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ABSTRACT

Welander, P., 1982. A simple heat—salt oscillator. Dyn. Atmos. Oceans, 6: 233-242.

A theoretical study is made of a simple mixed-layer model, in the form of a well-mixed
constant-depth layer, forced from above by a heat flux k(T, — T) and salinity flux k 3(S, — S),
where T, and S, are two reference values and 7 and S the temperature and salinity of the
layer. The layer has a turbulent exchange of heat and salt with underlying water, kept at
constant temperature and salinity, which is small in a statically stable case; large in a
statically unstable case. If k> kg, self-susiained oscillations may occur. In one cycle, a fast
temperature rise, a slower salinity increase, and a final relaxation when the layer adjusts to
the conditions of the underlying water, are observed.

1. INTRODUCTION

Water stratified by heat and salt can become unstable because of the
difference in molecular diffusivity for heat and salt (see Turner, 1973, for a
review of these double-diffusive phenomena). It can be asked whether similar
instabilities may occur in a well-mixed water body that is subjected to an
external thermohalive forcing, with fluxes given by a linear Newtonian law,
where the corresponding adjustment times for temperature and salinity are
different. Stommel (1961) has studied a simple box model comprising two or
more well-mixed water reservoirs with advective coupling, forced in the way
described. He finds that when k,# kg, multiple steady states may appear.
However, the system always goes to a stable steady state.

The author has considered a different, simple model which involves a
single well-mixed water layer of fixed depth, overlying a water reservoir of
given temperature T, and salinity S, (Fig. 1). Turbulent fluxes of heat and
salt, according to a Newtonian transfer law, occur between these two water
bodies, with the transfer coefficient k dependent on the density difference,
Ap = p— p,: k is small for negative Ap, but increases rapidly as Ap becomes
positive.
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This system may become unstable, and go into self-sustained oscillations,
if the response time associated with the external forcing is larger for the
temperature than for the salinity. The aim of this paper is to demonstrate
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Fig. 1. The basic model. The values T, and S, are the effective temperature and salinity of the
external forcing; T, and S, are the temperature and salinity of the deep reservoir; and k1, kg
and k are the coefficients in assumed Newtonian-type transfer laws.

this phenomenon in one example. Whether the oscillation occurs in the real
world depends critically on the shape of the function k(Ap). This shape
depends on the turbulent mechanism and how this is affected by the static
stability. The difficulty of predicting k(Ap) theoretically is obvious. How-
ever, in a controlled laboratory experiment, where the turbulence is gener-
ated by a stirrer, Ap may be varied and the curve k(Ap) determined
experimentally. Presumably, experiments could be arranged which generate
forms for k(Ap) of a type allowing self-sustained oscillations, but this
remains to be proved.

In real oceanic mixed layers some of the conditions for an oscillation
appear to be fulfilled. The adjustment time for salinity is long compared to
that of temperature. In fact, the salinity flux is almost independent of S,
corresponding to the limit kg—0, S, = o0 in our model. However, the
exchange between the - .:ied layer and the underlying water is not as simple
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as in the model: it is associated with erosions of a basic statically stable
density profile, and is further complicated by Ekman up- and down-wellings.
Nevertheless, it may be worthwhile to look for special situations in the
oceans where conditions appear favorable for an oscillatory overturning of
the type demonstrated by the present, simple model.

2. MODEL EQUATIONS AND THE STEADY STATE

With reference to Fig. 1. and the general description of the model given in
the previous section, the following equations can be formulated:

T=k(T,—T)—kip)T (1)
S=ks(S,—S)—k(p)S ()
p=—alT+vS (3)

where, for simplicity, we have set T, =S, = p, = 0. The equation of state is
linear, k- and kg are constants, and k(p) is a positive function, monotoni-
cally increasing with p. Since the exchange between the layer and the
reservoir is assumed fully turbulent, the same coefficient k is used for both
heat and salt.

The steady state, denoted by T, S and p, is found from the equations

kT, < ksS,

T= ,§= =504 4,5
T kp+k kg +k (4.5)
= o —kraT, ks¥S, -
D= — = + = 6
p=—al+¥S oAk ket k F(p) (6)
where kK means k(p). The value p is (implicitly) determined by eq. 6;
A
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Fig. 2. Examples of possible forms for F(p) in a case where k(p) increases monotonically. In
the cases (a) and (b) there exists one steady state, in the case (c), three steady states.
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knowing p the values T and § can be obtaired from (4, 5).

