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a b s t r a c t

The last 6000 years are of particular interest to the understanding of the Earth System because the boundary
conditions of the climate system did not change dramatically (in comparison to larger glacial–interglacial
changes), and because abundant, detailed regional palaeoclimatic proxy records cover this period. We use
selected proxy-based reconstructions of different climate variables, together with state-of-the-art time series
of natural forcings (orbital variations, solaractivity variations, large tropical volcanic eruptions, land coverand
greenhouse gases), underpinned by results from General Circulation Models (GCMs) and Earth System
Models of Intermediate Complexity (EMICs), to establish a comprehensive explanatory framework for climate
changes from the Mid-Holocene (MH) to pre-industrial time. The redistribution of solar energy, due to orbital
forcing on a millennial timescale, was the cause of a progressive southward shift of the Northern Hemisphere
(NH) summer position of the Intertropical Convergence Zone (ITCZ). This was accompanied by a pronounced
weakening of the monsoon systems in Africa and Asia and increasing dryness and desertification on both
continents. The associated summertime cooling of the NH, combined with changing temperature gradients in
the world oceans, likely led to an increasing amplitude of the El Niño Southern Oscillation (ENSO) and,
possibly, increasingly negative North Atlantic Oscillation (NAO) indices up to the beginning of the last
millennium. On decadal to multi-century timescales, a worldwide coincidence between solar irradiance
minima, tropical volcanic eruptions and decadal to multi-century scale cooling events was not found.
However, reconstructions show that widespread decadal to multi-century scale cooling events, accompanied
by advances of mountain glaciers, occurred in the NH (e.g., in Scandinavia and the European Alps). This
occurred namely during the Little Ice Age (LIA) between AD w1350 and 1850, when the lower summer
insolation in the NH, due to orbital forcing, coincided with solar activity minima and several strong tropical
volcanic eruptions. The role of orbital forcing in the NH cooling, the southward ITCZ shift and the desertifi-
cation of the Sahara are supported by numerous model simulations. Other simulations have suggested that
the fingerprint of solar activity variations should be strongest in the tropics, but there is also evidence that
changes in the ocean heat transport took place during the LIA at high northern latitudes, with possible
additional implications for climates of the Southern Hemisphere (SH).
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1. Introduction The greatest progress in understanding Holocene climate
change and variability has consistently been made by comparison
Since 1990, global mean temperatures have probably been
higher than at any previous time during the last 1000 years (Mann
et al., 1999; Crowley, 2000; Esper et al., 2002; Jones and Mann,
2004; Moberg et al., 2005; Osborn and Briffa, 2006). In the current
discussion about past climatic variability and climatic change, an
often-asked question is whether (and if so, why) comparably warm
periods occurred earlier, in particular during the present intergla-
cial (the Holocene), i.e. the past w11,600 years. For example, several
multi-century periods of substantial glacier advances and retreats
were reconstructed from the North American Cordillera (Porter and
Denton, 1967). Denton and Karlén (1973) concluded that the
Holocene experienced alternating intervals of glacier advances
(600–900 years in duration) and retreats (lasting up to 1750 years),
with strongest advances around 200–350, 2800 and 5300 cal years
BP. Other studies, based mainly on pollen and macrofossil recon-
structions of plant species distributions, have provided long-
standing evidence for a general, longer-term cooling of northern
high-latitude regions during the Holocene. This cooling is a conse-
quence of orbital variations that produced declining summer
insolation in the NH (see the list of abbreviations in Appendix A)
(Wright et al., 1993). The nature and causes of multi-century
climate variations has been more controversial. Denton and Karlén
(1973) invoked solar variability, and Bryson and Goodman (1980)
invoked volcanic activity, as possible forcing factors. Both have
been implicated in the interpretation of temperature changes
during the instrumental temperature record (e.g. Hegerl et al.,
2007). Yet most analyses of Holocene climate change have focused
either on the millennial scale, or on the decadal to multi-century
scale of variability, in part due to the tendency of some proxies (e.g.
low-resolution ocean sediment cores) to resolve only the former,
while others (e.g. tree rings) resolve mainly the latter. A compre-
hensive understanding of Holocene climate changes, however,
requires consideration of processes operating on both timescales,
their causes, and their interactions.

Although various chronostratigraphic terms have been used to
subdivide the Holocene, these have not been consistently applied
and are generally unhelpful because they refer to climatic stratig-
raphies that are, at best, regional in validity. Very broadly, however,
the Holocene can be usefully considered in three phases (e.g. Nesje
and Dahl, 1993). The first phase coincides with the ‘‘Preboreal’’ and
‘‘Boreal’’ chronozones, lasting from about 11,600 to about
9000 years BP. The second phase coincides with the ‘‘Atlantic’’
chronozone and covers the period from about 9000 to about 5000–
6000 years BP. This second phase is sometimes called ‘‘Hyp-
sithermal’’, referring to warm conditions in northern mid- to high
latitudes (other terms for this phase include ‘‘Altithermal’’ and
‘‘climatic optimum’’, the last being an anomalous survival from the
origins of Quaternary science in Scandinavia, where warmer was
presumably equated with better!). The third phase coincides with
the ‘‘Subboreal’’ and ‘‘Subatlantic’’ chronozones and covers the
period from about 5000–6000 years BP to pre-industrial time. This
third phase is sometimes called ‘‘Neoglacial’’, referring to the
aforementioned periods of glacier advances. These phases can be
understood in terms of the time course of climate forcing. Orbital
forcing (high summer insolation in the NH) was maximal at around
11,000 years BP, due to a coincidence of the precession and obliq-
uity cycles, however, until about 9000 years BP a large remnant ice
sheet persisted in North America (with downstream cooling effects
on the climate of the North Atlantic and Eurasia, although not on all
Arctic regions; Heikkilä and Seppä, 2003; Kaufman et al., 2004). The
second phase corresponds to a period of continuing high summer
insolation in the NH, with the North American ice sheet no longer
large enough to influence climate at a hemispheric scale. The third
phase corresponds to declining summer insolation in the NH.
of large-scale analyses of proxy data with simulations using global
climate models. This approach, requiring cooperation between
palaeoclimate data specialists and climate modellers, has a history
dating over 30 years. Thus the original goal of the Climate Mapping,
Analysis and Prediction (CLIMAP) project was to use stratigraphic
analyses of ocean cores to provide boundary conditions for
modelling the Last Glacial Maximum (LGM) climate using the
atmospheric general circulation models (AGCMs) available at that
time (CLIMAP Project Members 1976 and 1981). The Cooperative
Holocene Mapping Project (COHMAP) subsequently assembled
a global array of paleoclimatic observations (especially terrestrial
pollen, lake level and plant macrofossil data) to characterise
millennial-scale climate changes at 3000-year intervals since the
LGM, and used AGCM simulations to assess possible causes of the
patterns (Kutzbach and Guetter, 1986; COHMAP Members, 1988;
Wright et al., 1993). A key finding was that for the northern tropics,
particularly Africa and Asia, high NH summer insolation in the early
and Mid-Holocene enhanced the thermal contrast between land
and sea producing strong summer monsoons. This accounts for
evidence of widespread high lake levels in regions that are arid
today (Kutzbach, 1981; Street-Perrott and Harrison, 1984, 1985;
Kutzbach and Street-Perrott, 1985; Gasse and van Campo, 1994; see
also Gasse, 2000, and references therein). The climatic response to
both the insolation changes and the retreating ice sheets produced
widespread readjustments in the vegetation of both hemispheres
(e.g. Prentice et al., 1991; Harrison and Dodson, 1993; Wright et al.,
1993; Williams et al., 2000). Much recent work has centred on
developing a more quantitative understanding of changes between
the 6000 years BP ‘‘timeslice’’ and the pre-industrial period;
including consideration of ocean–atmosphere interactions (as
coupled atmosphere–ocean GCMs (AOGCMs) became available)
and feedbacks involving the land surface. Since the early 1990s, the
Palaeoclimate Modelling Intercomparison Project (PMIP) has
organised systematic model intercomparisons and model–data
comparisons using AGCMs and later AOGCMs (e.g. Joussaume et al.,
1999; Braconnot et al., 2007a, b). The Palaeovegetation Mapping
Project (BIOME 6000) of IGBP (Prentice and Webb, 1998; Prentice
et al., 2000) was designed to provide a global data set derived from
pollen and plant macrofossils for use as a benchmark to test
increasingly sophisticated models of past climate, vegetation and
their interactions. Additionally, an update of the BIOME 6000 data
set for northern high latitudes was used to evaluate PMIP simula-
tion of Arctic climates (Bigelow et al., 2003; Kaplan et al., 2003).

In addition to observational studies based on proxies in ocean
and terrestrial sediments, a variety of more recently-developed
data sources have shaped current knowledge of Holocene climate
change, including tree rings, ice core records, corals, and speleo-
thems (all of these typically having high time resolution) and
geophysical techniques, such as borehole temperature measure-
ments, which can be deconvoluted to yield independent palae-
otemperature records. Examples of these ‘‘new’’ proxy types are
used alongside traditional approaches in this article. In particular,
Fig. 2 illustrates climate changes since 6000 years BP for different
regions using significant high-resolution archives that depict
temporal patterns on both multi-century and millennial timescales.

A recently revived debate concerns the question whether
climate variations have been cyclic, not only during the last glacial
period, but also during the Holocene (Bond and Lotti, 1995; Bond
et al., 1997, 2001; Oppo, 1997; Broecker and Hemming, 2001;
Crowley, 2002; Burroughs, 2003). This debate has gained impetus
from discussions about the transition from the Medieval Warm
Period (MWP; Hughes and Diaz, 1994; Crowley and Lowery, 2000;
Broecker, 2001; Bradley et al., 2003), otherwise called the Medieval
Warm Epoch (MWE; Lamb, 1965, 1969) or the Medieval Climate
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Fig. 1. Sea level changes in the area of the southern North Sea (modified after Behre,
2003). The dashed line with the point marks the period investigated in this paper. NN
means ‘‘Normalnull’’. It is the classical German reference level, defined by the average
at the Amsterdam North Sea gauge.
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Anomaly (MCA; Graham et al., 2007), to the Little Ice Age (LIA;
Wanner et al., 2000; Grove, 2004; Holzhauser et al., 2005;
Matthews and Briffa, 2005), which is the most recent and the most
prominent of the periods of glacier advance during the Late Holo-
cene. Motivated by the findings of O’Brien et al. (1995), Bond et al.
(1997, 2001) postulated a Holocene ‘‘1500-year’’ cycle based on
petrologic tracers of drift ice in the North Atlantic and suggested
that this cycle represents the Holocene continuation of the Dans-
gaard–Oeschger cycles, which are a prominent feature of high-
resolution palaeoclimatic records during the last glacial period in
the North Atlantic region. On the other hand, it has been argued
that there is little evidence of cyclic behaviour in Holocene vege-
tation and lake-level records from the surrounding continents (e.g.
Shuman et al., 2005). One specific goal of this article is to examine
whether ‘‘Bond cycles’’ are indeed pervasive in climate records of
the past 6000 years.

Recent improvements in computer power, and the development
of highly efficient models (fast GCMs and EMICs), have combined to
greatly facilitate the simulation of Holocene climates. In addition to
quasi-equilibrium experiments for key time slices, transient
simulations have covered part or all of the Holocene (e.g. Claussen
et al., 1999, 2002; Crowley, 2000; Cole, 2001; Renssen and Osborn,
2003; Goosse et al., 2004; Schmidt et al., 2004; Otto-Bliesner et al.,
2006; Braconnot et al., 2007a, b). With the inclusion of more-or-less
realistic representations of multiple forcings (including the spatial
structure of, e.g. volcanic aerosols) and of natural variability modes
of the coupled ocean–atmosphere system (e.g. Bengtsson et al.,
2006; Goosse et al., 2006), it has also become possible to use
models to analyse a wider spectrum of climate change mechanisms,
including those operating on timescales of decades.

The Holocene defines the period during which civilisation
developed. Published sources provide multiple examples of societal
collapses that occurred during the last 6000 years, on local and
regional scales, synchronous with abrupt shifts to drier and/or
colder climate regimes (McGhee, 1981; Weiss et al., 1993; Hodell
et al., 1995; Dalfes et al., 1996; Weiss and Bradley, 2001; deMenocal,
2001). The frequency of wars has also been closely tied to climate
variations during the past millennium (Zhang et al., 2001), testi-
fying to the central importance of climate changes to human well-
being.

In this article we expound a general framework for under-
standing climate changes during the last 6000 years. We inten-
tionally do not include the first millennia of the Holocene because
we want to exclude the climatic influence of large continental ice
sheets or large mass reorganisations, such as those resulting from
extensive outflows of freshwater from the melting ice sheets. Fig. 1
shows that major sea level changes ceased after 6000 years BP
(Behre, 2003). In order to aid the interpretation of high-frequency
changes, we also present new data sets encompassing the known
natural forcings, based on the most accurate timescales with the
highest possible temporal resolution. In the final section we
attempt to answer the following questions:

1. What was the spatial structure of Mid- to Late Holocene climate
changes?

2. Are multi-century scale changes, between colder and warmer
(or humid and dry) periods, cyclic, with a quasi-regular period,
or not?

3. Can we identify periods with rapid large-scale climate shifts or
transitions?

4. Do climate variations coincide with known variations of natural
forcing factors, such as orbital parameters, solar irradiance,
explosive tropical volcanic eruptions and greenhouse gases?

5. What was the involvement of natural variability modes, such as
the El Niño Southern Oscillation (ENSO) and the North Atlantic
Oscillation (NAO), in climate change during the Holocene?
6. Are models able to simulate climate variability at different
timescales, and to what extent can they diagnose the under-
lying processes?
2. Observations

We first attempt an overview of observed climate changes
during the last 6000 years. For this purpose, a global array of
accurately dated palaeoclimatic timeseries is required (Rind and
Overpeck, 1993). Three types of information are summarised:

(a) a selection of key timeseries (mainly from single points on the
Earth’s surface, but including a few multi-site composites)
representing proxy-based reconstructions for either annual/
warm-season temperature or effective moisture/precipitation
(Fig. 2);

(b) global maps of lake status at 6000 14C years BP (6800 cal years
BP) and present, as an indicator for changes in water balance;
this map provides spatially extensive information based on
a variety of records of low to high resolution (Kohfeld and
Harrison, 2000; Braconnot et al., 2004; Fig. 3);

(c) eight timeseries showing glacier advances and retreats during
the last 6000 years, covering important glacial regions (Fig. 4).

We split the paper into the two fundamental timescales,
‘‘millennial’’ and ‘‘decadal to multi-centennial’’.

2.1. Changes on millennial timescales

2.1.1. Proxy timeseries
Fig. 2 shows selected timeseries representing climate variations

during the last 6000 years (see Table 1, and Bütikofer, 2007, for



Fig. 2. Global overview based on 17 selected timeseries listed in Table 1. Proxies which likely represent temperature are depicted in red, those indicating humidity/precipitation in
blue. The green line shows the IRD curve by Bond et al. (2001). The ‘‘Bond events’’ 0–4 are highlighted as green shaded areas. The dashed line shows the 6 kyr long linear trend (a
slightly bent line indicates unequal intervals between the single data points).
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details), with millennial-scale trends indicated by dashed lines. We
consider these timeseries broadly by latitude bands (high latitudes
>60�, mid-latitudes 30–60�, subtropics and tropics <30�), supple-
menting our summaries with information from Fig. 3 and other
published literature.

2.1.1.1. Northern high latitudes. The two d18O records in ice cores
from the Agassiz Ice Cap on Ellesmere Island (Fisher et al., 1994;
Fig. 2a) and Greenland (GRIP; Vinther et al., 2006; Fig. 2b) show
proxy-reconstructed temperature in the high latitudes of the North
Atlantic region decreasing almost linearly until the LIA. A similar
temperature decline is observed in sea surface temperature (SST)
records from the North Atlantic (Marchal et al., 2002), the North
Icelandic Shelf (Bendle and Rosell-Melé, 2007), and the Norwegian
Sea (Calvo et al., 2002). This temperature decrease is additionally
confirmed by a pollen-based July temperature reconstruction from
the Fennoscandian tree-line near the North Atlantic seabord by
Seppä and Birks (2001; Fig. 2c). Records from the Greenland, Ice-
land and Norwegian Sea show a decline in SST until 4 kyr BP (Koç
et al., 1996). Pollen and plant macrofossil records document
a widespread southward retreat of the Arctic treeline implying
declining summer temperatures and/or growing-season length
(e.g. Prentice et al., 1996; Tarasov et al., 1998; Williams et al., 2000;
MacDonald et al., 2000). This response was asymmetrical around
the pole, being maximal in central Siberia and minimal in Beringia
(TEMPO Members, 1996; Texier et al., 1997; Edwards et al., 2000).
Based on the analysis of d18O of calcite sediments from the Jelly-
bean Lake in Alaska Anderson et al. (2001, 2005) reconstructed
mean annual precipitation which is related to the location and
strength of the Aleutian low. Their curve shows no millennial trend
but depicts remarkable multi-centennial fluctuations with a strong
minimum around 2000 years BP.

2.1.1.2. Northern mid-latitudes. The timeseries of ice rafted debris
(IRD) (in the form of hematite-stained grains deposited in the North
Atlantic by southerly drifting icebergs during cooler periods) by
Bond et al. (1997, 2001; Fig. 2d) is represented in Section 2.2 in the
discussions about climate cycles. Higher IRD numbers indicate
cooler time periods, often called ‘‘Bond Cycles’’ (the cycles from 0 to
4 are marked with a green beam in Fig. 2d). In general, the IRD
curve in Fig. 2d suggests a slight warming trend, however this is
untypical: a long-term SST decline has been found generally in the
North Atlantic between MH and LH(see Marchal et al., 2002; Kim
et al., 2004; Rimbu et al., 2004). A mean continental summer
temperature anomaly curve from North America was reconstructed
by Viau et al. (2006) using>750 dated fossil pollen records (Fig. 2e).
A decreasing millennial summer temperature trend is clearly
visible, although the amplitude of cooling is less than that seen in
the Arctic. A progressive decline in summer temperature since the
MH is also well established from pollen and plant macrofossil data
in northern and central Europe (see e.g., recent quantitative
reconstructions based on >500 dated fossil pollen records by Davis
et al. (2003) and Brewer et al. (2007)). Interior N America and the
Pacific Northwest in the MH were generally drier than present, as
shown by palaeovegetation (Wright et al., 1993; Williams et al.,
2000; Thompson and Anderson, 2000) and lake status (Fig. 3)
records, becoming wetter towards the present, while monsoonally
influenced regions in the American southwest became drier
towards the present (Wright et al., 1993; Thompson and Anderson,
2000; Harrison et al., 2003). The Mediterranean region has also
become drier from the MH to the present (Wright et al., 1993; Davis
et al., 2003). Fig. 2f illustrates this millennial-scale drying trend
from a speleothem record, Soreq cave in Israel (Bar-Matthews et al.,
2003). A drying trend is also seen in lake (Fig. 3) and pollen (Yu
et al., 1998 and 2000) records from China. Wet MH conditions in
some mid-latitude regions of N America and E Asia likely reflect
enhanced monsoonal activity ‘‘spilling over’’ from the subtropics
and tropics, dynamically linked to the dryness shown by areas
beyond monsoonal influence (Harrison et al., 2003). An important
mid-latitude proxy for the NH is also shown in form of the glacier
curve for the European Alps in Fig. 4.

