve 
g 2 ,  corresponding to a symmetry breaking, pitchfork bifurcation of the unstable 
symmetric state, have been determined numerically by the “software for continuation 
and bifurcation problems” called AUTO (Doedel, 1981). Finally, we set g1 = f l  

to indicate that an asymmetric equilibrium originates at the zero-circulation line, as 
can be shown by an asymptotic expansion, or numerically with AUTO. 
Time-dependent solutions of the dynamical system (5.1 ) show that the basins of 
attraction of the pole-to-pole equilibria are quite small in this three-box model. 

As for the two-box model, the physical interpretation of the model can be enriched 
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by introducing a horizontal diffusivity K,  which can be absorbed into the three control 
parameters by a suitable rescaling. The same connection with the fluid model as the 
one developed in Section 4 can be made, since the catastrophe structure of the 
symmetric states is exactly that of the two-box model. But the general catastrophe 
structure is not completely satisfactory for the three-box model, most strikingly 
because the positions of el and e2 do not match those of the fluid model and lie 
within the folds f i  and f 2  rather than outside (Figure 4) .  We will see in Section 6 
that this defect can be corrected by considering more complex box models. 
Nevertheless the three-box model is useful in the limit t --f 0, since it enables us to 
understand analytically the “superposition principle” (Section 5.2 ). 

5.2 Asymptotic expansion .for small 

We will concentrate on an asymptotic path in the control space, where 4 - E ’ ,  E - E ,  

and - c2. We can show that the dependent variables obey the scalings Oi - E ,  

X i  - E and Yi - E for i~ { s, n } .  At leading order in E the equations are simplified into 

0, = E - 0,, 

0, = E - 0,: 

‘P3 = 0, - C, and Y,, = 0, - C,. 

The choice 5 = e2 is only governed by aesthetic reasons, since we can take any 
smaller value to obtain (5.2). We remark that the temperature dynamics decouple 
from the equations, and that the temperatures converge exponentially to the values 
0, = 0, = c(. This simplified model can be seen as a “fixed temperature and salinity 
flux” three-box model, and it has often been presented as such in the literature 
(Welander, 1988; Marotzke, 1989; Martozke, 1990), without reference to this 
asymptotic path. 

5.3 The superposition principle 

The stationary solutions of the simplified model (5.2) are given by the system 

Y s  = CI - C, and Y,, = CI - X,,, 

which factorizes into two uncoupled equations, p = lYslCs and f l  = lY,lCn. Thus, 
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they can be “superposed”, with separate solutions in each half of the domain if 
multiple equilibria exist. These half-domain solutions are given by the implicit 
equation Y =  IXl(1 -X),where Y =  p/ (a la l )andX = Y/cr.ForO < Y <  1/4,there 
are three solutions (Figure 9a). Two of them correspond to stable equilibria: 
Y = which is thermally driven (TH),  and Y = ax‘”  which is salinity driven 
(SA) .  In between, an unstable equilibrium Y = connects them through a 
saddle-node bifurcation at Y = 1 /4  and another bifurcation at Y = 0, where the 
solution curve is non-differentiable (Figure 9a). 

SA 

a 
Figure 9 Asymptotic three-box model. ( a ) :  Graphical solution of the equation Y = I X l (  1 - X ) .  -: 
solutions X”’ ( S A )  and X”’ (TH)  which correspond to stable half-domain equilibria. . . . . . : solution 
X”’ corresponding to the unstable half-domain equilibrium. ( b )  : Catastrophe structure in the control 
space (%, [j). 
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Thus, if we do not impose equatorial symmetry, there are nine equilibria 
(Ys, Y,,) = (aX‘ms) ,  aX‘””’) where (ms, m , , ) ~  { 1,2, 3 j 2 .  We can view these equilibria 
as the exact “superposition” of two half-domain equilibria. This “superposition 
principle” also applies when dealing with the stability of these equilbria (see Appendix 
C).  We thus conclude that the four equilibria TH = ( SA = ( a X ( ’ ) , a X ‘ ’ ) )  
and PP = are stable. The five other equilibria, 
containing X”’ in at least one half-domain, are unstable. 

