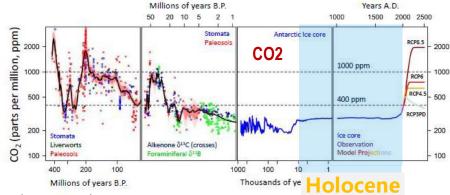
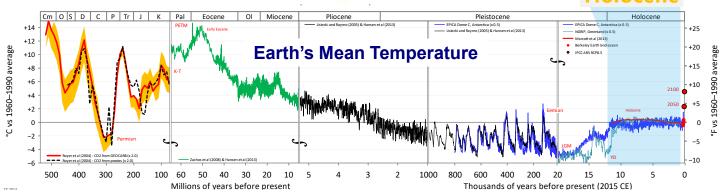
Multi-Centennial Oscillation of AMOC and its Implication to Evolution of Human Civilization 大西洋热盐环流多百年际振荡与人类文明演变史

YANG Haijun (杨海军)^{1,2}, LI Yang (李洋)² and YANG Kunpeng (杨昆鹏)¹
¹Department of Atmospheric and Oceanic Sciences, Fudan University
²LaCOAS and Department of Atmospheric and Oceanic Sciences
School of Physics, Peking University
Email: yanghj@fudan.edu.cn

Questions

500±300 Years

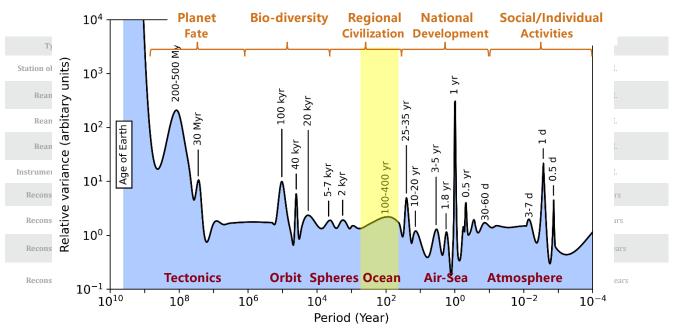

- 1. Natural Centennial-Millennial oscillation in climate system?
 地球气候系统是否存在百年-千年尺度自然振荡?
- 2. Connection to the evolution of human civilization? 这种振荡与人类文明演化是否有关系?



Background: Stable Holocene Climate

- Holocene: Since 10ka
- Stable external forcing
- Natural variability

(500±300) (?) years



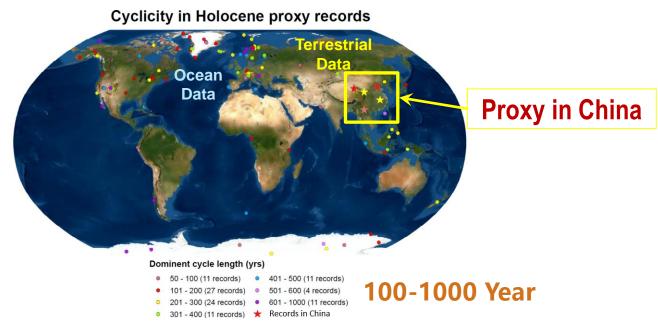
https://earth.org/data visualization/a-brief-history-of-co2/

Background: Timescales of Climate Variabilities

Spectrum of Earth's Climate Variability

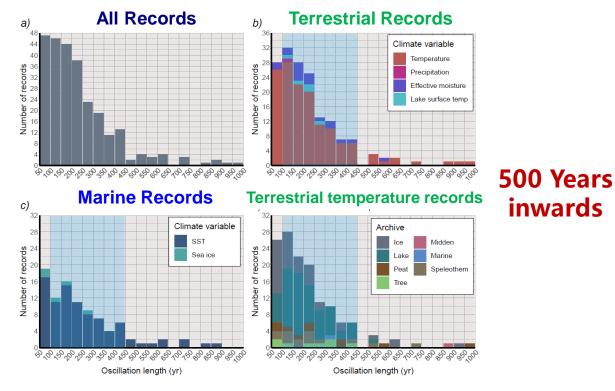
Based on multiply sources of "prewhitened" temperature records

Mitchell, 1976; Stocker and Mysak, 1992; Ghil, 2001; Heydt, 2021;


Contents

- 1. Observations and Modeling Results
- 2. Theory
- 3. Our Modelings

Observation: Multicentennial Variability in Holocene


Holocene Proxy: Locations and timescale represented

Thomas Gravgaard Askær et al., 2022: Multi-centennial Holocene Climate Variability in Proxy Records and Transient Model Simulations, QSR, 296 107801.

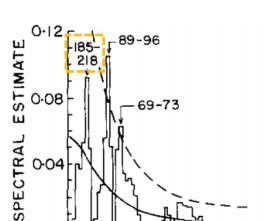
Observation: Multicentennial Variability in Holocene

Thomas Gravgaard Askær et al., 2022: Multi-centennial Holocene Climate Variability in Proxy Records and Transient Model Simulations, QSR, submitted.

Centennial Variability: 200-300 (?) Years

文献出处.	位置,	代用指标。	周期(年)。
Siren et al., 1961 Lamb et al., 1977	拉普兰德。	树轮。	70,90,200
Soutar and Isaacs., 1969	加利福尼亚。	海底沉积物。	106,170,360
Johnsen and Dansgaard,	格陵兰。	冰芯。	53-56,69-73,104- 144,160-185
LaMarche et al., 1974	美国内华达州。	树轮宽度。	70,110
Schweingruber et al.,	瑞士。	树轮宽度。	30,120 -
Lamb et al., 1977	英国,俄罗斯。	冬天严寒程度。	300, 100
Neftel et al., 1981 Sonett et al., 1984	加利福尼亚。	树轮中的 C 放射。	150-300, - 160,200 -
Fisher et al., 1982	格陵兰 - 加拿大 -	冰芯。	170-185,300-330,147- 435,625-714
Hameed et al., 1983	中国北京。	降水记录	56,84,126
Thompson et al., 1989	秘鲁安第斯山脉。	冰芯。	110,250
Gajewski, 1988	Hells Kitchen 湖(美 国威斯康辛州)。	湖底沉积物中的花粉。	90-120, « 230-250 «
Stuiver and Braziunas.,	/ 0	树轮中的 14C。	45,52,67, 143,218,420
Rothlisberger et al.,	1.	树轮和冰川振荡。	88,102-104,123-143