2.1.1.3. Northern subtropics and tropics. A pronounced Holocene
drying trend is shown by lake and vegetation records in regions of
Central America, Africa and SW, S and E Asia, which receive
precipitation from NH monsoon systems today (e.g. Fig. 3, Jolly
et al., 1998a; Hoelzmann et al., 1998; Gasse et al., 2000; Fleitmann
et al., 2003). This trend from expanded to contracted monsoon
rainfall belts can be interpreted as a progressive southward shift of
the Intertropical Converge Zone (ITCZ). This millennial-scale trend
is consistently shown by high-resolution records from the northern
subtropics and tropics: the sedimentary record from the Cariaco
Basin (Haug et al., 2001; Fig. 2g), the d18O record from the Dongge
Cave speleothem (Wang Y. et al., 2005; Fig. 2h), and the d18O record
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from Lake Chichancanab, Mexico (Hodell et al., 1995; Fig. 2i). The
extremely arid period with low lake levels, which started in Mexico
around 2000 cal years BP, lasted for approximately one millennium
corresponding to the collapse of the Classic Maya civilisation
(Hodell et al., 1995; Fritz et al., 2001; Harrison et al., 2003; Haug
et al., 2003). The analysis of the SST trends in the northern
subtropics and tropics becomes more difficult than those previ-
ously discussed, because of the restricted number of data sets. In
the subtropical to tropical North Atlantic a slight warming trend is
visible (Kim et al., 2004). Based on foraminiferal assemblages off
West Africa, DeMenocal et al. (2000) pointed to the strong multi-
centennial to millennial scale temperature variability (Fig. 2j)
which resulted from increased southward advection of cooler
temperate or subpolar waters, or from enhanced regional
upwelling. The situation is even more complicated in the Indo-
Pacific area. The record of foraminiferal Mg/Ca ratios from the
western tropical Pacific by Stott et al. (2004) (Fig. 2k) shows
a cooling trend since the MH, opposite to signals from further north
(Kim et al., 2004). Gagan et al. (2004) demonstrated that no note-
worthy SST changes occurred within the Indo Pacific Warm Pool
(IPWP) between the Mid- and Late Holocene. Shulmeister (1999)
emphasised that the west–east SST contrast in the tropical Pacific
drives the Walker Circulation. This contrast was greatly weakened
in the Early Holocene (EH) but was enhanced after about 5000 cal
years BP. The SSTs in the western Pacific warm pool were probably
at, or close to, modern values. SSTs in the eastern Pacific,



Table 1
Site descriptions, resolutions and references of the 18 timeseries in Fig. 2 (Bütikofer 2007)

Region Latitude Longitude Resolution (years) Reference

(a) Agassiz Ice Cap 80�490N 72�560W 25 Fisher et al. (1994)
(b) Greenland, GRIP 72�350N 37�380W 20 Vinther et al. (2006)
(c) Northern Fennoscandia, Tsuolbmajavri 68�420N 22�050E 60 Seppä and Birks (2001)
(d) N Atlantic 54�150N 16�470W 70 Bond et al. (2001)
(e) North America 25–70�N 55–170�W 100 Viau et al. (2006)
(f) Israel, Soreq Cave 31�450N 35�030E w50 Bar-Matthews et al. (2003)
(g) Cariaco Basin 10�420N 65�010W w6 Haug et al. (2001)
(h) E China, Dongge Cave 25�170N 108�050E w4 Wang Y. et al. (2005)
(i) Mexico, Lake Chichancanab 19�050N 88�450W w19 Hodell et al. (1995)
(j) Subtropical Atlantic, off Cap Blanc 20�450N 18�350W w92 deMenocal et al. (2000)
(k) W Tropical Pacific 6�N-10�S 125–134�E 250 Stott et al. (2004)
(l) Peru, Huascarán 09�000S 77�030W 100 Thompson et al. (1995)
(m) E Africa, Kilimanjaro 03�040S 37�210E 50 Thompson et al. (2002)
(n) S Africa, Makapansgat Valley 24�010S 29�110E w9 Holmgren et al. (2003)
(o) Antarctica, EPICA Dome C 75�060S 123�210E w17 Jouzel et al. (2001)
(p) Antarctica, Taylor Dome 77�470S 158�430E w24 Steig et al. (1998)
(q) Antarctica, Vostok 78�280S 106�480E w38 Petit et al. (1999)
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particularly in the coastal upwelling zone, would have been higher
during the EH because wind speeds were lower (Shulmeister,
1999).

2.1.1.4. Southern subtropics and tropics. Lakes in the Altiplano of
South America experienced multi-millennial low levels during the
MH, to ca 4500 cal years BP. Since then the lake levels have
increased stepwise to reach modern levels by ca 3500 cal years BP
(Nuñez et al., 2002; Grosjean et al., 2003). Pollen data from SE Brazil
also indicate dryness in the MH and increasing rainfall towards the
present, opposite to the widespread trend shown in the NH
subtropics (e.g., Behling, 1995; Behling and Pillar, 2007). Fritz et al.
(2001) noted that MH conditions drier than today were found
extensively in mid-latitude regions of both North and South
America. However, the causes were likely quite different. Long-
term temperature records from the southern tropics and subtropics
are very sparse. Fig. 3l and m shows two d18O timeseries from
glaciers in the high north-central Andes (Huascarán in Peru;
Thompson et al., 1995; Fig. 2l) and Eastern equatorial Africa (top of
Kilimanjaro; Thompson et al., 2002; Fig. 2m). There is still debate as
to whether these curves carry a temperature signal (Pierrehumbert,
1999). Thompson et al. (2002, 2003) assumed that the two curves
represent a temperature signal, and that therefore a negative
millennial temperature trend was present on both continents. If so,
it remains unclear whether this trend is a reaction to the decreasing
insolation in the Southern Hemisphere (SH) winter, or the result of
a complex reaction to the NH cooling. Data from the Pacific tropics
and subtropics are sparse. Abram et al. (2007) show that the MH in
the eastern Indian Ocean was characterised by a longer duration of
surface ocean cooling. They also point to the strong coupling
between the weakening Asian monsoon and the enhanced El Niño
activity during the LH.

2.1.1.5. Southern mid-latitudes. Arid or less humid conditions pre-
vailed in the western mid-latitudes of South America between 7700
and ca 5300 cal years BP (Lamy et al., 2001). Thereafter a stepwise
precipitation increase has been interpreted as reflecting an inten-
sification of northward moving winter westerlies (Markgraf et al.,
1992). This interpretation is consistent with enhanced upwelling
along the South American west coast and a strengthening of the
Walker Circulation, as well as an increased ENSO activity after ca
5000 cal years BP as recorded in paleodata from the eastern and
western Pacific (Shulmeister, 1999; Shulmeister et al., 2004, 2006;
see also Section 4.1). No clear trend is visible in the d18O curve of
a stalagmite from the Cold Air Cave in the Makapansgat Valley in
South Africa (Fig. 2n). According to Holmgren et al. (2003) these
data reflect fluctuations between warmer (drier) and cooler
(wetter) conditions. Pollen data from Australia and Pacific islands
(Pickett et al., 2004) indicate little climate change during the
Holocene. Shulmeister (1999) showed that northern Australia had
a precipitation maximum after 5000 cal years BP. Significantly this
occurred at least 1000 years later than in southern Australia
because the climate of tropical Australia had become decoupled
from that of temperate Australia at that time. This change marked
the onset of an enhanced Walker Circulation, as seen today. A
concomitant strengthening of the westerlies has also been inferred
for New Zealand (Shulmeister, 1999).

2.1.1.6. Southern high latitudes. Three out of 11 Holocene timeseries
of water isotope measurements at different sites in Antarctica
(Masson et al., 2000) are represented in Fig. 2o–q. The isotopic
ratios reveal the long-term temperature trends arising from local
ice sheet dynamics, such as elevation fluctuations, superimposed
on common temperature changes. The trends shown are small and
not uniform (Masson et al., 2000). Vostok (Petit et al., 1999) and
Taylor Dome (Steig et al., 1998) show negative trends while EPICA
Dome C (Jouzel et al., 2001) shows almost no long-term trend.

2.1.2. Glacier dynamics
Historical descriptions of glacier variations, dates of moraines

and lake sediment properties from glacial areas provide important
records of former glacier fluctuations. The historical descriptions
are limited in space and time, while geological reconstructions
generally suffer from the low dating accuracy. One of the most
serious limitations in the dating of moraines is the uncertainty in
the relationship between the timing of moraine deposition and that
of the organic material providing the actual date of advance, which
in most cases allows the estimation of the maximum or minimum
date of advance only. The accuracy of the methods used for moraine
dating ranges from several decades to centuries and is, therefore,
inadequate for high-resolution reconstructions. The cross-dating of
trees damaged or killed by glacier advances allows improvement in
the accuracy, up to annual resolution. However, such data are
limited to regions where the upper tree limit reaches the Holocene
moraines, such as in the Alps and Patagonia. Glacio-fluvial sedi-
ment properties, calibrated against other measures of glacier
activity and extent, provide continuous records of past variability
and individual advances or retreats of glaciers (Dahl et al., 2003).
This method is intensively used in Scandinavia and has provided
detailed reconstructions of equilibrium-line altitude variations
over the whole Holocene, for both glacier advances and retreats.
Until very recently, little was known about the retreat of glaciers
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during the warmer climatic phases between the EH and the MH.
The uncertainty of the glacier sizes during the contracted stages
still remains. However, due to modern glacial shrinkage, new
reconstructions of past variability, based on the analysis of tree
rings and organic material buried by the former glacier advances
and released in the glacier forefield, recently became possible
(Hormes et al., 2001; Koch et al., 2004; Holzhauser et al., 2005;
Nesje et al., 2005, 2008; Jörin et al., 2006; Grosjean et al., 2007).
Several aspects of glacier dynamics should be kept in mind when
using this data for climatic reconstructions. The response time of an
advancing or retreating glacier front to a climatic signal differs for
different glaciers depending on type, size and morphology of the
glacier. For typical alpine valley glaciers the response time is esti-
mated to be 10–50 years (Oerlemans et al., 1998). The best climatic
indicators are non-surging mountain glaciers of moderate size and
simple shape, which are located on land (without floating tongue),
and have a regular accumulation rate (rather than provided by
avalanches or snow re-distributed by wind).

Glacial response depends on both temperature and precipita-
tion, so the problem often arises to distinguish between these two
parameters (Nesje and Dahl, 2003; Bjune et al., 2005). In most cases
in the high and mid-latitudes, summer temperature controls mass
balance and, hence, glacier size variations (Oerlemans, 2005;
Steiner et al., 2008). In western Scandinavia, the tropics and arid
subtropics however, the glaciers are strongly dependent on
precipitation (Grosjean et al., 1998; Kaser and Osmaston, 2002;
Nesje et al., 2005). In several cases, recent improvement in glacial
chronologies, coupled with high-resolution multi-proxy compari-
sons and climatic reconstructions, have enabled identification of
the climatic signal and even in temperate regions attribute several
advances to precipitation (Dahl and Nesje, 1996; Luckman, 2000;
Wanner et al., 2000; Luckman and Villalba, 2001; Nesje et al., 2001;
Nesje and Dahl, 2003). Despite many challenges in the dating and
interpretation of glacier variations, glaciers have been successfully
used as indicators of past millennial to decadal-scale climate
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Fig. 5. Overview of the spectral behaviour of the timeseries analysed in Bütikofer (2007) (o
dot marks a spectral peak. Horizontal lines represent broad peaks.
changes (Denton and Karlén, 1973 Mayewski et al., 2004; Oerle-
mans, 2005). However, due to the wide range of advance and
retreat dates, such data can also be misleading and should be
interpreted with caution. Fig. 4 shows several well-constrained
glacier histories based on both continuous (lake sediments) and
discontinuous (moraine based) chronologies.

The glaciers from the mid- to high latitudes in the NH, namely
found in the Alps (Jörin et al., 2006), Scandinavia (Bakke et al., 2008;
Nesje et al., 2008) and the Canadian Cordillera (Luckman, 2000;
Koch and Clague, submitted), were reduced in extent in the EH to MH
period, but experienced numerous advances after ca 6000 years BP,
reaching their maximum extent in the LIA (Fig. 4). This major trend
in the Holocene glacier variations in the NH seems to be related to
the gradually decreasing summer insolation driven by orbital
forcing. Koch and Clague (2006) suggested that a gradual reduction
of the glacier sizes through the Holocene in the SH is in agreement
with the increase of the austral summer insolation, opposite to the
NH. However, there is evidence that in several regions of the SH
many glaciers were of a smaller size during the EH to MH, including
those in Patagonia (Glasser et al., 2004; Kilian et al., 2007), Antarctica
(see Grove, 2004, and references therein) and the tropical Andes
(Abbott et al., 2003). To explain the long-term trend of glacier vari-
ations in the tropical Andes (small or absent glaciers in the EH to MH
and large in the LH) Abbott et al. (2000, 2003) suggested the
following climatic mechanism. The lower summer insolation
(January), driven by orbital forcing in the EH to MH, resulted in
decreased summer precipitation and the development of an arid
climate. The high insolation in winter contributed to more intense
melting of glaciers. As a result, the glaciers were non-existent in
catchments lower than 5500 m until the LH (ca 2400 cal years BP;
Abbott et al., 1997). The gradual re-appearance of the glaciers from
north to south can be explained by the onset of wetter conditions
related to orbitally-driven summer insolation increase during the
LH, which resulted in a progressive southward shift of the location
and strengthening of wet-season convection.
rs

pen circles, see Table 1) or in the references listed in Table 2 (black dots). Each circle or
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Shulmeister (1999) explained the lack of moraines between 8
and 5000 years BP in New Zealand and their appearance after-
wards, by variations in westerly circulation due to changes in sea-
sonality, as predicted by the precessional cycle. Markgraf (1993)
suggested the same mechanism in the subtropics of South America
between 30 and 34�S. However, recent modelling does not support
the assumption of a strong link between mean SH westerlies and
precipitation over southeastern Patagonia (Wagner et al., 2007).

Several authors have emphasised that glaciers in different
regions expanded during the Mid- to Late Holocene. They gave this
time period, which followed the so-called warmer Hypsithermal
between about 9000 and 5700 years BP, the name ‘‘Neoglacial’’
(Porter 2000). Porter (2000), analysing the dates of Holocene
moraines in the Andes, west Antarctica and New Zealand,
concluded that the first Neoglacial advances in this area culminated
between ca 5400 and 4900 cal years BP, i.e., close to the beginning
of several noteworthy glacier advances in the NH (Grove, 2004).
However, the austral summer insolation (see Fig. 6b) has the
opposite trend to the boreal summer insolation and cannot there-
fore have caused cooling and subsequent Neoglacial glacier
advances during the same period in the whole SH. Hodell et al.
(2001) suggested that the rapid cooling between 5400 and 4900 cal
years BP recorded in the Taylor Dome Ice Core (Antarctica; Fig. 2q),
in North Atlantic marine records (as an increase in IRD; Fig. 2d), and
coinciding with the end of the African humid period, can be
explained by a non-linear response of the Earth’s climatic system to
gradual changes in NH insolation. It was suggested that the process
may have been initiated in the tropics and subtropics (deMenocal
et al., 2000) and then propagated to high latitudes in both
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Fig. 6. Calculated deviations of the insolation from the long-term mean values (W/m2) as a
(austral summer); (c) seasonality (difference between June and December); (d) annual mea
hemispheres. However, this superficially attractive explanation
conflicts with the evidence that the first Neoglacial moraines in
different parts of the World span a broad interval up to several
millennia, and the oldest Neoglacial advances are almost
1000 years older than the cooling around 5000 cal years BP.
Namely, the advances in the Alps and possibly in the Pyrenees, in
Scandinavia, the Cascades and the Canadian west coast ranges
occurred shortly after 6000 cal years BP (Grove, 2004). This
discrepancy might be partly explained by poor dating accuracy, or
a different regional forcing for the earliest Neoglacial advances.

2.2. Changes on decadal to multi-centennial timescales

2.2.1. Proxy timeseries
In addition to long-term trends, the curves in Fig. 2 clearly show

pronounced higher-frequency variability. The first question is
whether these cycles or swings occur synchronously and within the
same frequency band, globally, or whether they are rather
restricted to more regional scales. As Table 1 demonstrates the time
resolution of the different datasets differs remarkably, complicating
the comparison of the time spectra. Nevertheless, we performed
spectral analyses of the datasets listed in Table 1, and compared the
results with the reported spectra of important Holocene palae-
oclimatic archives in the literature. Our analyses were restricted to
well-defined, detrended datasets covering the last 6000 years BP
(for more details see Bütikofer, 2007). All datasets were processed
with the same spectral analysis method (REDFIT; Schulz and
Mudelsee, 2002). Table 2 lists the references for the (predominantly
continental) studies that were used for comparison (for more
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details see Bütikofer, 2007). It should be noted that different
authors used different time intervals as well as different methods
for their spectral analyses. Fig. 5 presents the significant (90% level)
spectral peaks as described in the literature (black dots) and as
determined by our analyses (open circles). The dominant peaks
found in the different timeseries are plotted against the corre-
sponding latitude of each record. At best, this panel displays weak
clustering of spectral peaks, broadly consistent with Wunsch’s
(2000) contention that a broad band of quasi-periodic variability,
rather than any kind of significant spectral peak, is typical for
Holocene climate records.

The second question is whether or not the analysed periodic-
ities are stationary. To this end, we calculated wavelet transforms
for a set of suitable datasets (we used the interactive software
available at http://paos.colorado.edu/research/wavelets/; Torrence
and Compo, 1998). Not surprisingly, the results (not shown)
confirmed that the climate system is highly intermittent; no
specific peaks spanned the whole period of the last 6000 years BP
(see Bütikofer, 2007).

As mentioned above, the most discussed postglacial swings or
quasi-cyclic patterns are the so-called ‘‘Bond Cycles’’ with periods
of approximately 2000–2800 years and, more importantly,
w1500 years. There is still debate as to whether large climate
variations, such as the last transition from the MWP/MWE/MCA to
the LIA (Bond Cycle 0), were cyclic or not. With the caveat that
a 6000 years long time slice is rather short, the analyses in Fig. 5
indicate a small (non-significant) clustering of spectral peaks
around 1500 years.