In a plane (a ,  /?), the symmetric and asymmetric cusps are identical, and they are 
the curve /? = a]a1/4  and the zero-circulation line fl = 0 (Figure 9b). There is a thus 
an exact “superposition principle” for this simplified (or asymptotic) three-box 
model: whenever a stable state TH and a stable state SA coexist for a particular 
value of the control parameter, a stable state PP, with TH in one half-domain and 
SA in the other. also coexists. 

stX“’) or (ax”), 

5.4 Asymptotic path for  the fluid model 

One would like to repeat this asymptotic procedure for the 2D Boussinesq model, 
to demonstrate rigorously a similar “superposition principle ”. The numerical 
experiments suggest that this happens in the limit k -+ 0. We have tried to build such 
an asymptotic expansion by choosing the scaling a - E and assuming that Y - E and 
T - E .  The proper scaling for b and S is more tricky, since it involves boundary layers 
in y at the poles, as we have observed in numerical solutions for small k .  These 
boundary layers come from the fact that the operator Vz with flux boundary conditions 
becomes singular in the limit k - 0 .  Moreover, these boundary layers exhibit 
dynamical instabilities (e.g., a Hopf bifurcation characterized by the oscillation of 
a narrow but deep counter-rotating cell at each pole). We have not gone further in 
this direction. 

6 .  A HIERARCHY O F  BOX MODELS 

We define a family of different box-model by building a hierarchy, in which the 
simpler models of Sections 4 and 5 are deduced from more complex ones in some 
asymptotic limit. We have shown that the three-box model was able to reproduce 
some qualitative features of the catastrophe structure of the fluid model, but that 
some others were unsatisfactory (see Section 5.1 ). We study here slightly more 
complex box models in order to find the simplest model which reproduces this 
catastrophe structure in a satisfactory manner. For conceptual simplicity we prefer 
to investigate a few ocean “boxes” rather than make a low-order Galerkin projection 
of the fluid equations on suitably differentiable basis functions. Our goal is physical 
and mathematical understanding of the fluid dynamics by analogy. 

6.1 The 3 x 2 box model 

The configuration of a 3 x 2 box model is shown in Figure 10. Neighboring boxes 
are connected by only one pipe. This box and pipe configuration is motivated by 
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Figure 10 Configuration of the 3 x 2 box model. 

the form of the stationary circulations obtained in the fluid model (e.g., Figures 1-2). 
By defining separate upper and lower boxes, the sign of the circulation is now relevant, 
and to distinguish signs we define for i E { s, n} the non-negative quantities 

Yi+ = +(lYil + Y.)  1 7  

Y; = +(lYil - Yi) .  

As for the two-box and three-box models, we suppose that the pipes are thin, so 
that a capillary law of the type (4.1 ) exists, and parcels of fluid entering a reservoir 
are immediately mixed. We also suppose that there are both horizontal and vertical 
diffusion through the pipes, whose strengths compared to the advection are measured 
by the dimensionless parameters K~ and K ” ,  respectively. We call c( and /3, as usual, 
the intensities of the temperature and salinity forcing. The dimensionless parameter 
( measures the ratio of the characteristic relaxation times to the forcing of salinity 
and the temperature; again this parameter must be thought of as a small number 
in order to mimic the mixed boundary conditions of the fluid model. We call 6 the 
ratio between the lower and the upper box volumes, and we assume, for simplicity, 
that the equatorial boxes have twice the volume of the polar ones. 