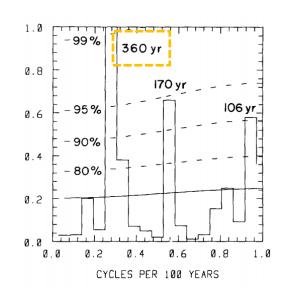
文献出处。	位置。	代用指标。	周期(年)。
Briffa et al., 1990	Fennoschandia -	树轮。	50-150
Anklin et al., 1998	格陵兰岛。	冰川雪和冰芯。	100,200 -
Chapman and Shackleton., 2000	北大西洋。	深海沉积物。	550 -
McDernott et al., 2001	爱尔兰西南部。	/ 。	78,169,625
Proctor et al., 2002	苏格兰西北部。	石笋。	72-96,116-150
Nyberg et al., 2002	加勒比东北部。	有孔虫。	200-400 -
Risebrobakken et al.,	挪威海。	岩芯。	80-115,260, 417,550-570 a
Oppo-et-al.,-2003	大西洋东北部。	有孔虫。	百年,
Sicre et al., 2008	冰岛北部。	冰芯。	50-150 .
J. Zheng et al., 2010	中国东部、西部、青藏高原。	历史文献、树轮、 降水。	200-300。 百年。
Perner et al., 2013	格陵兰西部。	有孔虫。	百年。
Newby et al., 2014	北美洲。	湖底沉积物。	几百年.
Thirumalai et al.,	Garrison 海盆	有孔虫。	百年。


杨海军,石佳琪等,2023:多百年际气候变率:观测、理论与模拟研究。科学通报,68,1-9

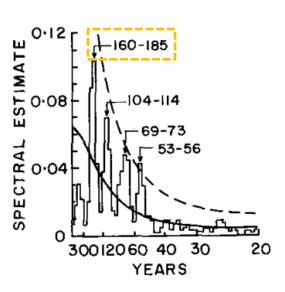
FUDAN UNIVERSITY

Centennial Variability in Proxy Data

Lapland Tree rings width

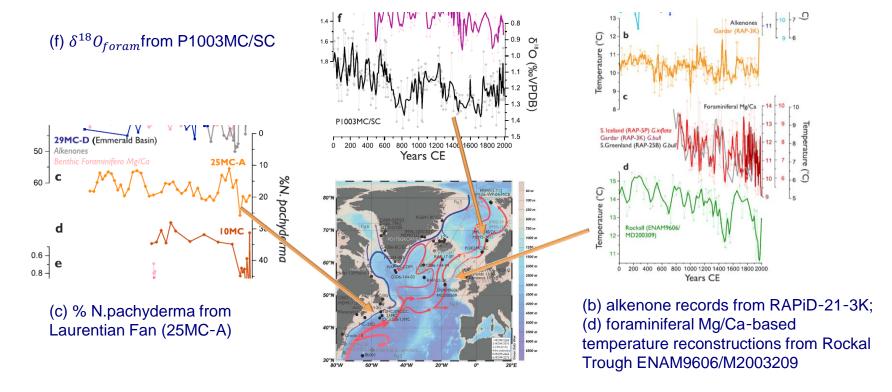


30012060 40 30


YEARS

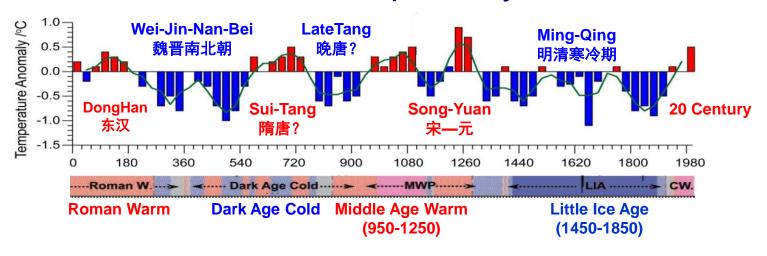
20

Santa Barbara Basin sediment minimum population of hake


Camp Century Cores (氧同位素)

Siren et al. (1961), Lamb et al. (1977); Soutar and Issacs (1969); Johnsen and Dansgaard (1970)

Centennial Variability in *Proxy* Data



Moffa-Sánchez et al. (2019), Paleoceanography and Paleoclimatology

Documentary records in China: 200-300 Years

Chinese Scientists' contribution: Temperature evolution in eastern China in wintertime of the past 2000 years

葛全胜,郑景云,满志敏,方修琦,张丕远,2002:过去2000a中国东部冬半年温度变化序列重建及初步分析。地学前沿,9(1),169-181.

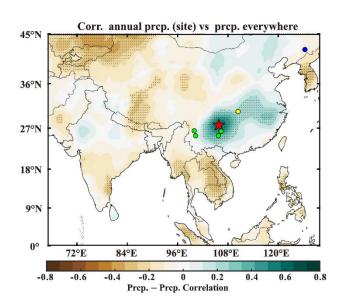
郑景云等, 2010; 葛全胜等, 2014

Documentary records in China: 200-300 or 600 (?) Years

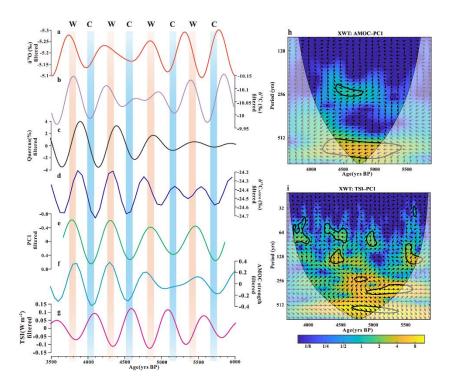
Warm and Cold period during the past 5000 years in the evolution of civilization over greater China