Bütikofer (2007) demonstrated that a millennial-scale cyclicity
linked to ‘‘Bond Cycles’’ is postulated in the literature, however,
not only for Eurasia, but also for North and South America, and
Africa. Various mechanisms have been invoked in explanation.
Based on the analysis of GISP2 data, O’Brien et al. (1995) showed
that several phases of increased sea salt and terrestrial dust
concentrations in Greenland implied either a northward expan-
sion of the polar vortex or an enhanced meridional circulation.
Bianchi and McCave (1999), analysing sediment grains from
a deep-sea core in the south Iceland basin, suggested that
Table 2
Reference, coordinate and record length of the additional Holocene archives whose
spectra are represented in Fig. 5 (Bütikofer 2007)

Reference Latitude Longitude Record length (ka)

Sarnthein et al. (2003) 75�N 14�E 4.00
Schulz and Paul (2002) 72�360N 38�300W 10.00
Stuiver et al. (1995) 72�360N 38�300W 10.00
Risebrobakken et al. (2003) 66�580N 07�380E 11.50
Rousse et al. (2006) 66�330N 17�420W 10.00
Hall et al. (2004) 61�300N 24�100W 10.00
Hu et al. (2003) 59�280N 161�070W 10.30
Bianchi and McCave (1999) 56�220N 27�490W 10.00
Chapman and Shackleton (2000) 56�220N 27�490W 10.60
Langdon et al. (2003) 55�500N 03�200W 7.50
Viau et al. (2006) 25–70�N 45–165�W 14.00
Turney et al. (2005) 54–55�N 6�W 7.47
Bond et al. (2001) 54�150N 16�470W 12.00
Yu et al. (2003) 53�350N 118�010W 8.07
Niggemann et al. (2003) 51�070N 07�540E 6.00
Lamy et al. (2006) 41�320N 31�100E 7.50
Willard et al. (2005) 38�N 76�W 4.59
Nederbragt and Thurow (2005) 34�180N 120�050W 10.00
Lamy et al. (2006) 29�300N 34�570E 7.50
Dykoski et al. (2005) 25�170N 108�050E 11.00
Wang Y. et al. (2005) 25�170N 108�050E 8.85
Poore et al. (2003) 23–26�N 91.9–95.5�W 4.60
Gupta et al. (2005) 18�030N 57�370E 11.00
Fleitmann et al. (2003) 17�100N 54�180E 5.30
Baker et al. (2005) 16�S 69�W 13.00
Skilbeck et al. (2005) 33�200S 151�300E 10.00
deep-water flow was intensified (reduced) during warm (cold)
periods, such as the MWP (LIA). deMenocal et al. (2000), using
faunal SST reconstructions from a high-accumulation sediment
core off West Africa, found a series of discrete millennial-scale
cooling events recurring every ca 1500 � 500 years. They
concluded that this mode was roughly synchronous across the NA
basin. In their analysis of a stalagmite d18O record from Southern
Oman, Fleitmann et al. (2003) argued that variations in NA drift
ice may have influenced the IOM indirectly, by way of a monsoon-
Eurasian snow-cover link during the EH, a process that became
negligible after the NH ice sheets had disappeared. In their
monsoon record Gupta et al. (2003) also postulated a link
between a weak Asian southwest monsoon with cold events in
the NA including the classical transition from the MWP to the LIA.
In their analysis of a sediment core from Arolik Lake in south-
western Alaska, Hu et al. (2003) demonstrated that increases in
temperature and moisture corresponded to intervals of elevated
solar output and reduced NA ice-bearing waters and vice versa.
Niggemann et al. (2003) also found a strong coincidence between
the drift ice record of Bond et al. (2001) and their d18O data from
a calcitic stalagmite in Sauerland, northwestern Germany. Yu et al.
(2003) analysed a fen peat record from the northern Great Plains
and depicted dry and wet cycles with significant periodicities in
a broad band between 1500 and 2190 years, as well as around 386
and 667 years. In their pollen data from high-resolution sediment
cores taken in Chesapeake Bay in eastern North America, Willard
et al. (2005) found periods of ca 3–5 century-long pine minima
occurring roughly every 1400 years. Wang Y. et al. (2005) repor-
ted on a precisely dated stalagmite oxygen isotope record from
Dongge Cave in southern China, which shows that, apart from the
large decrease of the monsoon strength and frequency after the
EH, weak events occurred in phase with the ice-rafting events in
the NA (Bond et al., 2001). A multi-proxy reconstruction from
a lake sediment core from the Yanchi playa in arid northwestern
China (Yu et al., 2006) revealed persistent millennial-scale climate
fluctuations with cold (dry) episodes corresponding approxi-
mately to cooling phases in the NA region. Finally, Baker et al.
(2005) speculated that the ‘‘Bond Cycles’’ are even visible in their
d13C data from the SH, namely sedimentary organic matter of
Lake Titicaca. They postulated that these events, which were
characterised by large negative values of the N–S tropical-Atlantic
meridional SST gradient, may have led to increased precipitation
on the Altiplano and were thus anti-phased with respect to
precipitation variability in the NH monsoon region. Recently,
Debret et al. (2007) re-visited well-known series in the North
Atlantic Ocean, and found that the Holocene multi-centennial to
millennial variability is composed of three periodicities (cycles of
1000, 1600 and 2500 years).

2.2.2. Glacier dynamics
Comparable variability (or periodicity?) has also been detected

in glacier fluctuations. In Fig. 4 we roughly identify eight periods of
Neoglacial glacier advances. Each is marked with a coloured dot.
Four events occurred more or less simultaneously in several regions
around 5400–4800, 3800, 3100 and 2500 cal years BP. Their
determination is not as precise as for the striking events of the last
two millennia, which occurred around AD 600, 1050–1150, and
between 1300 and 1850 (two to three major advances are reported
in the latter LIA period depending on the region).

2.2.2.1. 5400–4800 cal years BP. The advances in this time period
occurred in several parts of the world, including the Alps, Alaska,
New Zealand and Patagonia (Grove, 2004). Thompson et al. (2006)
reported an abrupt cooling and a related expansion of the Quelccaya
ice cap at about 5200 cal years BP. These glacier advances broadly
coincide with one of the major IRD events taking place at ca 5530 cal
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years BP (Bond et al., 2001; see also Porter and Weijian, 2006). The
suggested potential forcing is the orbitally induced change in
insolation enhanced by a non-linear reaction of the climate system.

2.2.2.2. 3800 and 3100 cal years BP. Grove (2004) identified this
period of glacier advances in the Alps, Scandinavia, the Himalaya, in
the Canadian West and the Rockies, Alaska, Mount Kenya, tropical
South America, and New Zealand. More detailed records obtained
recently in different parts of the World show two separate advances
clustering around 3800 and 3100 (Fig. 4). No specific process has
been suggested so far to explain these advances.

2.2.2.3. Around 2500 cal years BP. Grove (2004) identified the
advances occurring worldwide between 3000 and 2300 cal years BP.
In the Swiss Alps these are dated between 3000–2600 cal years BP
(Holzhauser et al., 2005), in Norway they culminated at 2750 cal
years BP (Matthews et al., 2005), in the Western North American
Cordillera (Koch and Clague, 2006) between 2900 and 2300 cal years
BP, and in northern Chile (29�S) after 2800 cal years BP (Grosjean
et al.,1998). In Patagonia, the advances took place between 2900 and
1950 cal years BP (Mercer, 1982). However, due to the limited
accuracy of the dates, it is difficult to assess whether or not these
advances were synchronous. The time period from 2800 to 2500 cal
years BP broadly coincides with the Subboreal–Subatlantic
boundary with a prominent cooling and increase of humidity in
Northern Europe. Van Geel et al. (2000) claimed that the cooling and
the glacier advances in the third millennium BP can be related to the
abrupt decrease of solar activity around 2800–2900 cal years BP
(see Fig. 7a). These authors considered this period to be an analogue
of the LIA, peaking during the Maunder Minimum (AD 1630–1715). A
reduction of the solar activity of ca 1 W/m2 was attributed to an
increase in cosmic rays stimulating cloud formation and reducing
solar UV intensity, a decline of ozone formation, and a related
decrease of absorption of sunlight in the stratosphere. Van Geel et al.
(2000) also suggested that the related weakening of the monsoon
and the onset of dry conditions in tropical Africa have the same
origin. The uncertainty of the chronologies of records from the Asian
monsoon regions (Zhou et al., 1991, Grove 2004) is still too large to
support or reject this hypothesis.

2.2.2.4. First millennium AD. Besides the above mentioned
advances at about AD 600, the best constrained chronologies in the
Alps (Holzhauser et al., 2005), Alaska (Wiles et al., 1995) and
Southern Tibet (Yang et al., 2008) confirm synchronous glacier
advances in these regions around AD 200, 400, and 800–900. The
most prominent advance around the 6th century AD (yellow
Fig. 7. Reconstructions of the solar activity based on 10Be and 14C. The 10Be production
rate was derived from 10Be concentrations measured in the GRIP ice core (Vonmoos
et al., 2006). The radiocarbon production rate was calculated with the Bern3D dynamic
ocean carbon cycle model (Müller et al., 2006) by prescribing the tree-ring records of
both hemispheres (Reimer et al., 2004; McCormack et al., 2004). Both curves were
band-pass filtered with a window from 300–3000 years.
marker in Fig. 4) is also identified in the North (Reyes and Clague,
2004) and South American Cordillera (Koch and Clague, 2006),
Scandinavia (Lie et al., 2004; Matthews et al., 2000, 2005; Nesje
et al., 2008), and Franz Josef Land (Lubinsky et al., 1999). The
simultaneity of these advances suggests a common forcing, most
probably solar or volcanic (Figs. 7 and 9), although the plausibility
of these mechanisms has yet to be tested by modelling studies.

2.2.2.5. 2nd millennium AD. Evidence of generally warm climate
(reconstructed from wood macrofossils, upper tree limits, pollen,
diatoms, ice-cores, and other proxy data) and reduced glacier
activity (derived from soils and trees in the moraines, proglacial lake
sediments) between AD 900 and 1240 is found in various parts of the
world (Roethlisberger, 1986; Bradley et al., 2003; Grove, 2004).
Conversely, some glacier advances were recorded during this period.
Advances occurred between AD 1050 and 1150 (Grove and Switsur,
1994), namely in the Alps (Holzhauser et al., 2005), Alaska (Ellis and
Calkin, 1984; Wiles et al., 1995), North and South Patagonia, British
Columbia (Luckman and Villalba, 2001), New Zealand (Gellatly et al.,
1988), Greenland (Geirsdottir et al., 2000), Franz Josef Land
(Lubinsky et al.,1999), and southeast Tibet (Zheng et al.,1994). Some
of these advances were of small extent, but others, for instance those
in the Alps, Franz Josef Land, northern Patagonia and southeast Tibet,
were very prominent. However, the precise extent of the maximum
glacier advances during the MWP is unknown in most places.
Despite the low accuracy of some of these dates, the period of
advances between AD 1050 and 1150 seems to be of global extent
and roughly coincides with the so-called Oort minimum of solar
activity (see Fig. 7). Based on the common pattern in glacier
behaviour, Grove (2004) identified the LIA as a time interval from AD
1300 to 1850 composed of several periods, each lasting several
decades, when glacial extents were larger. So far, the LIA is the only
period during the Holocene for which glacial advances have been
identified in all parts of the globe (see Fig. 4). In the Alps the LIA
consisted of three major periods of glacial advance with moderate
retreat in-between (Wanner et al., 2000; Holzhauser et al., 2005).
The largest Alpine glacier, the Great Aletsch Glacier, peaked around
AD 1350, 1670 and 1850. In most parts of the world the mountain
glaciers reached their maximum between the 17th and the 19th
century. Even though the peaks of glacier activity, centred at AD
1300, 1450, 1650, 1850 in the Alps, Alaska and Rockies Mountains,
roughly correspond to the Wolf, Spoerer, Maunder, and Dalton
minima (Wiles et al., 2004; Holzhauser et al., 2005; Luckman and
Wilson, 2005), clear mechanistic principles explaining how low
solar activity caused glacier advances do not exist. Interestingly,
Luckman and Villalba (2001), comparing the well-dated records
Fig. 8. Power spectra of the two solar activity records of Fig. 7, spanning the last
10,000 years.
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Fig. 9. Excess sulphate loadings for Dome C (Antarctica; red bars) and GISP2 ice cores (Greenland, blue bars) in kg/km2 for the last 6000 years. The records are shown on
synchronised timescales (see text for details). Vertical dashed lines indicate times of large eruptions with global influence (Crowley and Vinther, 2008).
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from Alaska, British Columbia, the Canadian Rockies and Patagonia,
demonstrated a broad simultaneity in the initiation (13th through
14th century) and timing of main glacier advances over the last
millennium in North and South America. They explain a broad
similarity of glacier fluctuations during the last millennium in the
Cordillera of North and South America by the dominating role of the
tropical Ocean in the organisation of the climatic system across the
American Cordillera.

2.2.2.6. Last 150 years. After the mid-19th century, glaciers began to
retreat, both in the Northern and Southern hemisphere (Oerlemans,
2005). Glacial retreats after the LIA maximum coincide with the
increase in global atmospheric temperature since the middle of the
19th century. The rate of retreat increased in the 1950s in response to
a sustained atmospheric warming trend. Since about the year 2000,
glacier retreat has accelerated in many regions (Grove, 2004; Solomina
et al., 2008). The current rate of glacial retreat is in coherence with the
global temperature rise of the last 150 years, which is largely attributed
to the anthropogenic greenhouse effect (Hegerl et al., 2007).
3. Forcings

In addition to accurately dated timeseries of the basic climatic
state variables, we also need reliable timeseries of the important
forcing factors (Rind and Overpeck, 1993). Even though the
following section is called ‘‘forcings’’, we are fully aware that
several forcing factors, such as greenhouse gases (GHGs), vegeta-
tion or stratospheric ozone, are also reactors and are involved in
complex feedback mechanisms. During most of the Holocene,
variations in predominantly three natural forcings (orbital, solar
and volcanic) can be invoked as influences on global climate. Only
during the last millennium, or possibly centuries, has forcing
induced by human activities (such as rapid land cover change,
increase of greenhouse gases and aerosols, and stratospheric ozone
depletion) started to play an increasing role. The ‘‘cocktail’’ of all
these forcing factors has been constantly changing during the last
6000 years and has not shown the same composition at any time. A
rough summary of the state of knowledge on the regional influence
of the important forcing factors is discussed in more detail in
Sections 3.1–3.5.
3.1. Orbital forcing

The amount of solar radiation arriving at the top of the atmo-
sphere is related not only to the energy output from the Sun but
also to the position and the orientation of the Earth relative to the
Sun. As a consequence of the gravitational forces of the other
planets (mainly Jupiter and Saturn) acting on the Earth, the orbital
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parameters of the Earth change with main periodicities around
400,000 and 100,000 years (due to changes in orbital eccentricity),
40,000 years (due to changes in the Earth’s axial tilt) and
20,000 years (due to the precession of the Earth’s axis). The theory
of orbital forcing (often called Milankovitch theory) is unique in the
sense that the orbital forcing is the only forcing that can be calcu-
lated precisely, not only for the past several million years, but also
for the future (Berger, 1978; Laskar et al., 2004).

Fig. 6 depicts the calculated changes in insolation for the last
6000 years in W/m2 as a function of latitude. The changes were
calculated for each latitudinal band of 10 degrees relative to its
mean insolation for the last 6000 years (Laskar et al., 2004). In June
(Fig. 6a), there is a steadily decreasing trend in the north of up to
30 W/m2. Moving south the slope becomes less steep and reaches
a minimum around 1500 years BP, followed by a slight increase. In
December (Fig. 6b), the changes are generally smaller (<20 W/m2).
Moving from north to south, there is little change observed at the
beginning of the series. Then slowly a parabolic curve develops
with a maximum between 1000 and 3000 years BP. To illustrate the
changes in seasonality, the difference between June and December
is also plotted (Fig. 6c). 6000 years ago the seasonality was domi-
nant in the NH by an amplitude of 20–30 W/m2 and then steadily
decreased. Around 3000 years ago the situation reversed and the
seasonality of the SH became larger. Fig. 6d shows how the mean
annual insolation is changing at different latitudes. At high
northern latitudes it decreases steadily by about 100 W/m2 in total.
Moving south the slope disappears slowly and at the equator the
curve is flat. At high southern latitudes the mean annual insolation
increases by about 20 W/m2 and reached a maximum at 3 kyr BP,
before decreasing again.

3.2. Solar forcing

Reconstructing the solar forcing caused by changes in the radi-
ation emitted from the Sun is a much greater challenge than
calculating the forcings related to orbital parameters. Based on the
standard stellar model there is general agreement that the energy
production in the core of the Sun does not change by a measurable
quantity within a few thousand years. On the other hand, satellite-
based radiometers reveal changes in total and spectral irradiance,
which are correlated with solar activity. However, the change of the
total solar irradiance (TSI) over an 11-year cycle is approximately
0.1%, which corresponds to a mean global forcing of 0.24 W/m2. As
a result of two competing effects – darkening by sunspots and
brightening by faculae – larger activity leads to a brighter sun (Lean
et al., 1995). A crucial question is whether the fluctuations of 0.1% in
TSI, as observed during the past 30 years, reflect the full range of
variability? Or if, on longer timescales, more significant changes are
to be expected. Although there is no final answer yet, there is some
evidence for larger changes:

(1) From the solar physics point of view there is no reason why the
Sun should not show larger variability, as many other stars do,
which, however, are not always exactly comparable with our
Sun.

(2) The present period is characterised by a high, but not unusually
high, solar activity (Solanki et al., 2004; Muscheler et al., 2005;
Vonmoos et al., 2006). From the sunspot record we know that
solar activity increased steadily from the Maunder Minimum
(AD 1645–1715), when almost no sunspots were observed,
until 1960. It is therefore not unreasonable to assume that the
TSI and possibly also the solar spectral irradiance (SSI) show
a similar trend. The difficulty is in quantifying how much TSI
and SSI changed. Consequently, it is not surprising that esti-
mates by different authors show a relatively large scatter
ranging from 0.1% to 1% (Fröhlich and Lean, 2004), with recent
studies pointing to rather small changes over the past few
centuries (e.g. Solanki and Krivova, 2003; Wang Y.M. et al.,
2005b). Recent climate model studies suggest that even low
amplitude solar variations can affect climate on multi-decadal
to centennial timescales (Ammann et al., 2007).

A number of paleoclimatic records provide some evidence for
a link between climate changes and solar activity changes (Bond
et al., 2001; Neff et al., 2001). We note that measured total solar
irradiance averaged over the 11-year Schwabe cycle does not show
a clear trend since the beginning of the satellite measurements in
1978. Solar irradiance changes can therefore not explain the
concurrent global warming.

A clear link between solar activity and solar forcing based on
physical processes is still missing. Direct observations of solar
activity are restricted to the period since the invention of the
telescope (AD 1610). To extend this period over the past 6000 years
we have to rely on indirect proxies of solar activity. Such a proxy
exists in the form of cosmogenic radionuclides, which are produced
by cosmic rays in the atmosphere. The Sun modulates the cosmic
ray intensity and, therefore, also the production rate of cosmogenic
radionuclides by emitting solar wind with frozen-in magnetic
fields. The more active the Sun, the larger is the shielding effect and
the lower the production rate. After production, cosmogenic
radionuclides are stored in natural archives, such as polar ice (10Be)
and tree rings (14C). Analysing these independently dated archives
provides a means to reconstruct the solar variability over at least
the past 10,000 years (Vonmoos et al., 2006). However, both
records are a combination of changes in the production and in the
behaviour of the global system. While the production processes are
very similar for the two nuclides, their geochemical systems are
completely different. After production, 10Be becomes attached to
aerosols and is removed from the atmosphere within about 1–
2 years, mainly by wet precipitation. 14C on the other hand, forms
14CO2 and enters the carbon cycle where it is exchanged between
the atmosphere, biosphere and the ocean.