There may be one, or several (an odd number) steady states. This should
be obvious from Fig. 2, which shows the general curve-shapes for F(p) which
can be generated by a k(p) curve of the assumed type.

For simplicity, the case of a single steady state is considered. From Fig. 2,
it can be seen that this case occurs if F'(p)<1. This condition takes the
form

kraT,  ks¥S,
(kr+EY  (kstE)
where k” means k’(p). The inequality is satisfied if
kraT, < ksyS,

k<1 (7)

(kp+K) (ks E) 72
or, if this condition is not met, if
. kraT, _ ksyS, - (7b)
(kp+ k) (kg+ k)

3. STABILITY OF THE STEADY STATE

The stability of the steady state is studied by setting T=T+6,S=S+o
and p =p + ¢, and examining eqs. 1, 2 and 3 in the limit of small 8, ¢ and 4.
We find the perturbation equations

6=—(k;+k)0—k'Tq (8)
6=—(ks+k)o—k'Sq (9)
q= —af +vyo (10)
This leads to the system

6+ab+bs=0

6+co+df=0 (11)
where

a=k,+kg—k'aT

b=k'yT

c=ks+k+k'yS (12)
d=—k'aS

If at least one of the terms a + ¢ and ac — bd is negative, the system (11)
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has a solution of the form e with Re A >0, i.e., an unstable solution. The
condition ac — bd <0 leads to a condition that is the converse of (7), i.e.,
F'(p)>1, and there must exist several steady states. It is therefore assumed
that a + d <0, which condition reads

kp+kg+2k+pk' <0 (13)

As k>0, k’>0 is assumed, it is necessary that p <0, i.e., the steady state
must be statically stable. It can be shown that the two conditions (7) and
(13) further requir: that k> kg; an inequality already assumed.

As will be demonsirated in Section 5, functions k(p) and sets of parame-
ter values k., kg, a, v, T, and S, can be found, that satisfy the foregoing
conditions for a single, unstable steady state. Since the system is autonomous
second order, with no trajectories in an S-T-plane escaping to infinity, such
an unstable steady state must necessarily lead to a single-periodic self-sus-
tained oscillation (a limit cycle in the 7-S-plane).

4. THE FLIP-FLOP MODEL

A simple limiting variant of the model described is obtained by taking
k(p) as a step function

k=ky, p=<—e¢

k=k, p>-—c¢ (14)

where &, is a small constant or zero, k, is a large constant, and € is a small,
positive constant.
The flip-flop model has two steady states

o keT, o ksSe
T"kr+k0’s"ks+ko"f"‘ € (15a)
=_ kT, < ksSq ..
T—kT+kI,S—kS+kl,lfp> € (15b)

If p< —e¢, we find T~ T, and §=S,, since k, is assumed to be small. If
vS, > «T, this steady state can never be reached. Similarly, if p> —e,
T~ky/k,-T,and S~kgs/k, - S,, since k, is large; and if p< —e and k/kg
is large enough, again the steady state cannot be reaciicd. These steady states
act as two “attractors” for the phase-plane trajectories, causing an oscillatory
solution (Fig. 3).

The exact condition for the non-existing steady states reads

—kral,  ks¥S, —kraT,  ksvS,
—e< +
Kotk T ketk, o hky+ko | kstkg

(16)

There always exists a range of possible values for aT,/vS, satisfying this
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Fig. 3. Schematic picture of the flip-flop model in a T-S-plane. The points 1 and 2 represent
the non-existing steady states which act as “attractors” when the solation point is in the
half-plane p < — € and p > — ¢, respectively. The slope dS/dT has a discontinuity at the line
p=—¢€

condition when k, >k, and k> kg, as has been assumed.

The present flip-flop model is a degenerate variant of the general model
described in Section 2. In a corresponding continuous version, with a
function k(p) approaching a step-function, there may be one or several
steady states. The behavior of the system near these states obviously cannot
be deduced from the flip-flop model. However, existing finite-amplitude
self-sustained oscillations can be explored, at least qualitatively, by this
model.

The reader may wonder why the step is placed at p = —e rather than at
p = 0. The answer is that solutions in the second case always show a decay,
sometimes very gradual (which means that if a numerical integration method
is used one must be careful not to produce false limit cycles). There is no
steady state, but a pseudo-steady state is approached. This pseudo-steady
state is characterized by a vibration of the system which increases in

frequency, to infinite values, as the amplitude decreases, and obviously is an
effect of the discontinuity in k.