竺可桢, 1925: 南宋时代我国气候之揣测; 1961: 历史时代世界气候的波动; 1972: 中国近五千年来气候变迁的初步研究

吴祥定等,1990:树木年轮与气候变化;张丕远等,1996:中国历史气候变化;华重行,1996:中国五千年气候变迁的再考证


张德二等,2004:中国三千年气象记录总集;满志敏,2009:中国历史时期气候变化研究

https://corp.fudan.edu.cn/Reading/气候如何影响人类文明兴衰.pdf https://mp.weixin.qq.com/s/OU4YXCc_PYKJv5xuZbvYkQ



Records in China: 200-300 or 600 (?) Years

550-Year period during 6000-3500 BP on Yunnan-Guizhou Plateau

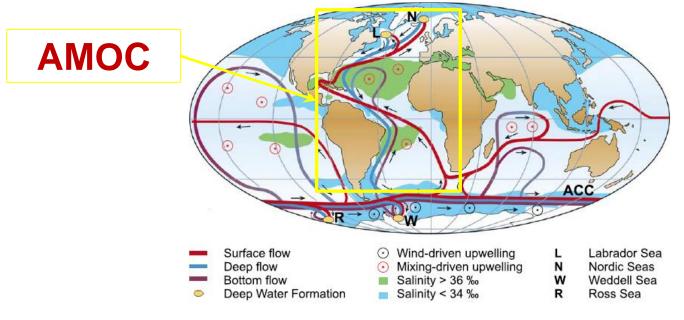
Li et al. 550-Year Climate Periodicity in the Yunnan-Guizhou Plateau During the Late Mid-Holocene: Insights and Implications. **GRL, 2023**, 10.1029/2023GL103523.

Our Questions

500±300 Years

1. Natural Centennial-Millennial oscillation in climate system?

地球气候系统是否存在百年-千年尺度自然振荡? (Yes!)

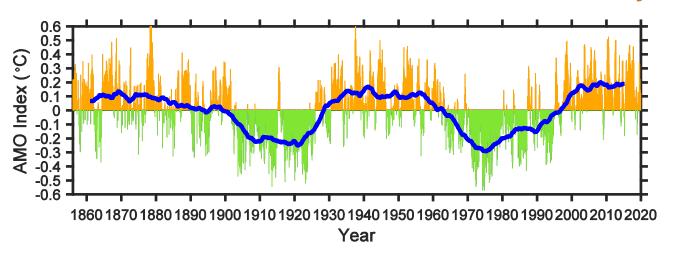


What component of the Earth's climate system can provide multicentennial timescale?

FUDAN UNIVERSITY

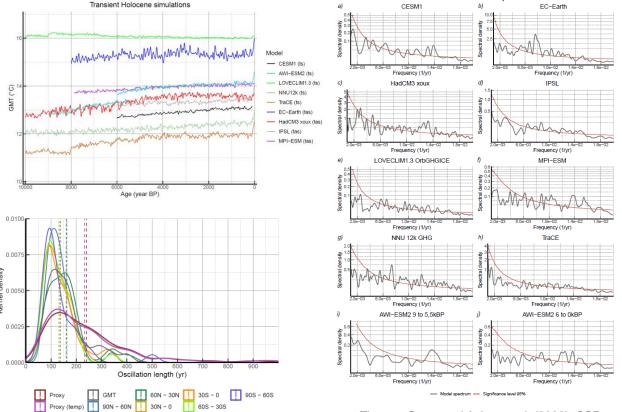
Great Conveyor Belt: Thousands' Years

Advection timescale: Thousands' years


→ → Timescale for multicentennial variability

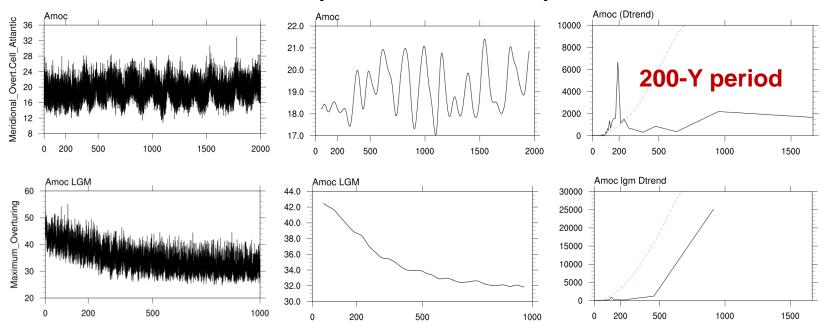
AMO: 60-80 Years

Tons of studies on decadal (20-30 yr) & multi-decadal (60-80 yr) variabilities


No direct evidences of multicentennial variability

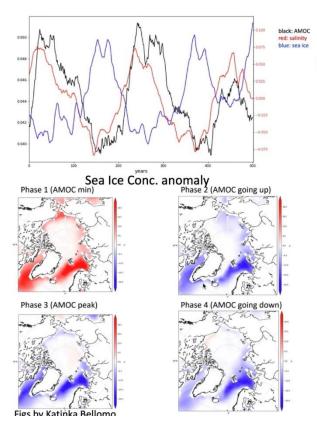
Kaplan SST (Kaplan et al., 1998; Drinkwater et al., 2014)