Fig. 7 shows recent reconstructions of the solar activity based on
10Be and 14C. The 10Be production rate was derived from the 10Be
concentrations measured in the GRIP ice core, Greenland (Vonmoos
et al., 2006). The radiocarbon production rate was calculated with
the Bern3D dynamic ocean carbon cycle model (Müller et al., 2006,
2008), complemented by a land-biosphere module (Siegenthaler
and Oeschger, 1987), by prescribing the atmospheric 14C history as
recorded in tree-ring records from both hemispheres (Reimer et al.,
2004; McCormack et al., 2004). The choice of the 14C data guar-
antees precise timing because its timescale is based on tree ring
counting and is, therefore, very accurate (Muscheler et al., 2007).
Since the still-unknown relationship between solar modulation
and solar irradiance is not necessarily linear, we use relative units.
The data have been band-pass filtered with a window from 300 to
3000 years. A characteristic feature of this solar forcing record is
the occurrence of century-scale minima, corresponding to the so-
called grand solar minima, such as the Spoerer minimum 500 cal
years BP. The good agreement between the solar variability derived
from 10Be and 14C on centennial timescales indicates that distur-
bances induced by the transport from the atmosphere into the
respective archive are relatively small for these timescales and for
the Holocene.

Power spectra of the solar activity are displayed in Fig. 8, based
on the two records used for Fig. 7 band-pass filtered (25–
3000 years) and spanning the last ca 10,000 years. In general, the
spectral peaks displayed in Fig. 8 agree well with previous spectral
estimates of centennial-scale solar variability (e.g. Clemens, 2005,
and references therein). This holds especially true for the distinct
peaks at 208 and 87 years, corresponding to the well-known Suess
(or de Vries) and Gleissberg cycles. The good agreement between
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the two spectra supports the assumption that both 10Be and 14C
records are mainly reflections of solar variability.

3.3. Volcanic forcing

In large volcanic eruptions, a few to over a hundred Tg of
insoluble silicate matter (tephra) and gases are emitted to the
troposphere and stratosphere to an altitude of 20–25 km (Zielinski,
2000; Ammann and Naveau, 2003). The silicate matter quickly
settles out of the atmosphere. The contribution of CO2 is minor. The
acids formed from the sulphur gases produced (SO2, H2S) however
remain aloft for longer periods of time, and form the source for
climatic perturbation. About 14% of the global sulphur emissions in
the troposphere are of volcanic origin (Graf et al., 1997). Precise
measurements of the radiative effects of volcanic eruptions are only
available for the last 25–30 years. Because of their efficient
absorption of solar radiation, volcanic aerosols heat the layer
between 20 and 25 km and cause cooling at the Earth’s surface. This
is mainly the case during summer, when radiative processes
dominate. The negative radiative forcing amounts to a few W/m2,
normally less than five (Crowley, 2000). According to analyses by
Robock (2000) the global average cooling at the surface following
a volcanic eruption can reach values of 0.1–0.2 �C. The NH reacts
more quickly because of the larger land surface area. In winter, the
radiative effect is outweighed by dynamical processes, namely an
increase of the meridional temperature gradients, which induce
stronger mid-latitude westerlies. Above all, this strengthening of
the westerlies leads to positive NAO/AO indices and, therefore,
a winter warming of the western part of the NH continents (Graf
et al., 1993; Shindell et al., 2004; Fischer et al., 2006). This process
can be strengthened by aerosol-induced ozone depletion in the
polar regions (Solomon, 1999). In general, the following regions are
subject to a major cooling: Alaska, Greenland, North Africa, Middle
East and China (Robock, 2000; Shindell et al., 2004).

Although Ammann and Naveau (2003) suggested that the
tropical explosive volcanic eruptions during the last 600 years
followed a 76-year cycle, there is no known mechanism for a cyclic
behaviour of large volcanic eruptions. Polar ice sheets are extensive
sources of information on past volcanic activity. Initial analyses of
paleo-volcanism concentrated on the analysis of single ice cores
from Greenland (Zielinski et al., 1994, 1996; Zielinski, 2000) or
Antarctica (Castellano et al., 2005). Fig. 9 shows a reconstruction of
tropical explosive volcanic eruptions perturbing the stratosphere
over the last 6000 years based on ice cores from both hemispheres
(Crowley and Vinther, in preparation). The reconstruction is based
on a comprehensive compilation of sulfate records from the
Greenland GISP2 and the Antarctic Dome C ice cores. In a first step,
the timeseries were controlled and differences in the chronologies
eliminated at both sites by using additional data sources (e.g. from
GRIP, Siple Dome and Taylor Dome). Secondly, the two sites were
compared and some apparently coincident events were eliminated
based on evidence for two simultaneous non-tropical eruptions
that took place, for example in Iceland and Antarctica. The dashed
lines in Fig. 9 indicate times of possible large ‘‘bipolar’’ tropical
eruptions, which were clearly observed in both hemispheres and
may represent large tropical eruptions affecting global climate
(Crowley and Vinther, in preparation). If we concentrate on these
events we can state that their distribution over time is highly
inhomogeneous. No less than 12 strong eruptions were observed
during the last 850 years, with a large number of events during the
LIA. The climatic impact of such an accumulation of volcanic events
will be discussed later. The AD 1256 event (Gao and Robock
(submitted) allocate it to the year AD 1259) was likely the strongest
during the last six millennia. During the whole investigated period
before AD 1150 a decline in tropical volcanic activity was observed,
although it should be kept in mind that the uncertainty of the Dome
C dates is larger prior to 1900 cal years BP. This fact is also
discernible in the new reconstruction by Gao and Robock
(submitted).

3.4. Forcing through land cover change

Paleo-ecological synthesis of global land-cover change since the
MH display broad spatial and temporal variability (Prentice et al.,
2000; Takahara et al., 2000; Yu et al., 2000; Marchant et al., 2002;
Bigelow et al., 2003; Pickett et al., 2004), but may be summarised
into three major trends: (1) desertification in the African and
southwest Asian subtropics related to the weakening of the Afro-
Asian monsoon system, (2) shifts in NH temperate forest types and
modest southward migration of the Arctic treeline related to the
gradual reduction in NH summertime solar forcing, and (3)
anthropogenic deforestation and draining of wetlands to create
cropland and pasture, concentrated mainly in eastern and southern
Asia, the Mediterranean, and Europe. While the first two land-cover
changes listed above occurred in concert with changes in atmo-
spheric and oceanic conditions, the drivers behind Holocene land-
cover changes were not limited to climate fluctuations. Since the
end of the Pleistocene the development of peatlands played an
important role in Holocene land-cover change. Furthermore, global
land cover did not respond passively to climate variability but could
have influenced aspects of the evolution of Holocene climate. Land-
cover change, through both biophysical and biogeochemical feed-
backs to the climate system, may have had a noticeable influence on
the evolution of Holocene climate (Diffenbaugh and Sloan, 2002).

Land cover feeds back to the atmosphere chiefly through
changes in surface roughness, albedo and latent vs. sensible heat
exchange (Charney, 1975). Forests and wetlands have a significantly
different surface energy budget than grasslands and deserts.
However, these biophysical effects are not the only climate-driving
component of land-cover change. The biogeochemical dynamics of
the terrestrial biosphere may have had a secondary influence on
the climate system through long-term changes in the terrestrial
carbon cycle and emissions of GHGs to the atmosphere (see
greenhouse gas forcing, Section 3.5).

The terrestrial biosphere at 6000 years BP was characterised by
three major differences in vegetation distribution compared to the
present day: the subtropics of Africa and south Asia were occupied
by grassland, xerophytic shrubland and wetlands in areas that are
now desert (Hoelzmann et al., 1998), the composition of temperate
and boreal forests was different and the Arctic forest limit was
shifted up to 150 km north compared to the present (Prentice et al.,
2000; Bigelow et al., 2003; Kaplan et al., 2003), and mesic areas of
temperate Eurasia and North America were occupied by forests in
areas that are now under cultivation (Fig. 10). The most dramatic of
these land-cover changes occurred in the hyper-arid regions of the
Sahara, Arabian Peninsula and south Asia, but this desertification of
the ‘‘Green Sahara’’ likely caused only small carbon emission
(Indermühle et al., 1999).

Over the past decade, a great deal of research has attempted to
explain the massive land-cover change in the MH subtropics,
particularly focusing on the mechanisms that supported and
eventually led to the decline of the optimistically termed ‘‘Green
Sahara’’ (Claussen and Gayler, 1997; Brostrom et al., 1998; Brovkin
et al., 1998; Ganopolski et al., 1998; Harrison et al., 1995, 1998;
Hoelzmann et al., 1998; de Noblet-Ducoudré et al., 2000; Doherty
et al., 2000; Texier et al., 2000; Carrington et al., 2001; Irizarry-Ortiz
et al., 2003; Renssen et al., 2003, 2006b). It is generally accepted
that the increased NH solar forcing in the EH and MH was the major
external driver of the intensified Afro-Asian summer monsoon
system (Kutzbach, 1981; Kutzbach and Otto-Bliesner, 1982; Kutz-
bach et al., 1996; Rossignol-Strick, 1983). However, a major chal-
lenge for climate modellers has been to reproduce the climate
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conditions suitable to sustain the type of vegetation observed in the
paleo-ecological record (Hoelzmann et al., 1998; Jolly et al., 1998a,
b; Prentice et al., 2000). Generally, a combination of feedbacks
between the land surface, ocean and atmosphere must be invoked
to increase precipitation significantly northward into the Sahara
(Braconnot et al., 1999). However, even fully coupled atmosphere–
ocean–vegetation model simulations often fail to reproduce infer-
red land cover conditions (Joussaume et al., 1999; Doherty et al.,
2000). Most recent modelling studies indicate that soil develop-
ment, which is usually not included in coupled models, and re-
parameterisation of soil albedo in climate models to account for
very bright desert soils, may be processes critical for successfully
reproducing MH land cover conditions in the Sahara (Bonfils et al.,
2001; Levis et al., 2004; Knorr and Schnitzler, 2006). Whatever the
combination of external forcing and internal feedbacks that created
the vegetated Sahara may have been, model studies, suggesting
a positive biogeophysical feedback between rainfall and vegetation
(Claussen et al., 1999) indicate a rapid transition from a ‘‘green
Sahara’’ to the desert state. In a new study, based on a 6000-year
reconstruction of paleoenvironmental proxies, Kröpelin et al.
(2008) have shown that no indication for such an abrupt Mid-
Holocene climate change is given. In addition, Marchant and
Hooghiemstra (2004) have shown that the change in land cover
was synchronous with a shift to more mesic vegetation types in
equatorial Africa and in South America. From the perspective of the
climate system, the climate effect of the change in Saharan land
cover from steppe and shrublands to bright, sandy desert would
have been more important than the increased forest density and
canopy closure in equatorial regions. Contrary to the tropical and
subtropical situation, changes in forest composition, rather than
increasing or decreasing vegetation cover, were the major climate-
relevant land-cover change in the high latitudes of the NH
(Edwards et al., 2000; Bigelow et al., 2003).

Increased summertime insolation in the EH and MH had an
effect on circumarctic land cover compared to the present.
Synthesis of paleo-ecological data illustrates a northward shift of
forest biomes, compared to the present, in the European Arctic and
in western and central Siberia (MacDonald et al., 2000; Bigelow
et al., 2003). However, landmasses on both sides of the Bering Strait
showed little change in vegetation cover, and in Quebec and Lab-
rador the forest limit was probably further south at 6000 years BP
than at present, owing to the presence of the remnants of the
Laurentide ice sheet. The asymmetric pattern of changes in the
forest limit may be related to the downwind forcing of sea ice on
surface temperatures, and to changes in the northward transport of
heat to the Arctic Ocean. Because of sea ice and cold SSTs, in
continental areas of the Arctic, growing season temperatures
become sharply colder as one approaches the coast (Simpson et al.,
2005). Despite generally warmer summer temperatures during the
MH, this steep temperature gradient inhibited substantial north-
ward displacement of the polar treeline relative to the present
(Kaplan et al., 2003).

Data and model simulations agree that the geographic shifts in
forest biomes southward of the polar treeline were larger than the
changes in treeline itself. Changes in northern-temperate forest
composition from cold temperate mixed forests to temperate
deciduous forests implied an additional wintertime warming, in
contrast to the orbital forcing. Vegetation model experiments
indicate that a modest winter warming (Kaplan et al., 2003), which
may have been amplified by the extension of forests of the high
latitudes (Ganopolski et al., 1998; Wohlfahrt et al., 2004; Gallimore
et al., 2005), could have effected temperature changes consistent
with vegetation patterns observed in the paleorecord. However in
light of comprehensive paleodata-model synthesis, the magnitude
of vegetation feedbacks inferred by previous modelling studies may
have been overestimated (Foley et al., 1994).
Between the MH and the end of the preindustrial period (AD
w1750), substantial anthropogenically driven land-cover changes
took place in temperate and subtropical Eurasia. Already in the EH,
deforestation is recorded in the Middle East concurrent with the
origin of the first Neolithic societies (Bar-Yosef, 1998). By 6000 cal
years BP, substantial Neolithic deforestation is recorded in Western
Europe, and southern and eastern Asia (Kirch, 2005). Paleobotan-
ical evidence suggests that anthropogenic deforestation, which
began in the MH, might have caused irreversible changes to plant
communities through soil erosion and the feedback of land-cover
change on regional climate (de Beaulieu et al., 2005). However, Joos
et al. (2004) and Strassmann et al. (2008) show that anthropogenic
land use and other land-cover changes caused only a small carbon
release.

Comparisons of global potential natural vegetation simulated by
the global vegetation model BIOME4 (Kaplan, 2001; Kaplan et al.,
2003) and the HYDE anthropogenic land use dataset (Klein Gold-
ewijk and Ramankutty, 2004) indicate that up to 2.5 � 106 km2 of
temperate and tropical forests had already been converted to
cropland and pastures by AD 1700. At this time, areas of Western
Europe, China and the Ganges delta region were up to 50% defor-
ested. This deforestation would generally result in regional cooling,
due to albedo and latent heat feedbacks (Diffenbaugh and Sloan,
2002), though even this level of anthropogenic land cover change
may have affected climate globally (Matthews et al., 2003).

Finally, the slow development of peatlands following deglacia-
tion and gradual rise in atmospheric CO2 concentrations promoted
the accumulation of 50–100 Pg carbon in the terrestrial biosphere
since the beginning of the Holocene (Gajewski et al., 2001; Kaplan
et al., 2002; Smith et al., 2004; MacDonald et al., 2006). This carbon
uptake was balanced by releases of carbon from both vegetation
changes, resulting from increased LH aridity, and anthropogenic
deforestation. The sum of these fluxes, albeit small, contributed to
the variations in atmospheric GHG concentrations during the
Holocene.

3.5. Greenhouse gas forcing

Measurements of the greenhouse gases CO2, CH4 and N2O in ice
cores from both polar regions exhibit small but consistent varia-
tions in concentration over the preindustrial part of the last
6000 years BP (Fig. 11a). CO2 and CH4 both show a generally posi-
tive trend, though a major increase in CH4 is observed only after
3000 years BP, while CO2 increases over the entire period. Super-
imposed on these long-term trends are weak centennial timescale
variations. In the CO2 record, these variations are smaller than
3 ppmv and thus approach the limits of how well ice core data can
represent global atmospheric CO2 concentration, except for the
5 ppmv increase that begins at about AD 1000 and the following
decrease of similar magnitude. In the CH4 record, conspicuous
characteristics on centennial timescales are the accelerated
increase in concentration around AD 1000 and the nearly constant
concentrations between AD 1150 and 1700. The long-term increase
of N2O is small, and the record is dominated by variations of less
than 10 ppbv on the centennial to millennial timescale. However,
these variations are at the limit of significance given the analytical
uncertainty of the data and, therefore, cannot be meaningfully
interpreted. The magnitude and rate of the anthropogenically-
induced increase in the combined radiative forcing from CO2, CH4

and N2O after AD 1750 (Fig. 11b) are unprecedented in at least
16,000 years and are much larger than any of the variations in the
Holocene (Joos and Spahni, 2008). The general increase in the three
GHG’s over the preindustrial part of the last 6000 years BP to the
onset of the industrial revolution corresponds to an increase in
radiative forcing of 0.30, 0.07 and 0.03 W/m2 for CO2, CH4 and N2O,
respectively. Such a small (and slow) change in GHG forcing over
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Fig. 11. Preindustrial CO2, CH4 and N2O variations over the last 6 kyr together with their analytical reproducibility (a), and the rapid anthropogenic increase of the three greenhouse
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the last 6000 years is associated with a relatively small change in
global mean temperature (0.3 �C for a climate sensitivity of 3 �C for
a nominal doubling of CO2).

Over the past decade, several hypotheses have been put forward
to explain the millennial trend in CO2. Indermühle et al. (1999)
suggested that the long-term increase in CO2 after 8000 years BP
was a combination of a progressive release of carbon by the
terrestrial biosphere, a weak warming of the ocean’s surface until
about 6000 years ago, and a minor contribution from changes in
the calcite cycle of the ocean. An alternative hypothesis by Broecker
et al. (2001) explains the slow increase of atmospheric CO2 before
industrialisation by a slow adjustment of the ocean’s carbonate
chemistry. The build-up of the terrestrial biosphere after the last ice
age has drawn down atmospheric CO2 and hence increased the
ocean’s CO3-content. This caused the saturation horizon of calcium
carbonate (lysocline) to deepen, reducing CO3

2� in the surface
waters and increasing atmospheric CO2 correspondingly. Ridgwell
et al. (2003) suggested that the build-up of coral reefs, which lead
to a higher surface water CO2 saturation and, therefore, to oceanic
outgassing of CO2, could partly explain the observed rise in atmo-
spheric CO2. Controversially, Ruddiman (2003) attributed the slow
rise in CO2 concentrations to early anthropogenic activity.