As for the two-box and three-box models, we choose a time unit based on the 
temperature relaxation time to the forcing value and temperature and salinity units 
based on box volumes, the expansion coefficients y T  and -ys, and the coefficient D 
entering in the capillary law. With these choices, the dimensionless equations of the 
3 x 2 box model are given in Appendix D. Because of the presence of quantities 
(6.1 ), this model is non-analytic, as were the two- and three-box models. 
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6.2 Simpler models in the hierarchy 

A first simplification can be made by imposing equatorial symmetry. Thus the 3 x 2 
model includes a 2 x 2 model when we look at the symmetric solutions. 

The three-box model of Section 5 can be derived as the limit of the 3 x 2 model 
when both 6 + 0 and K, + 00. This last limit is important because if we only take 
the limit 6 + 0, additional advection velocities Qi = Y' YJ: /2(Y'+ + YJ: + 2 ~ " )  must 
be included (here i and j are in {s,  n> with j # i )  in the three box-model equations, 
leading to the 3 x 1 model in the present notation. However, these velocities are zero 
in the symmetric case (i.e., the two-box model of Section 4, or 2 x 1 )  since either 
Y; = Yn- = 0 or Y: = Y: = 0 when Ys = Y,,. 

One can include a 1 - 2 - 1 box model in the hierarchy by combining the upper 
and lower boxes for the polar regions, motivated by the weak polar stratifications 
observed in the fluid model solutions-this type of box model also has been studied 
by Marotzke (1990). Formally this is accomplished by adding the upper and lower 
equations for the polar variables, which are then set equal. to each other. The 
corresponding symmetric model would be called 2 - 1. An asymptotic link with the 
other box models of the hierarchy could be established by defining different values 
for vertical diffusivity K, in the polar and the equatorial boxes and letting the polar 
diffusivity become large. 

6.3 Catastrophe structure of the hierarchy 

We now explore numerically the catastrophe structures of the box models of the 
hierarchy. Figure 11 shows a numerical determination of the symmetric and 
asymmetric cusps for the 3 x 2 and 1 - 2 - 1 models, at typical values of (, K ~ ,  icb 

and 6. To determine these cusps we choose initial conditions on a horizontal line 
( a  = 0)  in the (a ,  p )  plane and let the system relax to an asymptotic state on each 
point of the line; this yields equilibrium solutions of type TH. We then take these 
equilibria as initial conditions for a horizontal line slightly above the first one, and 
so on. After we reach an upper line which is sufficiently high ( a  large), we reverse 
the procedure back to the first line. Because of the solution structure (Figure 3), 
there is a hysteresis such that the two paths, up and down, do not select the same 
equilibrium in the region between the cusps folds. This procedure is carried out both 
with symmetry imposed and without i t ,  and in the later case we add a random 
asymmetric perturbation to each initial condition in order to catch the asymmetric 
equilibria. 

Figure 11 shows that the catastrophe structures of the 3 x 2 and 1 - 2 - 1 models 
are quite similar. Furthermore, they are both qualitatively similar to that of the fluid 
model (Figure 4),  with the asymmetric fold lines outside the symmetric ones. This is 
a qualitative improvement over the three-box model structure (Figure 8 ) .  We do not 
attempt a quantitative comparison with the fluid model here : given the many 
parameters available and the success of the match with the two-box model for the 
symmetric folds (Figure 6b), we would expect to be able to achieve a very close 
correspondence. 

We have investigated a variety of values for the control parameters for each model 
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Figure 11 Catastrophe structure of the hierarchy: ( a ) :  3 x 2 model and ( b ) :  1 - 2 - 1 model for 5 = 0.2, 
ti,, = 0.1, ti, = 0.1, and 6 = 1 in the ( E ,  p )  plane. The curves f l  and the zero-circulation line are the same. 
The curves e , ,  gl, gz, f i  and e ,  have been determined numerically by the “up and down” procedure (see 
text ). 

of the hierarchy. When (, tih and ti, are varied, the catastrophe srtructure remains 
qualitatively the same, with the strongest variations in the zero-circulation line and 
the folds e l  and ,fl which follow it. For the 3 x 2 model the slope of the zero-circulation 
line is 