Multicentennial Variability in Coupled Models

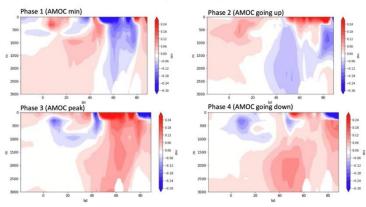


Holocene model GMT spectra

Centennial Oscillation in EC-Earth 3 Model


2000 Years period PI control experiment

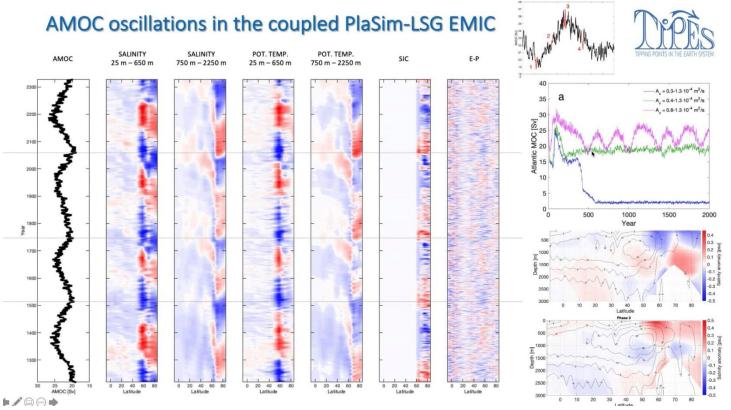
Zhang et al. (2021)



Exists also in Other Models ...

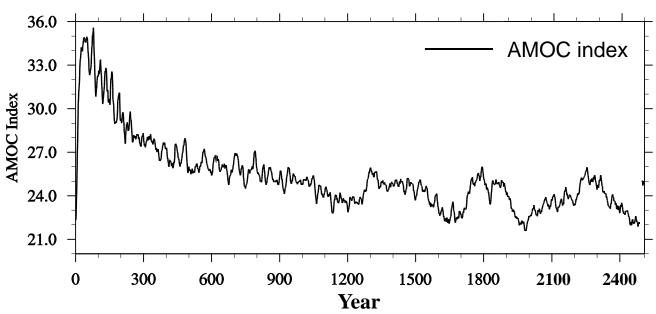
An example of topic of possibly broader interest: Oscillations in PI EC-Earth simulations

Salinity anomaly

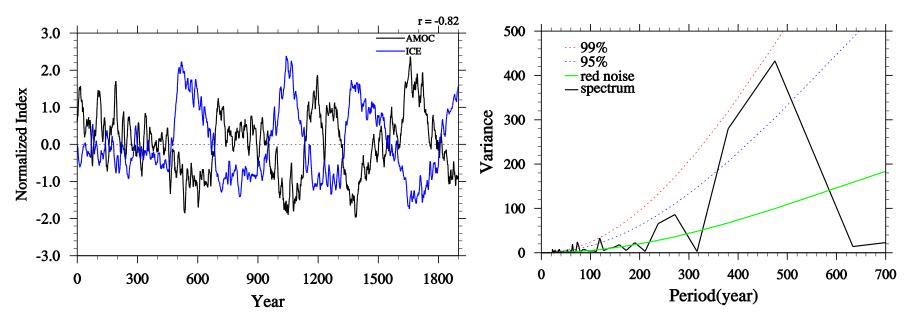

An understanding of these oscillations has implications for:

- better tuning and creation of equilibrated ICs of the model
- Interdecadal variability in EC-Earth
- Paleoclimate and tipping points
- A better understanding of mechanisms associated with AMOC decrease in projections

Exists also in Other Models ...



Multicentennial Oscillation in CESM Model



2500 years control run using NCAR-CESM1.0

Sea Ice → AMOC ?

Excellent correlation, but *causality?*

Confused ... So in 2018, We decided to decipher this mystery!

FUDAN UNIVERSITY

Our Questions

500±300 Years

1. Natural Centennial-Millennial oscillation in climate system? 地球气候系统是否存在百年-千年尺度自然振荡? (Yes!)

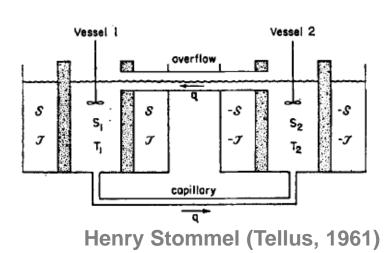
- 2. Coupled Model: AMOC has multicentennial variability
 - **→** Climate system

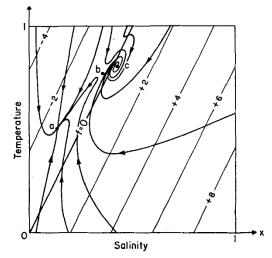
Why and How? Theory needed!

Contents

- 1. Observation and Modeling
- 2. Theory, Simple Model: Previously
- 3. Our Modelings

2-Box Model and Multi-Equilibrium

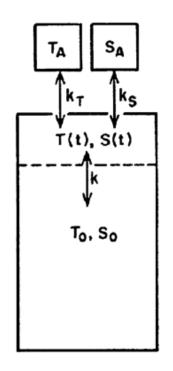

Thermohaline Convection with Two Stable Regimes of Flow

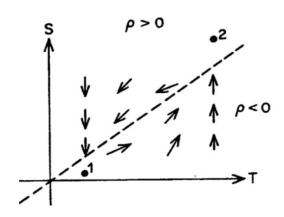

By HENRY STOMMEL, Pierce Hall, Harvard University, Massachusetts

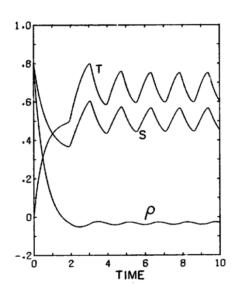
(Manuscript received January 21, 1961)

Abstract

Free convection between two interconnected reservoirs, due to density differences maintained by heat and salt transfer to the reservoirs, is shown to occur sometimes in two different stable regimes, and may possibly be analogous to certain features of the oseanic circulation.