Two of the mechanisms put forward are unlikely to be the main
driver of the observed atmospheric CO2 rise: (1) The early anthro-
pogenic hypothesis has been challenged through modelling studies
by Joos et al. (2004) who showed that the modelled land use
emissions would have to be revised upward by a factor of 3–4.
Additionally, such a scenario would not be compatible with the
best-available record of d13C-CO2 from ice cores (Indermühle et al.,
1999); (2) Recent modelling studies attempting to quantify the
change in terrestrial C storage during the Holocene do not agree in
the sign of the change (Kaplan et al., 2002; Brovkin et al., 2003; Joos
et al., 2004; Schurgers et al., 2006). However, because of the rela-
tively small magnitude of the change in terrestrial C storage
modelled in these studies, and the fact that none of the current
models considers the development of peatland, which led to
additional terrestrial carbon storage (see previous section), all
agree that natural changes in the terrestrial biosphere were
unlikely to have been the main driver for the observed rise in CO2

concentrations.
We conclude that a range of mechanisms most likely contrib-

uted to the 20 ppmv CO2 rise between 8000 years BP and the
preindustrial, including calcite compensation, SST changes, coral
reef build up and, to a minor extent, C uptake and release through
changes in the terrestrial biosphere (Joos et al., 2004). Better
quantification of the contributions of the different sources will
require more highly resolved and precise d13C measurements on
ice-core CO2, together with improved, fully-coupled models of the
land-ocean-atmosphere global carbon cycle.

Calculations of global CH4 source distributions based on the
interhemispheric gradient measured in ice-core CH4 (Chappellaz
et al., 1997; Brook et al., 2000) suggested that the low CH4

concentrations of the MH were caused by gradual desiccation in
parts of the tropics, mainly in the Sahel and Sahara regions. The
top-down calculations also suggest that the development of boreal
wetlands were at least partly responsible for the CH4 increase
observed after 5000 cal years BP. This is, however disputable, since
records of peatland development do not support a high NH origin of
the observed CH4 increase (MacDonald et al., 2006). Recent
modelling studies have pointed out that changes in the OH sink of
CH4 influence the atmospheric CH4 concentration during the
Holocene substantially and could be more important than previ-
ously thought (Kaplan et al., 2006; Harder et al., 2007). As with CO2,
the gradual increase in CH4 concentrations after 5 kyr BP has been

http://cdiac.esd.ornl.gov/trends/trends.htm
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Fig. 12. Two timeseries representing the ENSO activity during the last 6000 years: (a)
the black curve is based on lithic flux in marine sediments off Peru (Rein et al., 2004,
2005); (b) the pink curve represents model results by Clement et al. (2000).
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attributed to early anthropogenic activity, particularly through the
advent of rice cultivation (Ruddiman and Thomson, 2001). This
hypothesis is based on the observation that the evolution of CH4

was unique during the Holocene, compared to earlier interglacials.
However, CH4 data over Marine Isotope Stage 11 display variations
in CH4 concentrations similar to the Holocene (Spahni et al., 2005),
supporting explanations based on natural variability. On the other
hand, a comprehensive bottom-up modelling study by Kaplan et al.
(2006) could not dismiss the role of early anthropogenic activity in
the increase of atmospheric CH4 concentrations since 5 kyr BP.

Because of the heterogeneous nature of CH4 sources and inter-
action with other reactive trace gases and aerosols that influence
the CH4 sink in the atmosphere, the problem of understanding the
drivers of Holocene CH4 variability eludes a simple explanation.
However, promising new observations (e.g. d13C-CH4 in ice cores),
and new activities employing state-of-the-art coupled land-atmo-
sphere chemistry-climate modelling should lead to a much greater
understanding of the CH4 record in the near future.

Finally, evaluation of the N2O variability over the Holocene is in
its earliest stage (Flückiger et al., 2002). The range of N2O sources
(oceanic and terrestrial) defies a simple interpretation of the record
and a combination of additional measurements and modelling
efforts will likely be required to understand the N2O evolution
during the Holocene.

4. Modes of variability

Changes in the dominant modes of climate variability may
contribute substantially to climate change at the regional scale.
Such changes could be related to internally generated, quasi-
random variability (also called ‘‘internal forcing’’) or to changes in
the external forcing. We concentrate here on the major high-
frequency climate variability modes in the Pacific (El Niño Southern
Oscillation, ENSO) and the Atlantic (North Atlantic Oscillation,
NAO), with some attention to multi-decadal to century scale
climate variability modes, namely the Pacific Decadal Oscillation
(PDO) and the Atlantic Multidecadal Oscillation (AMO), which
interact with ENSO and NAO respectively. The variability of the
Atlantic Meridional Overturning Circulation (AMOC) is also
considered.

4.1. El Niño Southern Oscillation (ENSO)

The ENSO phenomenon represents the most important branch
of internal variability of the global climate system (Diaz et al.,
2001). Its spatial influence encompasses the Pacific Ocean and its
surroundings, almost the whole SH, the Pacific tropics, and spreads
to southwestern North America and even into the Atlantic area.
Several authors tried to reconstruct ENSO variability during the
Holocene (e.g. Shulmeister and Lees, 1995; Gagan et al., 1998;
Rodbell et al., 1999; Clement et al., 2000; Moy et al., 2002; Rein
et al., 2004). Fig. 12 shows two ENSO timeseries, one based on lithic
flux in marine sediments off Peru (Rein et al., 2004, 2005), the other
on results of a coupled ocean–atmosphere model (Clement et al.,
2000). Both the observed lithic flux and the model-based
frequencies (events/500 years) show a clear positive trend indi-
cating a shift to higher ENSO activity during the LH compared to the
MH. Reduced ENSO activity during the MH is confirmed by dry
conditions on the Peruvian coast (Keefer et al., 1998) and arid
conditions with high rainfall intensity in central Chile (Jenny et al.,
2003). In addition, a warmer and wetter climate prevailed in the
Austral-Asian region (Shulmeister and Lees, 1995; Gagan et al.,
2004; Rein et al., 2005). Based on the lithic flux curve (Fig. 12),
a strong increase of ENSO variability and even frequency took place
between 5600 and 3500 cal years BP (Rein et al., 2005), followed by
a constant frequency between 3500 and 2000 cal years BP. During
this latter time period the model results indicate a lower ENSO
activity. Between about 1300 and 700 cal years BP the ENSO activity
decreased strongly, after which only the lithic flux curve increased.
McGregor and Gagan (2004), based on oxygen isotope ratios in
corals from Papua New Guinea, identified large and protracted El
Niño events around AD 600 and AD 1600 (1350 and 350 cal years
BP). Rein et al. (2004) associated the weak late medieval ENSO
activity to dryness in the northern Arabian Sea and the mid-
latitudes of both Americas, and wetness in the Cariaco Basin. They
show that the recurrence period of very strong El Niño events is
60–80 years, and Moy et al. (2002) attribute the variance between
4- and 15-year periods to El Niño activity. Probably the ENSO
variability also influenced the frequency of intense hurricanes over
the past 5000 years in the Caribbean and perhaps the entire North
Atlantic basin in the sense that La Niña like conditions favoured the
development of more intense hurricanes (Donnelly and Woodruff,
2007). Longer La Niña periods with increased hurricane frequencies
occurred between 4400 and 3600 years BP, between 2500 and
1000 years BP and from 250 years BP to the present.
4.2. North Atlantic Oscillation (NAO)

The North Atlantic Oscillation (NAO), Arctic Oscillation (AO) and
Northern Annular Mode (NAM), represent the major modes of
climate variability in the NH. They are a major source of inter-
decadal, or even longer-term, climate variability (Wanner et al.,
2001; Thompson and Wallace, 2001). Their influence is clearly
strongest in winter and the related circulation indices show notable
decadal- to century-scale variability (Luterbacher et al., 2001). The
NAO dynamics are not as well investigated or understood, as in the
case of ENSO (Hurrell et al., 2003), with only a few studies dealing
with Holocene NAO/AO reconstruction or modelling (e.g. Keigwin
and Pickart, 1999; Noren et al., 2002; Rimbu et al., 2003; Gladstone
et al., 2005; Otto-Bliesner et al., 2006). Fig. 13a shows the smoothed
timeseries of the expansion coefficient representing the first prin-
cipal component, which describes 69% of the SST field variance,
based on alkenone data from sediment cores from the North
Atlantic, the Mediterranean Sea and the northern Red Sea. There is
evidence that the NAO played a role in generating millennial-scale
SST trends in that the positive (negative) phase was accompanied
by relatively mild (cold) winters over northern Europe and a rela-
tively cold (warm) climate in the eastern Mediterranean and the
Middle East (Rimbu et al., 2003). The generalised map in Fig. 13a
shows the SST trends in different regions between 6000 cal years
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BP and the present. A negative SST trend in the northeast Atlantic
and the western Mediterranean Sea, combined with a positive
trend in the western subtropical Atlantic and the northern Red Sea,
indicates that the NAO index was likely subject to a trend from
positive values in the MH to negative ones in the LH. This shift is
nicely represented by the almost linear trend from negative to
positive values of the expansion coefficient timeseries in Fig. 13a
between 6000 and 2000 cal years BP. At about 2000 cal years BP
a weak reversal occurred. Fig. 13b shows the difference between
simulated NH sea level pressure at 6000 years BP and present day
conditions (Rimbu et al., 2003). The simulation was carried out with
ECHAM 3 (Lorenz et al., 1996). The strongly negative values in the
Iceland area point to positive NAO indices at 6000 years BP as well.
Keigwin and Pickart (1999) suggested that the NAO may be a useful
analogue for millennial-scale ocean variability during interglacial
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where alkenone data are available. (b) Difference between simulated Northern
Hemisphere sea level pressure at 6 kyr BP minus present day conditions (modified
after Rimbu et al., 2003).
climate states. A negative NAO regime might be a key feature of cold
LIA-type events (LIATE’s; Wanner et al., 2000) although the circu-
lation characteristics of the intervening warm periods are less
obvious (Bond et al., 1997).

Based on terrigenous inwash layers in cores from 13 lakes in the
northeastern United States, Noren et al. (2002) found a quasi-
periodic behaviour of the NAO (periodicity of about 3000 years)
with increased storminess at around 5800 and 2600 years BP.
However Gladstone et al. (2005) warned against jumping to
conclusions about the role of NAO in Holocene climate change.
Based on their analysis of PMIP2 model simulations, they found
only minor differences in NAO characteristics between the MH and
pre-industrial climates, with some tendency to a more positive
average NAO index during the MH. Otto-Bliesner et al. (2006)
indicated that the AO patterns of the MH are similar to those of the
preindustrial period.

4.3. Multi-decadal to century timescale variability, Pacific Decadal
Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO)

Timescales of decades to centuries deserve a special focus in the
discussion of natural climate variability. This is because one needs
to disentangle the role of external forcing and internal variability
when addressing question about the cause of such phenomena as
the MWP, the LIA, or the supposed 1500-year cycle (Bond et al.,
1997). Early reviews (Stocker and Mysak, 1992; Stocker, 1996) are
outdated now because the past decade has seen a major increase in
the number and quality of paleoclimatic reconstructions from
many different archives (Delworth and Mann, 2000), more long-
term simulations using more complex models, and better theo-
retical understanding of the mechanisms leading to multi-decadal
to century timescale variability.

Analysis of SST anomalies in the North Pacific during the 20th
century reveal distinct patterns that persist for several decades
(Mantua et al., 1997). The leading mode of an EOF analysis exhibits
warm conditions in the central tropical Pacific, which extend
northward along the American west coast up to Alaska. Cold
conditions spread from the west across the Pacific north of about
20�N. This pattern is associated with positive values of the PDO
index, which is defined as the principal component of the leading
mode of monthly North Pacific temperature anomalies (with
respect to the global mean SST) poleward of 20�N (Mantua and
Hare, 2002). Usually, the mean is taken over the months November
through March for the PDO index. The PDO index over the 20th
century exhibits a persistent positive phase from the 1920s to the
1940s, and then turns negative from about 1947 to 1977. The latter
change in sign is also associated with observed shifts in many
climate variables in the Pacific region. Analysis of 20th century data
suggests that there is not a strictly periodic process underlying the
PDO, but rather modes that persist for several decades (Minobe,
1997). Although such persistence offers the possibility of enhanced
predictability of the Pacific ocean-atmosphere system, a consistent
theory for the PDO is still missing.

In addition to the changes in SST, surface air temperatures and
precipitation over the North American continent show distinct
patterns (Mantua et al., 1997). Winter air temperature anomalies
correlate positively with the PDO, especially in the Alaskan
panhandle, while winter precipitation correlates negatively with
the PDO, except along the Alaskan coastal range where strong
positive correlations occur likely due to warmer SSTs off shore.
Furthermore, strong westerly wind anomalies are associated with
a positive PDO index around 30�N in the central Pacific Ocean. The
PDO is an important climate indicator for the fisheries along the
entire North American coastline of the Pacific (Hare et al., 1999).

Tree ring networks along the North American west coast have
been used to reconstruct the PDO for the past few centuries
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(D’Arrigo et al., 2001; Gedalof and Smith, 2001). An important
finding is that rather rapid regime shifts of Pacific climate vari-
ability have occurred frequently in the past. However, the combi-
nation of several records into an optimal reconstruction suggests
that the PDO is not a persistently dominant feature of Pacific
variability (Gedalof et al., 2002). Tree rings can also be utilised to
reconstruct the changes in dryness at locations characteristic for
the PDO during the last millennium (MacDonald and Case, 2005).
Multi-decadal variability of summer rainfall in China can also be
linked to the PDO and was used to reconstruct a PDO index back to
AD 1470 (Shen et al., 2006).

Another important mode of multi-decadal variability is now
commonly referred to as the Atlantic Multidecadal Oscillation
(AMO) (Delworth and Mann, 2000; Kerr, 2000; Enfield et al., 2001).
This mode is characterised by basin-wide, coherent SST anomalies
in the Atlantic Ocean, north of the equator. An AMO index can be
derived by averaging, detrending and low-pass filtering (to remove
subdecadal variations) the annual mean SST anomalies over the
North Atlantic. The signal is quite robust with respect to the choice
of the filter (Enfield et al., 2001; Sutton and Hodson, 2005; Knight
et al., 2005), and shows five periods with positive SST anomalies in
the late 19th century, from AD 1931 to 1960, and negative anom-
alies from AD 1905 to 1925, and from AD 1965 to 1990. During the
last 15 years the AMO index has been positive with an increasing
trend. Amplitudes of the AMO-induced temperature variations in
the North Atlantic SSTs are in the order of 0.2 �C.

The impact of the AMO for regional to hemispheric climate is
significant. Part of the globally observed warming in the 1930s to
1970s is thought to be caused by a positive mode of the AMO. The
extreme drought in the US in the 1930s falls into this period, and
links to the AMO have been suggested (Schubert et al., 2004).
Consistent with this, rainfall and river flows are enhanced in the US
during the negative phase of the AMO (Enfield et al., 2001). Changes
of SST in the tropical and subtropical Atlantic associated with
swings in the AMO may influence hurricane activity (Goldenberg
et al., 2001). Multi-decadal signals are also found in timeseries of
Arctic sea-ice cover (Venegas and Mysak, 2000).

Delworth and Mann (2000) attempted a reconstruction of the
AMO back to AD 1650 based on their multi-proxy reconstruction of
hemispheric temperature anomalies (Mann et al., 1998). The AMO
was captured in the 5th mode of an EOF analysis and, therefore,
explained only little variance of the total signal. Nonetheless,
spectral power in a band from 50 to 100 years was reported. Gray
et al. (2004) used only tree ring records from sites strongly influ-
enced by Atlantic SST variability and demonstrated good recon-
struction skill using a linear combination of the first five
eigenvectors. They identified 13 positive and negative AMO phases
since AD 1567, with a duration exceeding a decade. However, only
six of these phases lasted for several decades, which is typical for
the AMO in terms of duration. A spectral analysis revealed non-
stationary power over a wide band from 40 to 130 years. Remark-
able is the existence of a rather long quiet phase, with respect to
AMO, from about AD 1710 to 1760. In summary, these reconstruc-
tions suggest that the AMO does not exhibit well-defined period-
icity and hence should not be termed an ‘‘oscillation’’. By the same
argument, it appears very unlikely that variations in solar activity,
such as the Gleissberg cycle (Peristykh and Damon, 2003), play
a role in the generation of this internal mode of variability.

Information on the AMO further back in time can be extracted
from reconstructions of hydrologic conditions. Booth et al. (2006)
present two 2000-year drought records based on pollen assemblages
from the Great Lakes region. Several multi-decadal dry phases
occurred between AD 950 and 1250, and they hypothesise that this
might have been caused by warmer than normal Atlantic SST condi-
tions. This could indicate a series of strongly positive AMO phases
during the MWP, themselves contributing to the MWP. Fischer and
Mieding (2005) analysed high-resolution sodium records measured
on several Greenland ice cores for the last 1000 years. They found
persistent variability on a timescale of about 10 years, and mutide-
cadal variability of about 60 years after AD 1700.

Reconstruction of multi-decadal variability over the entire Holo-
cene may be possible from Greenland ice cores (Yiou et al., 1997), or
from high-resolution marine sediments. Risebrobakken et al. (2003)
reconstructed SST and water-mass properties from foraminiferal
abundance and stable isotope measurements. This was performed on
a sediment core from the eastern Norwegian Sea, which covered the
entire Holocene and part of the termination of the last ice age. The
timeseries contain consistent power around 80 and 110 years.

4.4. Natural variability generated by changes in the Atlantic
Meridional Overturning Circulation (AMOC)

Multi-decadal variability is also identified in climate model
simulations and there are multiple lines of evidence that this is due
to variations in the North Atlantic meridional overturning circula-
tion (AMOC). Models of various degrees of complexity show multi-
decadal to centennial variations (e.g. Stocker and Mysak, 1992;
Delworth et al., 1993; Timmermann et al., 1998; Latif et al., 2004;
Vellinga and Wu, 2004). Delworth et al. (1993) found irregular
oscillations on a timescale of about 50 years in their coupled
Atmosphere-Ocean General Circulation Model (AOGCM) simula-
tions. These oscillations are driven by surface density anomalies
influencing the AMOC, which itself feeds back on the advection of
the surface anomalies from lower latitudes. Timmermann et al.
(1998) found variability on timescales of 35 years in their multi-
century model integration, and show that the cycles are associated
with changes in the AMOC. Also, an interaction between the
Atlantic and the Pacific was discussed, suggesting teleconnections
associated with these changes. The clear link between Atlantic SST
anomalies and the AMOC can be used to estimate current and
future changes of the AMOC (Latif et al., 2004). Furthermore,
increased predictability on the decadal timescale is expected
(Sutton and Hodson, 2005).

A 1600-year unforced simulation using a coupled AOGCM
exhibited strong interannual to centennial fluctuations of the
AMOC (Vellinga and Wu, 2004) with intermittent spectral power in
the band of 70–120 years. The study suggests that the tropical
atmosphere also plays an important role in these fluctuations.
When the AMOC is in a weak phase (negative AMO index), the
Atlantic part of the ITCZ and the associated rainfall move southward
toward the equator. This causes a surface freshwater deficit of the
waters flowing northward along the western boundary of the
Atlantic basin producing positive salinity anomalies. These are then
advected with the AMOC into the areas of deepwater formation
where they accelerate the AMOC. This then induces the strong
phase of the oscillation (positive AMO; see also Section 5). This
suggests that the positive AMO phase of the last 15 years may have
been caused by a stronger AMOC (Knight et al., 2005). An interac-
tion of AMO with the NAO was found in a 1200-year simulation
using a coupled AOGCM (Dai et al., 2005). While the fluctuations
with a period of about 24 years are caused by variations in the
AMOC, the associated changes in SST and sea ice distribution in the
Arctic also imprint this periodicity on the NAO. This was previously
suggested by Sutton and Hodson (2003) who analysed simulations
with an Atmosphere General Circulation Model (AGCM) forced by
observed SSTs. An outline of relevant simulation results is given at
the end of Section 5.2.