We conjecture that the “superposition principle” is true for all these models in an 
asymptotic path in the control parameter similar to that used for the three-box model 
(Section 5 ). 
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When 6 is decreased the asymmetric cusp is no longer visible through the “up and 
down path” procedure described above, at least in the portion of the (a ,  p )  plane 
we have explored. This means that the symmetrically stable equilibria SA and TH 
are no longer destabolized by asymmetric perturbations. But there is still a stable 
pole-to-pole equilibrium PP, with an associated cusp-catastrophe structure. This 
behavior when 6 -, 0 (i.e., the 3 x 1 box model) demonstrates why the catastrophe 
structure of the three-box model does not match well that of the fluid model. At least 
one lower box, as in the 1 - 2 - 1 model, is needed to achieve this goal, and a lower 
box is required to distinguish the effect of the sign of the circulation. 

7. CONCLUSIONS 

We have explored the control parameters (a ,  b, k )  of a 2D Boussinesq model of 
oceanic thermohaline convection and found a simple catastrophe structure. We have 
found two cusps, one for the symmetric and one for the asymmetric equilibria. For 
small values of k ,  there appears to be is a “superposition principle” such that, inside 
the symmetric cusp, the symmetric, stable, thermally (TH ) and salinity-( SA) driven 
circulations linearly combine to form a stable pole-to-pole (PP) circulation. This 
“superposition principle” explains why, in this limit of small aspect ratio, the cusp 
for the symmetric solution matches the asymmetric cusp. In this limit one fold of 
each cusp converges toward the zero-circulation surface, which itself converges to 
the line b = 0. The other folds appear to converge to a common line that resembles 
a parabola b - alal. The intersection of two cusps is a codimension 3 phenomena, 
but we have not investigated the exact nature of this higher order catastrophe. Even 
outside this asymptotic limit, the qualitative validity of this “superposition principle”. 
persists. 

Box models are able to reproduce this catastrophe structure. For the two-box 
model we have determined analytically the symmetric cusp which matches quite 
closely the symmetric cusp of the fluid model. We have defined a quantitative 
correspondence with the fluid model which supports the smallness of the parameter 
p, the ratio of salinity and temperature relaxation times to the forcings, or  5’ - 4 + K, 
when a horizontal diffusivity K is added. For the three-box model we have exhibited 
the low 4 or t’ asymptotic limit in which the “superposition principle” can be 
demonstrated analytically. However the three-box model is not powerful enough to 
reproduce well the catastrophe structure of the fluid model outside this asymptotic 
limit : the symmetric cusp is no longer in the interior of the asymmetric one. We have 
thus embedded these two simple models into a hierarchy of box models, which may 
appear more physical plausible as an analog of the fluid model. The box models of 
this hierarchy are related to each other by letting the parameters tend to certain limit 
values. The introduction of at least one bottom box is sufficient to reproduce 
qualitatively the full catastrophe structure of the fluid model. 
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APPENDICES 

A .  Stream function in the difusive regime 

The stream function vertical profile $ ( Z )  of ( 3 . 2 )  is obtained by solving the elliptic 
problem (2.7) where T and S are given by (3.1 ), with the free slip boundary conditions 
‘4’ = Yzz = 0 at z = 0, - 1 .  The lateral boundary conditions, either free slip or 
periodic, are trivially satisfied by the separation of the variables y and z .  After 
cumbersome algebraic manipulation we obtain 

cosh k 
8 

$ ( Z )  = -- { [ - P ( k ) Z  + 2’1 cosh Z + [ Q ( k )  - Z + Z 2  tanh k ]  sinh Z } ,  

with 

sinh k2  - 2 sinh k(cosh k - tanh k sinh k ) k  + k 2  
cash k siny k - k 

p ( k ) = -  -____ 
> 
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and 
k3  sinh k(cosh k - tanh k sinh k )  

cosh k sinh k - k Q ( k )  = 

B. Analytical determination of the two-box model catastrophe 

The solutions Y of (4.5) are roots of two degree 3 polynomials, one polynomial for 
the case Y 2 0 and one for Y < 0.  The fold catastrophes are the codimension 1 
surfaces of the control parameter space (a ,  p, 5)  for which a polynomial admits a 
double root. We find that (4.5) admits multiple solutions for the domain of the 
control space lying between the zero circulation surface and the suitable part of the 
surface defined by 

This analytical calculation was made with the use of the symbolic manipulation 
software Macsyma. 