5. TWO NUMERICAL EXAMPLES

Consider two specific, numerical examples; in the first example the
function k( p) is continuous and of the form
k(p)=2k1/w[arctan m(p+p,)+qr/2] (17)

This function is positive and increases monotonically from 0 to k,, when p
increases from — oo to + oo. There is no special physical reason for choosing
this form, we merely want to demonstrate the oscillation in one example that
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is mathematically simple to analyze. The parameter values chosen are

aT 4 kT___ kl _ 1 pl _ 1 _

==, k—s——2, K, 2° %S, 30 and myS, = 625
In this case, there is a steep increase in k near p = 0. Using non-dimensional
variables

T S
* - * —_ * — _ * —
T 7:‘,S SA,p 1S, and t* = k1,
egs. 1, 2 and 3 become
T*=1—T*— k*(p*)T* (18)
S* =0.5(1 — §*) — k*(p*)S* (19)
p*=—0.8T* + §* (20)
where
k*(p*)=— arctan(SOOp += + 2) (21)
and the dot means d /dr*. The system has a single steady state,
2 1 1
* — < * — ® —
3=

that is found to be unstable by the criterion (13). The resulting self-sustained

0o 2 4 6 8 10

TIME
Fig. 4. The solution T(¢) and S(¢) through a few cycles in the first namerical example
described in Section 5. This solution was obtained by step-by-step numerical integration using
the Runge-Kutta method.
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oscillation, which is reached from all initial states, is depicted in Fig.4. The
calculation was made by step-by-step numerical integration on a program-
mable calculator (HP 97) and checked by a more accurate calculation using
the CDC 6400 computer at the University of Washington.

In the second example, k is discontinuous (the flip-flop model), with the
choice of parameters
aT, ko k,

_ ky _ —0 X _ £ o=
;ZS,:-—O.Z, ks-—IO, kT—-O, kr—-Sand YSA— 0.01.

The corresponding non-dimensional equations are

T*zl—T“—(g)T* (22)
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Fig. 5. (a) The solution T(r) and 5(¢) through a few cycles in the second numerical example
described in Section S (the flip-flop case). The solution was obtained by numerical joining of
two exponential solutions. (b) The solution when € =0, other parameters unchanged.
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§*=0.1(1— 5*) — (g)s* (23)

p* = —0.2T* + S* (24)

with the upper value in the bracket applying when p* < —0.01, the lower
when p* > —0.01. The solution curve, calculated on an HP 97 and checked
by numerical integration using the CDC 6400 computer, is shown in Fig. 5a.
Finally, the same calculation is repeated with

€
—— 0
¥S,
the other parameters are as before. In this case the approach to the
pseudo-steady state mentioned in the previous section is observed (Fig. 5b).
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Fig. 6. Phase-plane pictures of the usciiiaton shown in Fig. 4 (case a) and Fig. 5a (case b). The
numbers refer to points discussed in Section 6.
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6. PHYSICAL PICTURE OF THE OSCILLATION

The oscillation produced in the example with a continuous k(p)-function
(Fig. 4) is almost harmonic, with a phase-plane picture resembling an ellipse
(Fig. 6a). The motion of a point in this phase-plane picture can be followed,
and the forcings that move it checked. Starting at a point where T=T and
S < §, (Fig. 6a, point 1), T will increase because p <p and k <k, producing
an unbalanced positive part of the forcing term —T in eq. 1. Since S<§
and p<p, S must also increase. When T becomes larger than T, a negative
restoring force appears, this is large because k, is large. Thus T will
eventually decrease with § still increasing, since kg is small (point2). The
phase difference between T and S, although small, car: be traced in Fig.4.
With T decreasing and S increasing the density increases, and eventually
p>p (point3). All forcings now become negative and both T and S
decrease. When T reaches T, S is still above S (point4), and p>p and k > k.
The second half of the cycle can be discussed by arguments along a similar
line, and are not given here.

The larger amplitude oscillations exhibited by the flip-flop model solution
has the phase-plane curve shown in Fig. 6b. Starting in a situation where T
and § are small and p < —e (Fig. 6b, point 1), both T and § increase, but T
increases faster because k; is large. After some time, T lies close to T, the
temperature of “attractor point” 2 in Fig.3, with § increasing (point 2).
Eventually, the line p = —e¢ is passed, and the large restoring terms —k,T
and —k,S make T and § collapse (point 3). The phase-plane point, moving
toward the “attractor point” 1 in Fig. 3, will eventually cross the line p = —e,
and the cycle is repeated.
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