5. Simulations

The most complex tools to simulate and diagnose climate
changes during the Holocene are GCMs. They are used to simulate
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synoptic- to global-scale phenomena. However, the explicit calcu-
lation of many atmospheric and oceanic processes comes at the
expense of high computational costs. Although the horizontal
resolution of GCMs used in palaeoclimatology is restricted to a few
hundred kilometres and thus important processes at subgrid scale
are still only included in an approximate way, the length of the
simulated periods with GCMs is presently limited to approximately
500–2500 years for most of the models. However, some GCMs have
recently been optimised for speed by further reducing spatial
resolution or simplifying some aspects of the model physics and
have been successfully run for longer periods, such as the entire
Holocene (e.g. Schurgers et al., 2006; Liu et al., 2007).

Models with an even higher reduction of complexity are,
therefore, a complementary tool to GCMs, in particular the so-
called Earth system Models of Intermediate Complexity (EMICs)
(Claussen et al., 2002), which allow a large number of long simu-
lations to be performed, but include some simplified representa-
tions of large-scale atmosphere and ocean dynamics. Furthermore,
many EMICs include coupled modules for land ice and vegetation
dynamics, or for the carbon cycle, which is not yet standard for
GCMs used in palaeo-simulations. Although these components
have recently been included in many GCMs and simulations from
the mid-19th century to the end of the 21st century (e.g. Fried-
lingstein et al., 2006), the required computation time is still
a problem in longer simulations. One consequence of the reduced
complexity of atmosphere and ocean dynamics in EMICs is
a reduced level of internally generated variability. Thus EMICs are
well suited to investigate externally large-scale forced climate
change, but are less suited to analysing the role of internally
generated variability. In addition, EMICs have limitations with
respect to simulating circulation and regional climates.

In the first part of this section simulation results related to
millennial timescales are discussed, while the second subsection
covers decadal to multi-centennial variability. The major part of
each subsection describes changes in the climatological mean
conditions, but both subsections end with a discussion of changes
in higher frequency variability, such as ENSO and NAO. The relative
importance of externally forced vs. internally generated variability
is considered in each subsection.

5.1. Changes on millennial timescales

Transient simulations performed with EMICs over the Holocene
have generally produced a relatively smooth temperature evolution
(Weber, 2001; Crucifix et al., 2002; Brovkin et al., 2002; Renssen
et al., 2005a, b; Wang Y.M. et al., 2005a). This evolution can be
interpreted as a response of the climate system to changes in
insolation (Fig. 6) and to a lesser extent to those in the GHG
concentrations (Fig. 11), taking into account the thermal inertia of
the ocean and the feedbacks that amplify or damp the response in
various regions. One of the main characteristics of those simula-
tions is a general decrease in summer temperature at mid- and high
(northern-)latitudes over the last 6000 years associated with the
decline of insolation in boreal summer (Weber, 2001; Crucifix et al.,
2002; Brovkin et al., 2003; Renssen et al., 2005a; Wang Y.M. et al.,
2005a), in agreement with reconstructions (Figs. 2–4). In boreal
winter, the temperature decreases north of 60�N, mainly because of
a memory effect of the sea ice and the ocean, while at mid-latitudes
winter temperatures slightly increase during the Holocene. The
behaviour in the Southern Ocean is also very different between the
seasons, with a cooling over the last six millennia during the austral
summer, spring and winter, and a warming in autumn over the
whole Holocene (Renssen et al., 2005b). Those results underline the
crucial importance of taking into account the seasonal signal when
interpreting proxy records (e.g. Fig. 2) and when performing
model-data comparison.
Modelling of palaeoclimate with GCMs was pioneered in the
1970s and 1980s (e.g. Alyea, 1972; Williams et al., 1974; Mitchell,
1977; Manabe and Hahn, 1977; Kutzbach and Otto-Bliesner, 1982).
The majority of these early studies focused on the LGM and the EH.
Kutzbach and Guetter (1986) presented simulations for the climate
during several periods between the LGM and today. A large part of
the more recent GCM studies on the MH climate has been under-
taken in the framework of the PMIP, which is a coordinated
comparison of results from several models with proxy data in order
to assess the ability of climate models to simulate climate states
that considerably differ from the present climate. PMIP focuses on
the LGM and on the MH, with simulations undertaken for
21,000 years BP and 6000 years BP. In the first phase (PMIP1)
atmospheric GCMs were driven by SST climatologies or the models
were coupled to simple mixed layer ocean models (Joussaume and
Taylor, 1995; Hall and Valdes, 1997; Vettoretti et al., 1998; Masson
et al., 1999; PMIP, 2000). In the second phase (PMIP2) fully coupled
atmosphere–ocean and atmosphere–ocean–vegetation GCMs were
used (Masson-Delmotte et al., 2006; Braconnot et al., 2007a, b).
PMIP is based on quasi-equilibrium simulations in which the orbital
parameters, GHG concentrations, and ice sheets are specified. The
models are run with these forcings until they approach an equi-
librium state, which is typically after several hundred years. The
climate for the period of interest is then estimated from a few
hundred simulated years in the quasi-equilibrium state.

An overview of the PMIP2 simulations is given in Braconnot
et al. (2007a, b). They are, in general, in better agreement with
proxy data than the PMIP1 simulations. Fig. 14 is taken from Bra-
connot et al. (2007a) and shows the ensemble mean northern
summer temperature and precipitation anomalies at 6000 years BP
compared to preindustrial. The main features of the simulated MH
mean climate are a stronger (weaker) seasonal temperature cycle
on the NH (SH) compared to modern conditions (Fig. 14a).
Substantially increased temperatures over the NH continents
during boreal summer of up to 2 K lead to stronger thermal lows
and stronger summer monsoons, which in turn changes tempera-
tures and precipitation over parts of Africa and India. The SH
continents show also weak positive temperature and precipitation
anomalies during this season, while over the SH oceans there is
little change. In boreal NH winter a mainly continental cooling is
found, which is associated with a stronger winter monsoon. These
anomalies are consistent with those simulated by EMICs. Only
some of these changes can be understood as a direct, instantaneous
response to the insolation forcing, while others clearly show
memory and feedback effects caused by the ocean or sea-ice (Liu
et al., 2004; Mikolajewicz et al., 2003; Zhao et al., 2005; Bracconnot
et al., 2007b; Ohgaito and Abe-Ouchi, 2007). The role of the vege-
tation feedback has been found to be smaller in the PMIP2 simu-
lations than in earlier studies, which is partly attributed to the lack
of consistent reference simulations in earlier studies (Braconnot
et al., 2007b).

Transient GCM simulations that include the MH have mostly
been performed using acceleration techniques to reduce compu-
tation time. Lorenz and Lohmann (2004) simulated the last
7000 years with an AOGCM by changing the orbital forcing for
every simulated year by an increment that is associated with
10 years in reality. Thus the climate response to the orbital forcing
for the entire 7000-year long period can be estimated with
a simulation that is only 700 years long. In a second simulation the
acceleration factor was set to 100 to simulate a much longer period.
This approach can be expected to capture the response of the
atmosphere and the mixed layer ocean to the orbital forcing, as
these components of the climate system quickly reach equilibrium
under changed forcings. The response of slow ocean components
and the climatic effects of internally generated ocean variability,
however, are not fully represented. The simulation of Lorenz and



Fig. 14. Ensemble mean of PMIP2 simulations: (a) JJAS mean surface air temperature (�C) differences between Mid-Holocene and preindustrial (0 ka). (b) Same as (a) but for
precipitation (mm/day). From Braconnot et al. (2007a).
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Lohmann (2004) shows a smooth transition from the MH to the
present with opposing temperature trends in the tropics and extra-
tropics. The same acceleration technique was employed by Hall
et al. (2005) in a simulation with an AGCM coupled to a simple
mixed layer ocean to study the response of atmospheric circulation
to orbital forcing.

The period 7000 years BP to 4500 years BP has been simulated
by Wagner et al. (2008) with the coupled AOGCM ECHO-G without
using acceleration techniques. The simulation was forced by orbital
changes and by estimates for solar variability, which were obtained
by scaling production rates of cosmogenic 14C (Solanki et al., 2004),
such that the difference between present-day and Maunder
Minimum solar activity is 0.3% (Crowley, 2000). A second simula-
tion for the same period with only orbital forcing was also per-
formed. The temperature differences between the simulated
summer and winter mean temperatures in the orbitally forced
simulation for the period 6250–5750 years BP, and the mean
temperature in a 300-year long equilibrium simulation for the
preindustrial period, are similar in the NH to the PMIP2 MH
temperature anomalies. There are some differences in the SH,
however, due to a different behaviour of the SH sea ice and an
associated cooling in the ECHO-G simulation, the causes of which
are being investigated.

Forcing on millennial timescales not only affects the simulated
mean climate state. High frequency variability modes such as ENSO
and NAO may also change, both in terms of variability patterns and
in terms of temporal behaviour. Note that the analysis of high
frequency variability is usually based on considering anomalies
relative to the climatological mean of the period under investiga-
tion, and should not be confused with representing mean anoma-
lies relative to the modern climate through their projection on
variability patterns such as the NAO or NAM pattern.

The difference between the mean NH sea level pressure field
during the MH and the modern climate in the ECHO-G simulation is



Fig. 15. Transient GCM simulations of boreal winter (a) and summer (b) air temper-
atures at three Atlantic-European sites (southern Greenland, central and northern
Europe, Mongolia), based on orbital and solar forcing, along with the insolation curves
that were used to force the model (after Wagner et al., 2007, 2008).
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similar, but not identical, to the NAO pattern (Wagner et al., 2008).
A similar circulation response is also found in simulations with the
ECHO-G model for the last interglacial (Kaspar et al., 2005), and in
some, but not all, MH simulations with other GCMs (Masson et al.,
1999; Gladstone et al., 2005). The mean NH SLP anomaly during the
MH is thus associated with a positive NAO (or NAM) index, relative
to modern conditions, which is in accordance with the response of
the NAM index to orbital forcing discussed in Hall et al. (2005). The
NH MH temperature anomaly during winter has a strong contri-
bution from this circulation response to the forcing, for instance,
increased temperatures over parts of Eurasia during the generally
cooler NH winter.

As mentioned above, Otto-Bliesner et al. (2006) state that the
NAM patterns of the MH are similar to those of the preindustrial
period, which is also the case for the MH ECHO-G simulation. An
analysis of ECHO-G simulations for the last interglacial and the last
glacial inception (125,000 years BP and 115,000 years BP respec-
tively) has also shown that the NAM pattern is not greatly affected by
the orbital forcing. However, because of the mean flow anomaly, the
relationships between high frequency circulation and temperature
anomalies can change (Groll et al., 2005; Groll and Widmann, 2006).

An overview on the response of the mean climate and the vari-
ability of the tropical Pacific to orbital forcing has been given by
Timmermann et al. (2007). This topic has been studied using EMICs
(Clement et al., 1999, 2001) and GCMs (DeWitt and Schneider, 1998;
Codron, 2001; Otto-Bliesner, 1999; Liu et al., 2000; DeWitt and
Schneider, 2000; Otto-Bliesner et al., 2003; Clement et al., 2004;
Brown et al., 2006). Some of these simulations show an EH to MH
ENSO suppression, in accordance with ENSO reconstructions (Tud-
hope et al., 2001; Moy et al., 2002). However, ENSO is difficult to
simulate as it crucially depends on the mean state and the seasonal
cycle of the tropical Pacific, which are often not realistically repre-
sented in GCMs (for more details see Timmermann et al., 2007).

5.2. Changes on decadal to multi-centennial timescales

Forced variability on timescales shorter than millennia can be
either a response to a forcing on these timescales, or a result of
slower forcings in combination with feedbacks and thresholds in
the climate system. In addition, there is a considerable contribution
of internally generated, quasi-random variability.

The most spectacular example of the importance of feedbacks in
some model simulations is the relatively fast desertification of the
Saharan region between about 6000 and 4000 years BP (e.g.
Claussen et al., 1999; Brovkin et al., 2003; Renssen et al., 2003;
Wang Y.M. et al., 2005a; Patricola and Cook, 2007). The generally
accepted explanation of this vegetation decrease is related to
a positive atmosphere-vegetation feedback, triggered by the
comparatively slow changes in orbital forcing (Fig. 6). Due to
a decrease in the intensity of the African monsoon, related to the
decrease in summer insolation, precipitation decreases in the
Sahara during the Holocene. This induces a decrease in the vege-
tation cover, and thus an increase of the surface albedo. As
a consequence, there is an additional cooling and reduction of
precipitation that amplifies the initial decrease in vegetation cover.
The amplification is particularly strong when a threshold is crossed,
leading to a rapid desertification and the fast changes noticed in
the simulations (e.g. Claussen et al., 1999; Brovkin et al., 2002;
Wang Y.M. et al., 2005a). It has also been proposed that during this
transition the system could shift several times, in some regions of
the Sahara, from a ‘‘relatively green state’’ with a relatively large
vegetation cover to desert state, both states being quite stable for
a longer period. As a consequence, during this transition period the
centennial- to millennial-scale variability of the system may have
been enhanced because of this flip-flop between the two states
(Renssen et al., 2003).
However, additional analyses are required to assess how
important the mechanism described above is in more recent
simulations, because the magnitude of the atmosphere-vegetation
feedbacks appears smaller in the new results from PMIP2 (Bra-
connot et al., 2007a, b) than in earlier studies. In particular, Liu et al.
(2007) simulated an abrupt transition between green state and
desert state around 5 kyr BP in a long transient simulation using
a coarse resolution GCM, while changes in precipitation where
more gradual. This led them to argue that the simulated abrupt
vegetation change was not caused by a climate-vegetation feed-
back, but rather by the non-linear response of the vegetation to
strong internal climate variability when a bioclimatic threshold is
crossed (Liu et al., 2006).

As an example of a transient GCM simulation, boreal winter and
summer temperatures from the ECHO-G simulation with orbital
and solar forcing for three regions (south of Greenland, central and
northern Europe, and Mongolia), along with the solar forcing, are
shown in Fig. 15. A more comprehensive analysis can be found in
Wagner et al. (2008), where increased spectral power on multi-
decadal timescales, in accordance with other studies, was found.
Although the simulation is too short to allow a meaningful spectral
analysis on multi-centennial to millennial timescales, a qualitative
visual inspection of the regional temperatures can give some
indication whether cyclicities on these timescales are simulated.
Boreal summer and winter temperatures south of Greenland show
strong centennial variability, which dominates multi-centennial
and longer components. In addition to this centennial variability,
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summer temperatures have a cooling trend, which is consistent
with the decreasing NH summer orbital forcing (Fig. 6). The
simulated temperature variability over Mongolia is also dominated
by centennial-scale variability and a pronounced summer cooling
trend. European winter temperatures likely show some millennial-
scale variability with amplitudes similar to the centennial-scale
variations, but the length of the record makes it impossible to
comment on regularity and specific frequencies. European summer
temperatures again show the expected cooling trend.

Teleconnections between low-frequency temperature vari-
ability in the three areas are low in winter, while summer
temperatures over Europe and Mongolia are clearly correlated
(r ¼ 0.65 for detrended, 101-year filtered values). Temperature
teleconnections can be due to the spatial structure of dominant,
internally generated circulation patterns (Groll and Widmann,
2006), or to a common response to solar or other forcings. The solar
signal during summer is moderate over Europe and strong over
Mongolia (with correlations between 101-year filtered solar forcing
and temperatures of 0.43 and 0.80, respectively), and it seems likely
that the partial synchroneity between low-frequency temperature
variability in the two regions is caused by a combination of the
structure of internal variability and a common response to the solar
forcing.

A noteworthy feature in those simulations is the strong negative
summer and winter temperature anomaly south of Greenland
around 4700 years BP, which lasts several hundred years and
appears to be unrelated to the solar forcing. This is thus likely to be
an internally generated fluctuation due to ocean and/or sea ice
dynamics and highlight the role of internal variability on regional
changes on this timescale (note in this context that such variations
might be related to changes in the thermohaline circulation as
discussed in Sections 4.3. and 4.4.).

For the more recent past, simulations performed with GCMs,
EMICs, and Energy Balance Models (EBMs) include additional
natural forcing (changes in solar irradiance and the influence of
large volcanic eruptions; see Fig. 16a and b) and anthropogenic
forcing (changes in land cover, increase in the GHG concentration
and sulfate aerosols; Fig. 16 c). There are several estimates of these
forcings as indicated by Fig. 16a–c (Jansen et al., 2007) and as
a comparison with the Figs. 7–11 shows. The simulations cover the
last 500–1000 years (e.g. Crowley, 2000; Bertrand et al., 2002;
González-Rouco et al., 2003; Gerber et al., 2003; Bauer et al., 2003;
von Storch et al., 2004; Goosse et al., 2004, 2005b; Zorita et al.,
2004; Tett et al., 2007; Ammann et al., 2007; for a comprehensive
overview see Jansen et al., 2007), but some forcings have also been
used in longer simulations (e.g. Weber et al., 2004; Goosse et al.,
2005a; Wagner et al., 2008; Renssen et al., 2005a, b). Compared to
the simulations covering the Holocene with orbital and GHG forc-
ings only, higher frequency changes are simulated when those
additional forcings are included. There is a large spread between
the simulations, caused by the different forcings and the different
climate sensitivities of the models. EMICs simulate relatively
modest changes during the period AD 1000–1850, with peak to
peak variations in the order of 0.5 �C, a range that seems compat-
ible with the results of a carbon cycle model included in one of the
simulations (Gerber et al., 2003), while some GCMs simulate
slightly larger changes (for discussion of the causes of the differ-
ences between the simulations, see for instance Goosse et al.,
2005a; Osborn et al., 2006; Jansen et al., 2007). In general,
a significant part of last millennium NH temperature variations can
be explained by external forcing (Jansen et al., 2007).

Common to all simulations, the calculated climate is relatively
mild at the global scale during the early millennium (albeit cooler
than during the late 20th century), followed by a gradual cooling
until the 19th century (Fig. 16d). This picture is consistent with the
general view of a warm MWP followed by the cold LIA. In models,
this large-scale climate evolution is mainly due to the applied
changes in solar and volcanic forcing, as well as changes in land
cover. In particular, the simulated transition at hemispheric-scale,
from generally mild conditions to colder conditions, is due to a lower
solar irradiance and more frequent volcanic eruptions during
roughly the period AD 1450–1850. As a consequence of this forcing
and of the long-term cooling trend during the Holocene (see above),
the LIA appears as the period with the lowest simulated annual
mean temperature averaged over the NH in simulations covering the
last 8000 years (Renssen et al., 2006a). However, because of the
uncertainties in the timeseries of the forcing and in the recon-
structions of temperature changes from proxy-data (see Section 2),
the attribution of the observed changes to particular forcings is not
an easy task for the period AD 1000–1850 (e.g. Hegerl et al., 2003,
2007). On the other hand, the observed warming during the 20th
century is clearly due to anthropogenic forcings and could not be
simulated if those forcings are not taken into account (e.g. Crowley,
2000; Bertrand et al., 2002; Hegerl et al., 2003, 2007; Stott et al.,
2006). In one study, the different forcings have been applied indi-
vidually, as well as in combination. These experiments show that the
forcings can, to a first approximation, be considered as linearly
additive during the Holocene (Cubasch et al., 2006).