C. Stability analysis of the asymptotic three-box model 

We want to investigate the stability of the nine equilibria (Ys, Y,,) = 
for the dynamical system (5 .2) ,  where the quantities X ( m i ) ,  i E { s, n ) ,  are chosen among 
the solutions X ( ' )  = ( 1  - d x Y ) / 2 ,  X ' 2 )  = ( 1  - 6 - 7 Y ) / 2  and X ( 3 )  = 
(1 + d x Y ) / 2  of the implicit equation Y = f X l (  1 - X )  (see Figure 9a), provided 
that the quantity Y = p / ( a l a l )  is chosen in the interval [ O ,  1/41. 

We call Ai = -yli(a - 2Xi)  = ayi( 1 - 2X'"") ,  i e  { s, n } ,  where yli is the sign of 'Pi. 
The stability of an equilibrium (Ys, Y,,) is given by the real part of the roots of the 
characteristic equation 

43.' - 3 ( A s  + A , ) i  + 2A,A,, = 0,  

which is obtained for infinitesimal perturbations growing like exp i t  in a linearization 
of (5.2) around the equilibrium. 

we have As = An = A. One eigenvalue, i = A, comes from the symmetric problem 
(i.e., the two-box model); it takes the value A(') = - a J E ,  A(') = a F 4 T  
and A(3' = --a,/- respectively. The other eigenvalue, 1 = A / 2 ,  corresponds to 
a purely antisymmetric mode. Both eigenvalues have the same sign and we conclude 
that SA = ( E X " ) ,  a x " ) )  and TH = are the only stable symmetric 
equilibria. 

For the six asymmetric equilibria a x ( ' ) ) ,  ( a x t 3 ) ,  a x " ) ) ,  ( a x " ' ,  ax(')) and 
symmetric counterparts, we can show that only PP = 
are stable. Indeed, the eigenvalues are real as shown by the positivity of the 

For the three symmetric equilibria ( a x ' " ,  ax(')), ax'')) and 

ax'") or (ctX"), 
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charcateristic equation discriminants : a2 (18 - 1 4 J 1 - 1 6 y 2 ) ,  32a2 (1 - 4Y) and 
a2 ( 18 + 1 4 J m )  respectively for the three asymmetric equilibria and their 
symmetric counterparts. For the two PP equilibria the eigenvalues have a positive 
product, (a2,/1 - 16Y2)/2, and the sum, - 3 c r ( J m Y  + J F Y ) / 4  is negative, 
which implies that their are both negative: the two PP equilibria are thus stable. 
For the other asymmetric equilibria the eigenvalues have a negative product, 
- a 2 ( 1  - 4Y)/2 and - ( c t 2 J - ) / 2  respectively, which implies that one of 
them is positive : these equilibria are unstable. 

This stability analysis can be summed up by saying that an equilibrium is unstable 
whenever it contains the unstable half-domain solution X"'. The "superposition 
principle" requires that each half of the domain contain one of the stable half-domain 
equilibria in order to build a stable equilibria on the full domain. 

____ 

D. 3 x 2 box model equations 

With the choice of units described in Section 6.1, the 3 x 2 box model equations 
(see Figure 10) are 

and 
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where the circulations are assumed to follow capillary laws with the circulation 
intensity proportional to the depth-integrated lateral buoyancy difference, 

1 6 
1 + 6  1 + 6  

Y" = -- [( C - C )  - (Su, - S:)] + __ [( Tf, - TL) - (s: - St)]. 