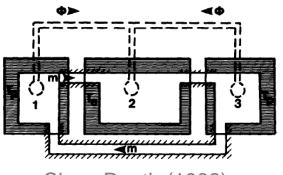




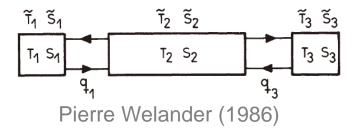

FUDAN UNIVERSITY

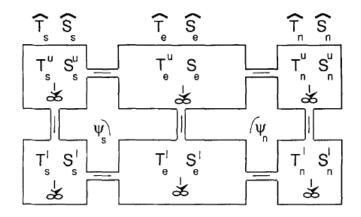
Energy Source: Ocean Convection

- Flip-Flop model
- Self-sustained oscillation with increasing vertical turbulent mixing



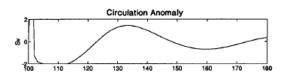
Pierre Welander (1982), A simple heat-salt oscillator. Dyn. Atmos. Oceans.

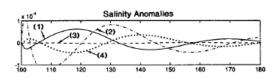


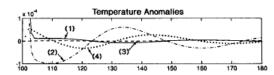

FUDAN UNIVERSITY

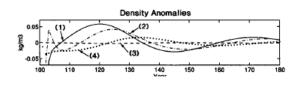
3-Box Model and Multi-Equilibrium

Claes Rooth (1982)

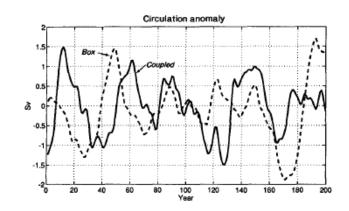

2D Model and 2-, 3-Box Model


Olivier Thual & James C. Mcwilliams (1992)


Climate transition between different stable regimes, with global and centennial-millennium timescale



Energy Source: Atmosphere Perturbation



←: Damped Oscillation

Mode

Circulation under random thermal forcing →

- 2-Box: Interdecadal variability of THC
- Linear interpretation
- Excited by atmospheric random forcing

Stephen Griffies and Eli Tziperman (1995): A linear thermohaline oscillator driven by stochastic atmospheric forcing. J. Climate

Energy Source: Ocean Advection Feedback

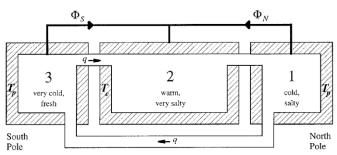
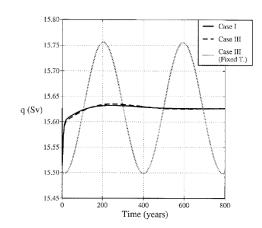
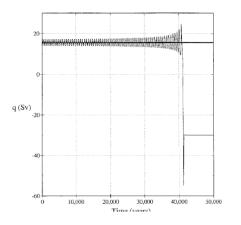
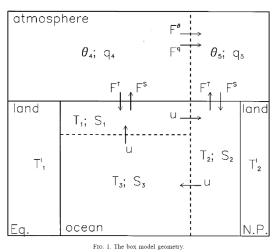
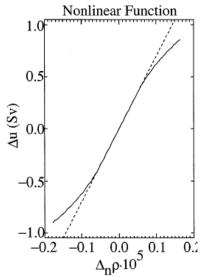




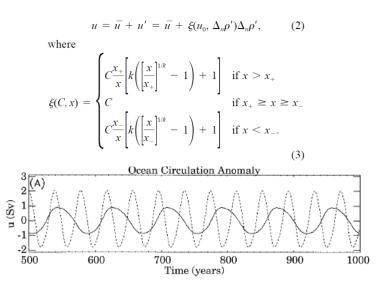
Fig. 1. Rooth's conceptual three-box model of thermohaline circulation, showing equilibrium conditions for Northern Hemisphere sinking. The separation between high- and low-latitude boxes is assumed to occur near the peak in atmospheric transports due to baroclinic eddy fluxes, i.e., about 35° latitude.

3-Box model with asymmetrical freshwater forcing / Stability of the equilibrium

Periodic oscillation with constant Temperature / Collapse under some parameters

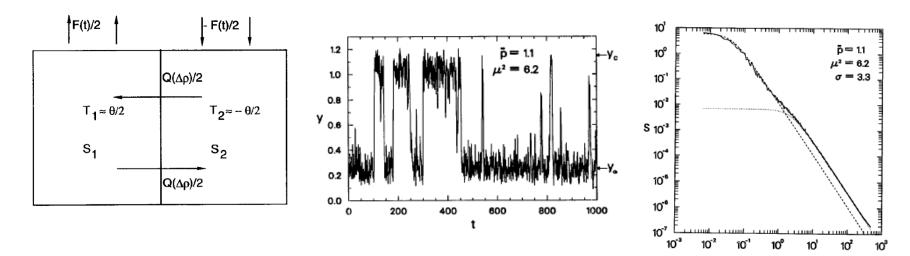

Jeffery Scott, Jochem Marotzke and Peter Stone (1999): Interhemispheric thermohaline circulation in a coupled box model. JPO.




FUDAN UNIVERSITY

Single Equilibrium: Self-Sustained Oscillation

Self-sustained oscillation with nonlinear close condition


3-Box coupled model

Rivin & Tziperman (1997): Linear versus self-sustained interdecadal thermohaline variability in a coupled box model. JPO

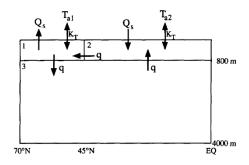
Multi-Equilibrium: Forced Regime Shift

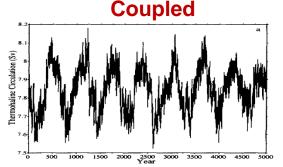
Stommel 2-Box model, no *intrinsic* variability, stochastic forced variability

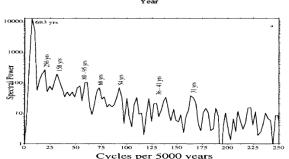
Middle: Multi-equilibrium and forced oscillation; Right: Power spectrum

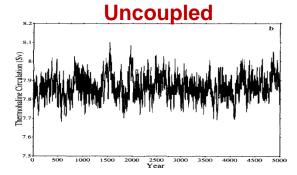
Paola Cessi (1994), A simple box model of stochastically forced thermohaline flow. JPO