At the hemispheric scale, the simulated decadal to millenial
climate variations are, to a large extent, dominated by the response
to the changes in external forcing. Internal variability plays a larger
role at the regional scale then at hemispheric scale, and is some-
times dominant (Goosse et al., 2005b; Tett et al., 2007). Some
authors even suggest that changes in the forcing are not required to
explain the observed variation at regional scale (e.g. Hunt, 1998;
Bengtsson et al., 2006), the changes generated by purely internal
dynamics alone provide a good hypothesis.

However, the response to the forcing should also be taken into
account, as this response could display a clear spatial pattern
leading to changes of much larger amplitude in some regions than
at hemispheric scale. In particular, the impact of land-use change
has a clear regional signature, the climate response being larger in
an area (or close to the area) where the largest land-use changes
occurred (e.g. Matthews et al., 2004; Feddema et al., 2005; Brovkin
et al., 2006; Jansen et al., 2007). As a consequence, for regions like
Europe where large-scale deforestation occurred during the pre-
industrial era, land-use change could be a dominant forcing during
the period AD 1000–1750 (e.g. Goosse et al., 2006).

Volcanic forcing is also believed to have an influence on atmo-
spheric circulation, which can be responsible for large regional
anomalies leading to a warming of the NH continent in the winter
following a large tropical volcanic eruption. This is due to a larger
warming of the stratosphere in the tropics than at high latitudes,
and thus a stronger meridional temperature gradient caused by the
volcanic eruption. This is associated with a stronger polar vortex
and a more intense advection of warm air to the continents in
winter, which overprints the direct radiative cooling (Robock,
2000; Shindell et al., 2004).

The spatial pattern of the temperature response to the solar
forcing has been estimated in detection and attribution studies
(Cubasch et al., 1997; Hegerl et al., 1997; Cubasch and Voss, 2000;
Hegerl et al., 2007). Cubasch et al. (2004) isolated the solar signal on
longer timescales by performing an idealised simulation with
a periodic solar forcing with the 76 years periodicity of the
Gleissberg cycle and the 11 years periodicity of the Schwabe cycle.
The correlations between 5-year low-pass filtered temperatures of
the latter simulation and the solar forcing are shown in Fig. 17. Both
figures show, in general, highest correlations over the tropical
Atlantic and Indian Ocean and decreasing correlations towards
higher latitudes. As in the case of the orbital forcing signal, the solar
signal is a combination of direct responses to changes in the local
radiative balance. Additionally, an indirect effect, caused by the



Fig. 16. Radiative forcings and simulated temperatures during the last 1.1 kyr. Radiative forcing (W/m2) used to drive climate model simulations due to (a) volcanic activity, (b) solar
irradiance variations and (c) all other forcings. (d) Annual mean NH temperature (�C) simulated under the range of forcings shown in (a) to (c), compared with the concentration of
overlapping NH temperature reconstructions (shown by grey shading). All forcings and temperatures are expressed as anomalies from their 1500 to 1899 means and smoothed with
a Gaussian-weighted filter. From Jansen et al. (2007).
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radiative heating of the ozone layer in the stratosphere (Kodera and
Kuroda, 2002) through increased UV-radiation during a solar
maximum, reinforces the response to solar variability. The altered
stratification of the higher atmosphere could lead to circulation
changes, for instance of the Hadley Cells, the Indian Monsoon, the
NAM and the ENSO cycle (e.g. Haigh, 1996; Shindell et al., 2001;
White et al., 2003; van Loon et al., 2004, 2007; Kodera, 2005;
White, 2006). The mechanisms leading to circulation changes are
not yet fully understood and are the topic of intensive ongoing
research. To investigate them in detail, fully coupled ocean-tropo-
sphere-stratosphere models have to be employed, which have only
recently been run for long periods (e.g. Huebener et al., 2007).

Simulations using models including a dynamic ocean have
shown that, in response to an increase in solar irradiance, the
magnitude of the AMOC tends to decrease by a few percent prob-
ably because of a warming and reduced ocean surface density at
high latitudes (e.g. Weber et al., 2004). This reduces the northward
oceanic heat transport in the Atlantic and thus provides a local
negative feedback to the initial warming, due to the increase in
solar irradiance. Nevertheless, a positive oceanic feedback has also
been described (Goosse and Renssen, 2004). During some years,
because of the internal variability of the system, the oceanic heat
transport toward the Norwegian Sea is reduced and sea ice covers
the sites where deep mixing and intense heat flux from the ocean to
the atmosphere occurs during normal years. This leads to very cold
conditions in the northern North Atlantic and surrounding areas,
and to changes in wind patterns that could reinforce the initial
perturbations. The probability of such a cold year depends strongly
on the mean state of the system. In particular, the sea ice should be
thick enough to survive when transported from the Arctic to the
Nordic Seas and to decouple the ocean from the atmosphere in
those regions. As a consequence, the probability of those events is
nearly zero in simulations covering the EH or the late 20th century
because of a too thin ice layer during this period (Renssen et al.,
2005a; Goosse and Renssen, 2004). On the other hand, the proba-
bility is higher during the second half of the Holocene, in particular
during some cold periods like the LIA, providing a potentially
strong amplification of the response to the solar forcing during
those periods (Goosse and Renssen, 2004). In a recent study
covering the last 9000 years, Renssen et al. (2006a) found that
these simulated cold events are consistent with proxy evidence for
Holocene cold phases in the North Atlantic, and could thus provide
a hypothesis to explain the observed anomalies during those
periods.



Fig. 17. Left: correlation between a simulated 76-year cycle (corresponding to the Gleissberg-cycle; S76) and the 5 year low-pass filtered response in near surface temperatures.
Right: same as left Fig., but for an 11-year solar forcing (corresponding to the Schwabe Cycle; S11).
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6. Synthesis and conclusions

Here we focus on the six questions posed in the introduction.
For the first three questions, we focus on the observed (recon-
structed) climate. Answering questions 4–6 requires consideration
of available knowledge from simulation studies.

6.1. Question 1: What was the spatial structure of Mid- to Late
Holocene climate changes?

By combining the available information derived from proxy
reconstructions, Fig. 18 summarises in cartoon form the difference
between the preindustrial period (AD w1700) and the MH
(w6000 cal years BP). Due to the weakened orbital forcing in NH
summer (Fig. 6) the ITCZ shifted south and a cooling trend, mainly
during summer, occurred over the northern continental land mass
(Viau et al., 2006; Seppä and Birks, 2001) and the North Atlantic
Ocean (Marchal et al., 2002; Kim et al., 2004). The length of glaciers
was smaller during the MH, e.g. in the European Alps and Scandi-
navia, and many glaciers of the NH reached a maximum extent
during the LIA (Fig. 4). Reconstructions of the NAO index (Rimbu
et al., 2003), though uncertain, depict positive values for the MH
and negative values for the preindustrial period, although the
indices increased slightly after 2000 cal years BP (Fig. 13). The North
Pacific SST trend was positive, counter to the forcing (Kim et al.,
2004), and humidity in the interior mid-latitudes of North America
increased (Fig. 3). In the context of the southerly moving ITCZ (Haug
et al., 2001) the Afro-Asian summer monsoon weakened greatly,
causing aridity in subtropical Africa and Asia and in Central
America. As a consequence of a changing SST gradient between the
Indo-Pacific warm pool and the eastern Pacific Ocean the Walker
Circulation intensified after 5000 cal years BP, and large El Niño
events occurred more frequently (Shulmeister, 1999; Gagan et al.,
2004; Stott et al., 2004; Abram et al., 2007).Antarctic temperatures
remained constant or slightly cooled (Masson et al., 2000, Fig. 2).

6.2. Question 2: Are multi-century scale changes between colder
and warmer (or humid and dry) periods cyclic, with a quasi-regular
period, or not?

Several authors (e.g. Bray, 1971, 1972; Denton and Karlén, 1973;
Bond et al., 1997, 2001) have postulated the existence of postglacial
cycles or swings with periods of about 2000–2800 or 1200–
1500 years, and recent publications have suggested these to be
Holocene equivalents of the Late Pleistocene Dansgaard–Oeschger
cycles. Examination of different timeseries of proxies for temperature
and humidity in Fig. 2 and glacier dynamics in Fig. 4 suggests that such
swings exist; but the number of Neoglacial advances recorded in
several parts of the world is highly variable and in many cases they are
not synchronous (Bradley and Jones, 1995). Some degree of coinci-
dence is visible when considering the coloured dots marking roughly
simultaneous glacier advances in Fig. 4. However, if we detect and list
all notable positive or negative peaks in the timeseries in Fig. 2 (not
shown here), a clear coincidence cannot be found.

Fig. 19 shows the frequency of all spectral peaks with significant
power found in our timeseries analyses as well as in the literature,
which are represented in Fig. 5 (see also the refs. in Tables 1 and 2).
As expected, the number of spectral peaks grows with decreasing
timescale because the number of longer periods is limited due to
the length of the time intervals analysed. Small, (and non-signifi-
cant) clusterings of spectral peaks occur at about 200, 500, 900 and
1500–years (dark bars in Fig. 19). There is thus scant evidence for
consistent periodicities and it seems likely that much of the higher-
frequency variability observed is due to internal variability or
complex feedback processes that would not be expected to show
strict spectral coherence (Hunt, 1998; Wunsch, 2000, 2006).

Do ‘‘Bond Cycles’’ (Bond et al., 1997, 2001) constitute an excep-
tion? Andrews et al. (2006), Moros et al. (2006) and Debret et al.
(2007) have shown that such cycles exist but that their temporal
structure and their spatial representation are not uniform. A
correlation has been shown between the Bond events and glacier
advances and retreats in Scandinavia (Nesje and Kvamme, 1991;
Matthews et al., 2005) and the European Alps (Wanner et al., 2000;
Holzhauser et al., 2005). There is also evidence that climate swings
in the northeast American and/or the Atlantic-European area are
correlated with similar fluctuations around the Mediterranean Sea
and North Africa, and correspond with some proxy timeseries in
the Middle East and Asia, (Fleitmann et al., 2003; Wang Y. et al.,
2005; Jones et al., 2006; Yu et al., 2006), including the southwest
monsoon and ENSO (Gupta et al., 2003, 2005; Goswami et al.,
2006). Baker et al. (2001) even suggested linkages with the Carib-
bean area and the Altiplano in South America. Based on our analysis
of the timeseries in Fig. 2 we support the idea that ‘‘Bond Cycles’’
are effective during selected time periods in the NH, but question
their relevance for the SH until a plausible mechanism for the
transmission of the signal is detected (see also Bütikofer, 2007).

Transitions between warmer and colder multi-century periods,
especially the transition from the MWP (Hughes and Diaz, 1994;
Crowley and Lowery, 2000) or the MCA (Graham et al., 2007) to the
LIA (Grove, 2004), may provide the best opportunities to study the



Fig. 18. Spatial synthesis: global climate change for the preindustrial period (AD w1700) compared to the MH (w6000 cal years BP).
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Fig. 19. Number of all significant spectral peaks found in our timeseries analysis (see
refs. in Table 1), as well as in the existing literature (see refs. in the Table 2). Dark grey
bars mark apparently higher frequencies.
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processes of multi-centennial to millennial climate variability. It is
still an open question whether the MWP–LIA transition was caused
by external forcing, and its spatial extent is still not entirely clear;
also Bradley et al. (2003) demonstrated that the time of the warm
peak during the MWP was not simultaneous in different areas of
the globe. For the LIA the glacier maxima in Fig. 4 suggest a certain
synchroneity, though the temporal resolution of these data is too
low to guarantee simultaneity.
6.3. Question 3: Can we identify periods with rapid large-scale
climate shifts or transitions?

Several papers (e.g., Jennings et al., 2002; Mayewski et al., 2004)
have shown that rapid transitions have occurred in regional
climates. Mayewski et al. (2004) indicated five periods of significant
rapid climate change during the last 6 kyr BP. They connected the
four events 6000–5000, 4200–3800, 3500–2500 and 1200–
1000 cal years BP with a ‘‘cool poles, dry tropics’’ pattern, and
postulated that solar variability could be a plausible forcing for the
two largest of these events (6000–5000 and 3500–2500 cal years
BP). The fifth event, linked to a ‘‘cool poles, wet tropics’’ pattern,
started in w600 cal years BP and corresponds to the LIA. Mayewski
et al. suggested that solar variability and possibly volcanic aerosols
had a major influence on climate during this last interval.

Contrary to the conclusions of Mayewki et al. (2004), we cannot
find any time period for which a rapid or dramatic climatic tran-
sition appears even in a majority of the timeseries in Figs. 2 or 4. A
noteworthy shift occurred in the timeseries of the North Atlantic,
Israel and E Africa around 5200 cal years BP. A second event is
visible in the timeseries of North America, Mexico and the Cariaco
Basin between about 3100 and 2500 cal years BP. There is no
indication that explosive tropical volcanic eruptions could have
influenced these transitions. Interestingly, the 10Be data in Fig. 7a
show positive trends during both periods.

It has to be asked whether the period between 4200 and
3800 cal years BP, mentioned by Mayewski et al. (2004) and Yu
et al. (2006) is of special significance because the collapse of the
Akkadian Empire (Cullen et al., 2000; deMenocal, 2001) and the
severe North American drought (Booth et al., 2005) appeared at the
same time. During the latter period the frequency of large El Nino
events decreased strongly (Fig. 12).
6.4. Question 4: Do the climate variations correspond with known
variations of natural forcing factors, such as orbital parameters,
solar irradiance, explosive tropical volcanic eruptions and
greenhouse gases?

At the millennial scale, orbital (Milankovitch) forcing domi-
nates. In the NH outside the polar region insolation changes led to
a strong cooling during the LH, especially in summer (Figs. 6 and
18). The redistribution of solar energy was also responsible for the
southward migration of the ITCZ and the weakening of the Afro-
Asian monsoon system (Haug et al., 2001; Broccoli et al., 2006). In
the SH the reaction to orbital changes has been more muted and
apparently more complex, probably because heat transport in the
ocean played the major role (Stott et al., 2004; Renssen et al.,
2005b).

There have been many largely speculative attempts to attribute
decadal to multi-centennial fluctuations, as represented in the
timeseries of Figs. 2 and 4, to solar variability and volcanic forcing.
If we compare the spectra of solar activity (Fig. 8) with the
frequency of the spectral peaks in the Holocene timeseries in
Fig. 19 we recognise that there is a rough coincidence between
the 208 years Suess (or de Vries) cycle and a clustering of
frequencies of variation in climate proxies around the spectral
band of w200 years. The same applies to the solar cycle peak
around 500 years. Unfortunately, the solar activity data do not
allow us to extend the analysis to the characteristic 1500 years
timescale of the ‘‘Bond Cycles’’. As noted by Debret et al. (2007),
the origin of these cycles remains unknown. Debret et al. listed
solar activity, ocean current intensity variation, tidal forcing,
atmospheric processes or modifications of the geomagnetic field
as possible triggers.

Turney et al. (2005) concluded that North Atlantic climate
changes on centennial to millennial time scales were not
driven by a linear response to solar activity. Solar forcing has
been invoked as the main trigger, e.g. for glacier (Holzhauser
et al., 2005) and lake level (Magny, 2004) fluctuations in
central Europe, and temperature changes in Alaska (Wiles
et al., 2004). We suggest that the evidence for such a linkage is
very weak.

The same holds for volcanic forcing. One single tropical
volcanic eruption leads to a climate signal which lasts for about
2–3 years (Robock, 2000). The structure of this spatiotemporal
signal is quite complex (Gerber et al., 2003; Shindell et al., 2004;
Fischer et al., 2006; Ammann et al., 2007). However, a strong
eruption or a sequence of eruptions could potentially have
a substantial impact. Based on a network of temperature-sensi-
tive tree-ring density chronologies in different regions of the
northern boreal forests Briffa et al. (1998) showed that strong
single eruptions or groups of eruptions (e.g. around AD 1600 or
shortly after AD 1800) can lower summer temperatures
dramatically However it appears from Fig. 9 that more large
tropical volcanic eruptions have occurred during certain inter-
vals of the last millennium, i.e. between AD 1200 and 1350 or
around AD 1700 and 1800, than at other times during the
Holocene. These maxima of volcanic activity happen to coincide
with both low orbitally induced insolation in the NH and an
unusual concentration of solar activity minima. Therefore, it
seems plausible that the cold intervals of the past millennium,
including the LIA, might be attributed to a combination of
orbital, volcanic and solar forcing.

Finally, it has to be emphasised that forcing signals with higher
frequencies might be transformed into low frequency ones by slow
reactors such as ice caps, or by internal feedbacks. Moreover,
Wunsch (2000) stated that a broad band of quasiperiodic variability
rather than any kind of significant spectral peak is typical for
climate records.
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6.5. Question 5: What was the involvement of natural variability
modes, such as the El Niño Southern Oscillation (ENSO) and the North
Atlantic Oscillation (NAO), in climate change during the Holocene?

Internal modes of the climate system are important sources of
natural variability. Teleconnections induced by these modes can
potentially be influenced by external forcing, although model
studies (Stott and Tett, 1998; Goosse et al., 2005b; Bengtsson et al.,
2006) have shown that, on the regional scale, the effect of the
forcings may be less important and that natural variability is often
underestimated as a cause of regional climate variations.

If we assume, as mentioned above, that the ENSO activity
increased and the NAO moved toward negative indices until about
1800–1900 cal years BP, we can make use of the correlations
between the indices of these climate modes and the SSTs (Rimbu
et al., 2004). The La Niña-like conditions during the MH lead to
drought, e.g. on the coast of Peru and, possibly, in the mid-continent
of North America. In the North Pacific area the SSTs increased during
the last six millennia (Kim et al., 2004). The Walker Circulation
intensified, and a higher dryness took place in tropical Australia after
3700 cal years BP (Shulmeister, 1999). In the North Atlantic Ocean
and the western Mediterranean Sea the SSTs mostly decreased
(Marchal et al., 2002; Kim et al., 2004). An increasing SST trend was
determined in the eastern Mediterranean Sea and the ocean areas
southeast of it (Kim et al., 2004). This trend pattern is consistent with
the decreasing NAO indices between the MH and the LH.

6.6. Question 6: Are models able to simulate climate variability at
different timescales, and to what extent can they diagnose the
underlying processes?

EMICs can reproduce the general decrease in summer temper-
atures at mid- and high-latitudes over the last 6000 years associ-
ated with the decline of insolation in boreal summer. They show
a slight increase of winter temperatures in the northern mid-lati-
tudes, and a cooling of the Southern Ocean during austral summer,
spring and winter. Compared to modern conditions, quasi-equi-
librium simulations with GCMs demonstrate a stronger (weaker)
seasonal cycle in the NH (SH) compared to today and increased
temperatures up to 2 K over the NH during boreal summer (Bra-
connot et al., 2007a, b) leading to enhanced continental lows and
a stronger summer monsoon. Transient simulations, mostly per-
formed using acceleration techniques, produce a smooth transition
from the MH to the present with opposing temperature trends in
the tropics and extratropics. The forcing on millennial timescales
also affects high frequency variability, such as ENSO and NAO/NAM.

On decadal to multi-centennial timescales, forced variability can
in principle be either a direct response to forcing on these time-
scales, or a result of slower forcings in combination with feedbacks
and thresholds in the climate system. The most spectacular
example of a simulated non-linear feedback during the past
6000 years is the (rapid or gradual?) desertification of the Saharan
region between about 6000 and 4000 cal years BP. Transient
simulations of boreal winter and summer temperatures with
ECHO-G, forced with orbital and solar forcing, show strong
centennial variability superimposed on the general NH cooling
trend. Simulations of the last 500–1000 years BP have included
natural (solar activity, volcanoes) and anthropogenic (land cover
change, increasing GHG’s and sulfate concentration) forcings.
EMICs simulate relatively modest changes between AD 1000 and
1850, with a range of 0.5 �C in global mean temperature. Some
AOGCMs have simulated slightly larger changes. All simulations
reproduce a relatively warm global-scale climate during the early
part of the millennium (albeit cooler than during the 20th century),
followed by a gradual cooling until the 19th century. This general
model finding is consistent with the suggestion that the contrast
between the MWP and the LIA was due to the coincidence of solar
activity minima with an increased number of volcanic events
during the LIA.

The LIA is simulated as the period with the strongest cooling
during the last 8 kyr. Simulations including a dynamical ocean
show that, due to an increasing solar irradiance, the magnitude of
the AMOC tends to decrease during the LIA by a few percent (e.g.
Weber, 2001; Weber et al., 2004) due to warming and reduced
ocean surface density in the high latitudes. This reduces the
northward heat transport and provides a negative feedback due to
the initial warming by the higher solar irradiance. On the other
hand, the simulations described in Goosse and Renssen (2004)
show, in response to a decrease in solar irradiance, a reduced
oceanic heat transport toward the Norwegian Sea, increasing sea
ice and a reduction of the deep mixing as well as the heat flux from
the ocean. The probability of such a process increases if the mean
state and not the internal variability dominates, as during the LH.
The question remains whether the SH is also cooled, namely by
a north-south transport of cold deepwater, or warmed because of
the reduced northward heat transport.

In summary, one can say that the proxy timeseries as well as the
available simulations indicate that mainly two types of climate
variability occurred during the last 6000 years:

(1) The distribution of total solar irradiance substantially changed
over the course of the last 6000 years due to changes in the
orbital parameters. The largest changes occurred during boreal
summer and autumn when the solar irradiance was progres-
sively reduced in the NH and enhanced in the SH. Therefore, the
ITCZ and the monsoon systems moved south. The weakening of
the summer monsoons over time led to a dryness in Central
America, northern Africa and what are now the deserts of
Eurasia; this trend started after about 5500 cal years BP and was
abrupt in some regions (e.g. in Mexico or the Lake Chad area
between about 4200 and 3800 cal years BP). Orbital forcing also
led to changes in the behaviour of the main phenomena of
internal climate system variability, above all ENSO in the Pacific
region and NAO in the Atlantic region. There are indications in
both observations and simulations that ENSO activity increased
and the NAO index shifted towards more negative values.

(2) At decadal to multi-century timescales, climate variability
shows a complex picture with indications of a possible role for
(i) rapid changes of the natural forcing factors such as solar
activity fluctuations and/or large tropical volcanic eruptions;
(ii) internal variability including ENSO and NAO; (iii) changes of
the thermohaline circulation; (iv) complex feedback mecha-
nisms between ocean, atmosphere, sea ice and vegetation.
Notable swings occurred between warm and cold periods,
especially the hemispheric-scale warming leading into the
MWP and subsequent cooling into the LIA. However, there is
scant evidence either for the cyclicity of climate variations on
this time scale, or for the large-scale synchroneity of abrupt
events. There is evidence for ‘‘Bond events’’ in some NH records
although their cyclicity is doubtful (they may or may not be
analogous to Dansgaard–Oeschger events), and their origins
obscure. The LIA appears at least to be a hemispheric
phenomenon, and model simulations support the inference
that it may have been brought about by the coincidence of low
NH orbital forcing during the Late Holocene with unusually low
solar activity and a high number of major volcanic events.
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Appendix A. List of abbreviations

AGCM Atmosphere General Circulation Model
AMO Atlantic Multidecadal Oscillation
AMOC Atlantic Meridional Overturning Circulation
AO Arctic Oscillation
AOGCM Atmosphere-Ocean General Circulation Model
BIOME 6000 Paleovegetation Mapping Project of IGBP
BP Before Present (means before AD 1950)
CCM Community Climate Model
CLIMAP Climate Mapping, Analysis and Prediction Project
COHMAP Cooperative Holocene Mapping Project
EBM Energy Balance Model
ECHO-G Hamburg AOGCM
EH Early Holocene
EMIC Earth System Model of Intermediate Complexity
ENSO El Niño Southern Oscillation
EPICA European Ice Core Project in Antarctica
GAIM Global Analysis, Interpretation

and Modeling Project
GCM General Circulation Model
GENESIS Global Environmental and Ecological Simulation

of Interactive Systems
GISP Greenland Ice Sheet Project
GLSDB Global Lake Status Data Base
GRIP Greenland Ice Core Project
HYDE Anthropogenic land use dataset
IGBP International Geosphere-Biosphere Programme
IPWP Indo Pacific Warm Pool
IOM Indian Ocean Monsoon
IRD Ice Rafted Debris
ITCZ Intertropical Convergence Zone
LGM Last Glacial Maximum
LH Late Holocene
LIA Little Ice Age
LIATE Little Ice Age Type Event
MCA Medieval Climate Anomaly
MH Mid-Holocene
MWE Medieval Warm Epoch
MWP Medieval Warm Period
NAM Northern Annular Mode
NAO North Atlantic Oscillation
NH Northern Hemisphere
PAGES Past Global Changes Programme
PDO Pacific Decadal Oscillation
PMIP Paleoclimate Modeling Intercomparison Project
REDFIT Software used for spectral analysis
SH Southern Hemisphere
SST Sea Surface Temperature
TEMPO Testing Earth System Models with Paleo-Observations
THC Thermohaline circulation
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Bütikofer, J., 2007. Millennial scale climate variability during the last 6000 years –

tracking down the Bond cycles. Diploma thesis. University of Bern (http://www.
giub.unibe.ch/klimet/docs/diplom_jbuetikofer.pdf).

Calvo, E., Grimalt, J., Jansen, E., 2002. High resolution UK
37 sea surface temperature

in the Norwegian Sea during the Holocene. Quaternary Science Reviews 21,
1385–1394.

Carrington, D.P., Gallimore, R.G., Kutzbach, J.E., 2001. Climate sensitivity to wetlands
and wetland vegetation in mid-Holocene North Africa. Climate Dynamics 17,
151–157.

Castellano, E., Becagli, S., Hansson, M., Hutterli, M., Petit, J.R., Rampino, M.R., Severi,
M., Steffensen, J.P., Traversi, R., Udisti, R., 2005. Holocene volcanic history as
recorded in the sulphate stratigraphy of the European Project for Ice Coring in
Antarctica Dome C (EDC96) ice Core. Journal of Geophysical Research 110,
D06114, doi:10.1029/2004JD005259.

Chapman, M.R., Shackleton, N.J., 2000. Evidence of 550-year and 1000-year
cyclicities in North Atlantic circulation patterns during the Holocene. The
Holocene 10, 287–291.

Chappellaz, J., Blunier, T., Kints, S., Dällenbach, A., Barnola, J.-M., Schwander, J.,
Raynaud, D., Stauffer, B., 1997. Changes in the atmospheric CH4 gradient
between Greenland and Antarctica during the Holocene. Journal of Geophysical
Research 102 (D13), 15987–15999.

Charney, J.G., 1975. Dynamics of deserts and drought in the Sahel. Quarterly Journal
of the Royal Meteorological Society 101, 193–202.

Claussen, M., Gayler, V., 1997. The greening of the Sahara during the mid-Holocene:
results of an interactive atmosphere-biome model. Global Ecology and Bioge-
ography Letters 6, 369–377.

Claussen, M., Brovkin, V., Ganopolski, A., Hoelzmann, P., Pachur, H.-J., 1999. Simu-
lation of an abrupt change in Saharan vegetation in the mid-Holocene.
Geophysical Research Letters 26, 2037–2040.

Claussen, M., Mysak, L.A., Weaver, A.J., Crucifix, M., Fichefet, T., Loutre, M.F.,
Weber, S.L., Alcamo, J., Alexeev, V.A., Berger, A., Calov, R., Ganopolski, A.,
Goosse, H., Lohman, G., Lunkeit, F., Mohkov, I.I., Petoukhov, V., Stone, P.,
Wang, Z., 2002. Earth System Models of Intermediate Complexity: closing the
gap in the spectrum of climate system models. Climate Dynamics 18, 579–
586.

Clemens, S.C., 2005. Millennial-band climate spectrum resolved and linked to
centennial-scale solar cycles. Quaternary Science Reviews 24, 521–531.

Clement, A.C., Seager, R., Cane, M.A., 1999. Orbital controls on the tropical climate.
Paleoceanography 14, 441–456.

Clement, A.C., Seager, R., Cane, M.A., 2000. Suppression of El Niño during the mid-
Holocene by changes in the Earth’s orbit. Paleoceanography 15, 731–737.

Clement, A.C., Cane, M.A., Seager, R., 2001. An orbitally driven tropical source for
abrupt climate change. Journal of Climate 14, 2369–2375.

Clement, A.C., Hall, A., Broccoli, A., 2004. The importance of precessional signals in
the tropical climate. Climate Dynamics 22, 327–341.

CLIMAP Project Members, 1976. The surface of the ice-age earth. Science 191,
1138–1144.

CLIMAP Project Members, 1981. Seasonal reconstructions of the Earth’s surface at
the last glacial maximum. Geological Society of America Map and Chart Series
MC-36.

Codron, F., 2001. Sensitivity of the tropical Pacific to a change of orbital forcing in
two versions of a coupled GCM. Climate Dynamics 17, 187–203.

COHMAP Members, 1988. Climatic changes of the last 18,000 years: observations
and model simulations. Science 241, 1043–1052.

Cole, J., 2001. Enhanced: A slow dance for El Niño. Science 291, 1496–1497.
Crowley, T.J., 2000. Causes of climate change over the past 1000 years. Science 289,

270–277.
Crowley, T.J., 2002. Cycles, cycles, everywhere. Science 295, 1473–1474.
Crowley, T.J., Lowery, T.S., 2000. How warm was the medieval warm period? Ambio

29, 51–54.
Crowley, T.J., Vinther, B.M., in preparation. A plausible retuned chronology for the

GISP 2 ice core for the last 6000 years. (in preparation).
Crucifix, M., Loutre, M.F., Tulkens, P., Fichefet, T., Berger, A., 2002. Climate evolution

during the Holocene: a study with an Earth system model of intermediate
complexity. Climate Dynamics 19 (1), 43–60.

Cubasch, U., Voss, R., Hegerl, G.C., Waszkewitz, J., Crowley, T.J., 1997. Simulation of
the influence of solar radiation variations on the global climate with an ocean–
atmosphere general circulation model. Climate Dynamics 13, 757–767.

Cubasch, U., Voss, R., 2000. The influence of total solar irradiance on climate. Space
Science Reviews 94, 185–198.

Cubasch, U., Bürger, G., Fast, I., Spangehl, T., Wagner, S., 2004. The direct solar
influence on climate: modeling the lower atmosphere. Memorie della Societa
Astronomica Italiana 76, 810–818.

http://www.giub.unibe.ch/klimet/docs/diplom_jbuetikofer.pdf
http://www.giub.unibe.ch/klimet/docs/diplom_jbuetikofer.pdf
lenovo
高亮



H. Wanner et al. / Quaternary Science Reviews 27 (2008) 1791–18281822
Cubasch, U., Bürger, G., Fast, I., Spangehl, T., 2006. The past 1000 years revisited. In:
Iversen, T., Lystad, M. (Eds.), RegClim General Technical Report No. 9. Norway,
Norwegian Meteorological Institute, Oslo.

Cullen, H.M., deMenocal, P.B., Hemming, S., Hemming, G., Brown, F.H., Guilderson, F.H.,
Sirocko, F., 2000. Climate change and the collapse of the Akkadian empire:
evidence from the deep sea. Geology 28, 379–382.

Dahl, S.O., Nesje, A.,1996. A new approach to calculating Holocene winter precipitation
by combining glacier equilibrium-line altitudes and pine-tree limits: a case study
from Hardangerjøkulen, central southern Norway. The Holocene 6, 381–398.

Dahl, S.O., Bakke, J., Lie, O., Nesje, A., 2003. Reconstruction of former glacier equi-
librium-linear altitudes based on proglacial sites: an evaluation of approaches
and selection of sites. Quaternary Science Reviews 22, 275–287.

Dai, A., Hu, A., Meehl, G.A., Washington, W.M., Strand, W.G., 2005. Atlantic ther-
mohaline circulation in a coupled general circulation model: unforced varia-
tions versus forced changes. Journal of Climate 18, 3270–3293.

Dalfes, N., Kukla, G., Weiss, H., 1996. Third Millennium BC Climate Change and Old
World Collapse. Springer, Berlin, Heidelberg, New York.

D’Arrigo, R., Villalba, R., Wiles, G.C., 2001. Tree ring estimates of Pacific decadal
climate variability. Climate Dynamics 18, 219–224.

Davis, B.A.S., Brewer, S., Stevenson, A.C., Guiot, J., 2003. The temperature of Europe
during the Holocene reconstructed from pollen data. Quaternary Science
Reviews 22, 1701–1716.

de Beaulieu, J.-L., Miras, Y., Andrieu-Ponel, V., Guiter, F., 2005. Vegetation dynamics
in north-western Mediterranean regions: instability of the Mediterranean
bioclimate. Plant Biosystems 139, 114–126.

Debret, M., Bout-Roumazeilles, V., Grousset, F., Desmet, M., McManus, J.F.,
Massei, N., Sebag, D., Petit, J.-R., Copard, Y., Trentesaux, A., 2007. The origin of
the 1500-year climate cycles in Holocene North-Atlantic records. Climate of the
Past 3, 569–575.

Delworth, T., Mannabe, S., Stouffer, R.J., 1993. Interdecadal variations of the ther-
mohaline circulation in a coupled ocean-atmosphere model. Journal of Climate
6, 1993–2011.

Delworth, T.L., Mann, M.E., 2000. Observed and simulated multidecadal variability
in the Northern Hemisphere. Climate Dynamics 16, 661–676.

deMenocal, P.B., 2001. Cultural responses to climate change during the Late Holo-
cene. Science 292, 667–673.

deMenocal, P.B., Ortiz, J., Guilderson, T., Sarntheim, M., 2000. Coherent high- and
low-latitude climate variability during the Holocene warm period. Science 288,
2198–2202.

de Noblet-Ducoudré, N., Claussen, M., Prentice, I.C., 2000. Mid-Holocene greening of
the Sahara: first results of the GAIM 6000 yr BP experiment with two asynchro-
nously coupled atmosphere/biosphere models. Climate Dynamics 16, 643–659.

Denton, G.H., Karlén, W., 1973. Holocene climatic variations – their pattern and
possible cause. Quaternary Research 3, 155–205.

DeWitt, D., Schneider, E.K., 1998. The tropical ocean response to a change in orbital
forcing. Technical Report 56. Center for Ocean-Land-Atmosphere Studies.

DeWitt, D., Schneider, E.K., 2000. The tropical response to a change in solar forcing.
Journal of Climate 13, 1133–1149.

Diaz, H.F., Hoerling, M.P., Eischeid, J.K., 2001. ENSO variability, teleconnections and
climate change. International Journal of Climatology 21, 1845–1862.

Diffenbaugh, N.S., Sloan, L.C., 2002. Global climate sensitivity to land surface
change: the Mid Holocene revisited. Geophysical Research Letters 29 (10), 1476.
doi:10.1029/2002GL014880.

Doherty, R., Kutzbach, J., Foley, J., Pollard, D., 2000. Fully coupled climate/dynamical
vegetation model simulations over Northern Africa during the mid-Holocene.
Climate Dynamics 16, 561–573.

Donnelly, J.P., Woodruff, J.D., 2007. Intense hurricane activity over the past
5000 years controlled by El Niño and the West African monsoon. Nature 447,
465–468.

Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J.,
An, Z., Revenaugh, J., 2005. A high-resolution, absolute-dated Holocene and
deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary
Science Letters 233, 71–86.

Edwards, M.E., Anderson, P.M., Brubaker, L.B., Ager, T.A., Andreev, A.A., Bigelow, N.H.,
Cwynar, L.C., Eisner, W.R., Harrison, S.P., Hu, F.-S., Jolly, D., Lozhkin, A.V.,
McDonald, G.M., Mock, C.J., Ritchie, J.C., Sher, A.V., Spear, R.W., Williams, J.W.,
Yu, G., 2000. Pollen-based biomes for Beringia 18,000, 6,000 and 0 14C yr BP.
Journal of Biogeography 27, 521–554.

Ellis, J.M., Calkin, P.E., 1984. Chronology of Holocene glaciation, central Brooks
Range, Alaska. Geological Society of America Bulletin 95, 897–912.
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In the originally published paper the data shown in Fig. 6 represent the “astronomical” and not the Gregorian calendar months. In
addition the scale of Fig. 6d is too large by a factor of 12.

The artwork for the Gregorian calendar and the caption for Fig. 6 are provided on the following pages. We decided to use a different
presentation form which is easier to read. Note that also in this figure the months do not exactly cover the calendar month. June covers
approx. the time from May 21 to June 20 and December the period November 21 to December 20.

On the northern hemisphere the boreal summer (June) insolation is rapidly decreasing from 6 kyr and stays low since 2 kyr (Fig. 6a). The
astral summer (December) insolation shows a different behavior on the two hemispheres. While it steadily increases at the low and mid
latitudes of the northern hemisphere and reaches its maximum only today, it reaches its maximum at high latitudes of the southern
hemisphere already between 5 and 4 kyr, before decreasing again (Fig. 6b). As a result of this difference the seasonality (JuneeDecember) is
decreasing on the NH while increasing on the SH. The mean annual change in insolation shows a weak positive trend at low latitudes and
a strong negative trend at high latitudes.
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Fig. 6. Calculated deviations of the insolation from the long-term mean values (W m�2) as a function of latitude for the past 6000 years. (a) June (boreal summer); (b) December
(austral summer); (c) seasonality (difference between June and December); (d) annual mean.
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