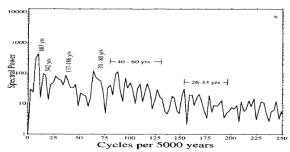
Single Equilibrium: Forced Oscillation

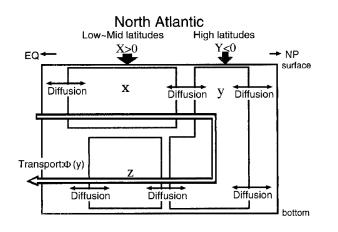

Atmosphere Lorenz model and Ocean 3-Box model

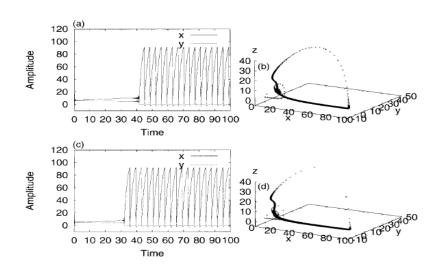

Lorenz (1984, 1990) introduced a low-order atmospheric "general circulation" model, defined by three ordinary differential equations:


$$\frac{\mathrm{d}X}{\mathrm{d}t} = -Y^2 - Z^2 - aX + aF,\tag{1}$$


$$\frac{\mathrm{d}Y}{\mathrm{d}t} = XY - bXZ - Y + G,\tag{2}$$


$$\frac{\mathrm{d}Z}{\mathrm{d}t} = bXY + XZ - Z. \tag{3}$$




Paul Roebber (1995), Climate variability in a low-order coupled atmosphere-ocean model. Tellus-A

3-Box Model for Bond Cycle

A 3-Box with only Salinity considered, internal *Millennial* oscillation

Bifurcation: from a stable solution to an unsteady bounded oscillation

Sakai & Peltier (1999), A dynamical systems model of the Dansgaard-Oeschger oscillation and the origin of the bond cycle. JC

Thermohaline Circulation Stability: Regime Shift

3-Box model, hysteresis behavior under freshwater forcing

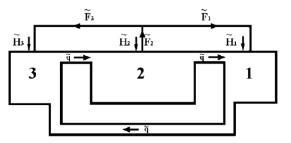
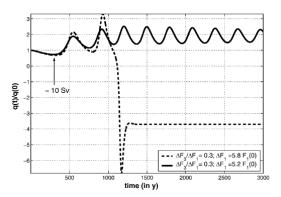
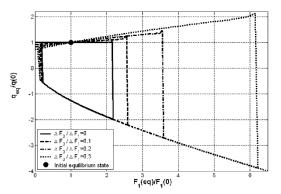
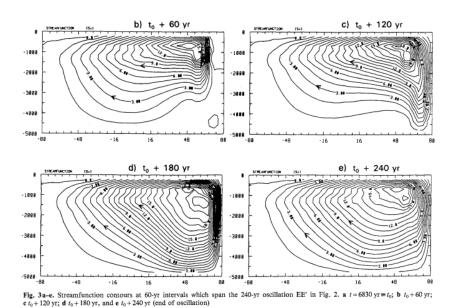
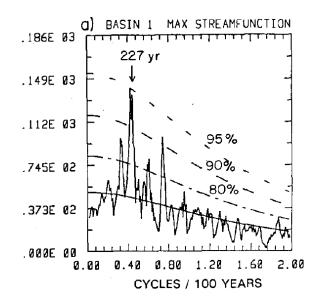




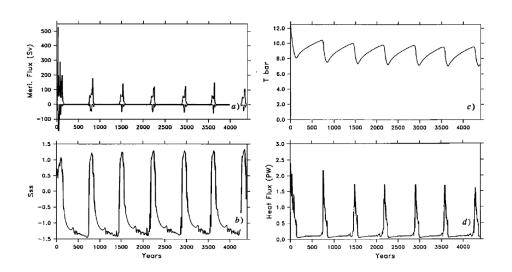
Fig. 1. Schematic picture of the interhemispheric box model.

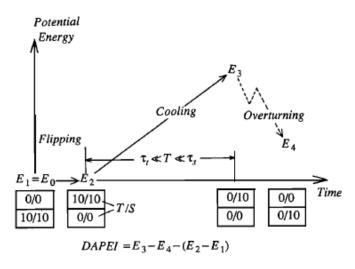



Lucarini & Stone (2005), Thermohaline circulation stability: a box model study. Part I: uncoupled model. JC

Thermohaline Circulation Centennial Oscillation

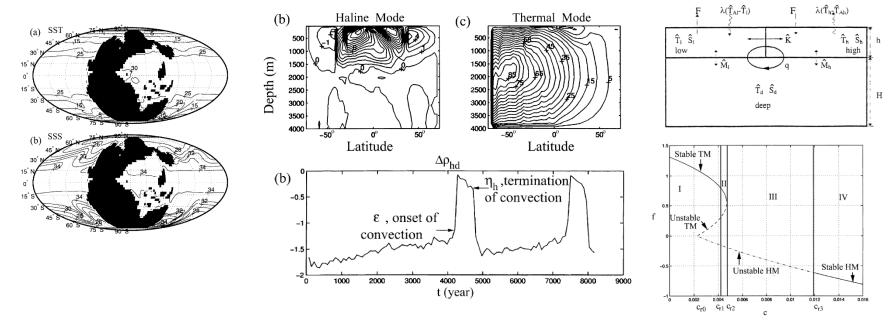
2-D with random forcing, 200-300 years oscillation


Period: 200-300 years of AMOC, Salinity advection feedback


Mysak et al., Climate Dynamics, 1993: Century-scale variability in a randomly forced, 2-D thermohaline ocean circulation model.

Energy Source: Ocean Convection

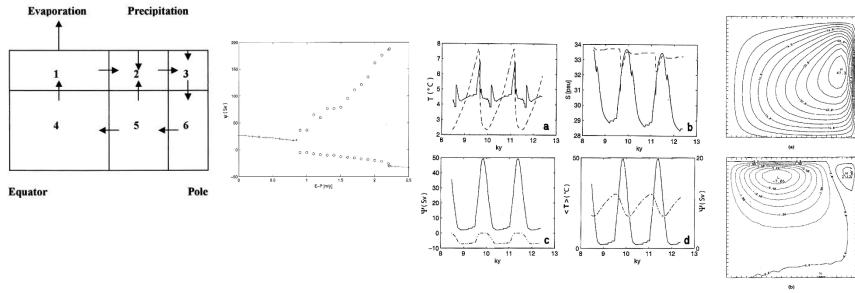
3-D OGCM with freshwater forcing, centennial-millennial oscillation


- Periodic oscillation of saline mode
- DAPE provides energy to saline mode's oscillation

Huang (1994): Thermohaline circulation: Energetics and variability in a single-hemisphere basin model. JGR-ocean

Multi-Equilibrium: Self-Sustained Oscillation

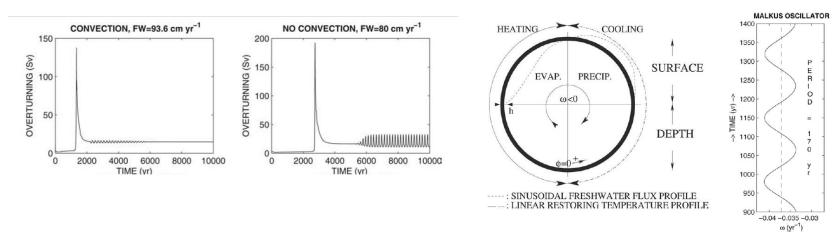
Late Permian, Equable climate and regime shift, *Millennial* oscillation


Such oscillations do not appear to occur in the modern ocean, because, apparently, the surface freshwater forcing is not strong enough. Mode switching is more likely to occur, perhaps, during glacial periods in which the freshwater forcing due to ice melting at polar regions is much stronger, or during warm equable paleoclimates such as the late Permian, or mid-Cretaceous in which the buoyancy forcing due to freshwater flux may have been stronger than the air—sea heat flux

Zhang et al. (2002), Mechanism of thermohaline mode switching with application to warm equable climates. JC

Multi-Equilibrium: Self-Sustained Oscillation

Lowest-order 3x2-Box and 2D model, internal *Millennial* oscillation


E-P increasing: stable thermal mode → oscillation mode → steady haline mode.

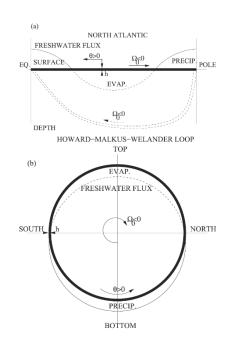
Colin De Verdière, Jelloul and Sevellec (2006), Bifurcation structure of thermohaline millennial oscillations. JC

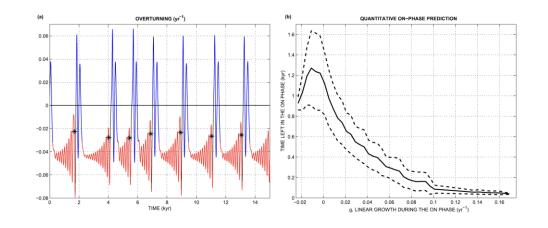
Beyond Box Model

2-D model and 1-D Howard-Malkus loop model, internal Centennial oscillation

Left: 2-D model; Right: 1-D model of Howard-Malkus loop

Not self-sustained: either strong damped or runaway mode


Nonlinear or linear; convection or no convection


Sévellec et al. (2006), On the mechanism of centennial thermohaline oscillations. J. Marine Research

Beyond Box Model

1-D Howard-Malkus loop model, AMOC *Millennial* regime shifts

AMOC *Millennial* shift is predictable in this chaotic model
Two predictive indices are defined

Sévellec & Fedorov (2014), Millennial variability in an idealized model: predicting the AMOC regime shifts

Centennial Oscillation in Coupled GCM

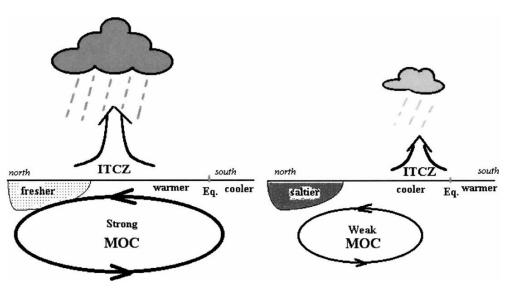
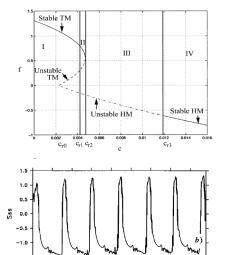
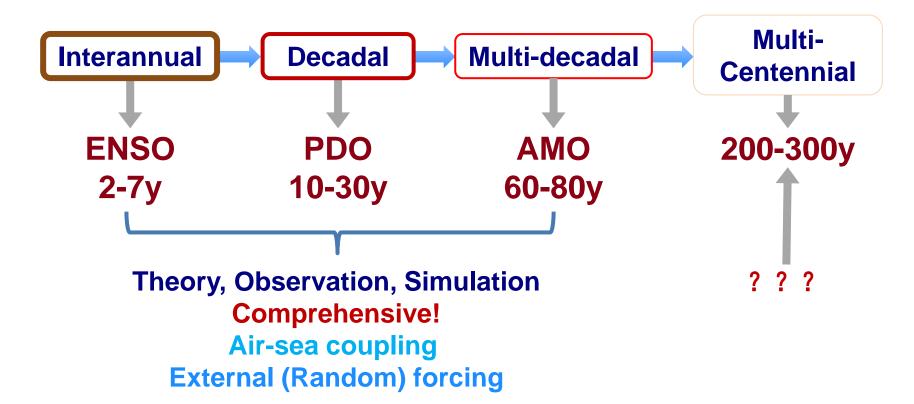


FIG. 16. Schematic of mechanism responsible for centennial THC fluctuation in HadCM3. When the THC is (left) strong ITCZ shifts northward, in response to enhanced SST gradient across equator. Fresh anomalies in the upper-ocean propagate northward and weaken the overturning. This results in the (right) weak phase.


- AMOC $\uparrow \rightarrow$
- →Northward OHT 1
- →Cross Eq. ΔSST ↑
- → ITCZ Northward Rain ↑
- → Tropical Salinity
- →Northward S-advection ↓
- →NADW Salinity
- →AMOC **↓**

Vellinga and Wu (2004), Low-latitude freshwater influence on centennial variability of the Atlantic THC. JC

Previous Theoretical Studies: Summary

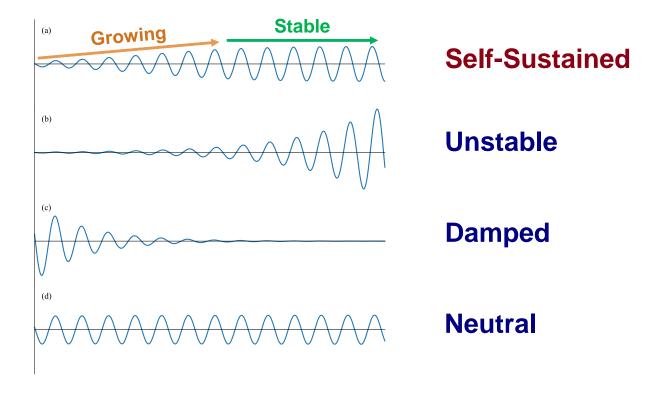

- > THC: stability, bifurcation and regime shift
- > Forcing: freshwater or/and stochastic
- Transition: thermal mode to haline mode
- > Self-sustained oscillation: δ -function-like
- Not particularly on Holocene

No theory on the multicentennial variability in Holocene!

Climate Variability that Ocean Matters

Climate Variability that Ocean Matters

We would like to


Search Eigen Mode

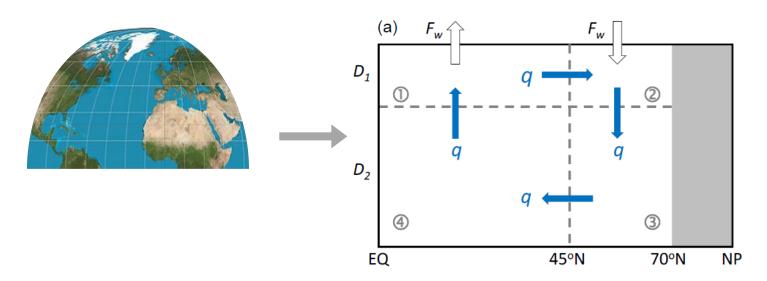
Multicentennial Climate Variability in a Stable Climate

Self-Sustained???

Self-Sustained Oscillation

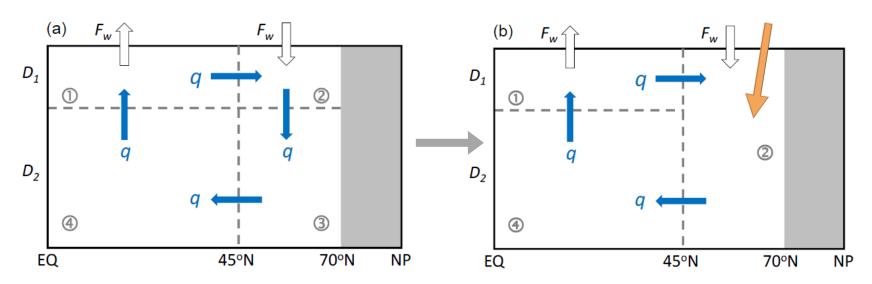
Contents

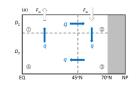
- 1. Observation
- 2. Our theory, Part I: Salinity


Part II: Temperature

4. Our Modelings

One Hemisphere 4-Box Model


Only Salinity Considered


One Hemisphere Box Model

Extreme Mixing or Convection

One Hemisphere Box Model

$$V_1 \dot{S}_1' = q'(\bar{S}_4 - \bar{S}_1) + \bar{q}(S_4' - S_1')$$

$$V_2 \dot{S}_2' = q'(\overline{S}_1 - \overline{S}_2) + \overline{q}(S_1' - S_2')$$

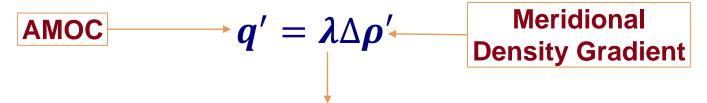
$$V_3 \dot{S}_3' = q'(\bar{S}_2 - \bar{S}_3) + \overline{q}(S_2' - S_3')$$

$$V_4 \dot{S}_4' = q'(\bar{S}_3 - \bar{S}_4) + \overline{q}(S_3' - S_4')$$

$$V_1 \dot{S}_1' = q'(\overline{S}_4 - \overline{S}_1) + \overline{q}(S_4' - S_1')$$

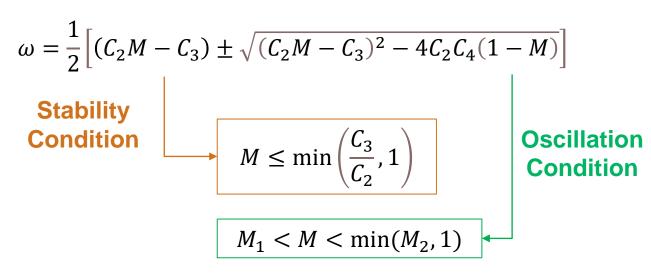
$$V_2 \dot{S}_2' = q'(\overline{S}_1 - \overline{S}_2) + \overline{q}(S_1' - S_2')$$

$$V_4 \dot{S}_4' = q'(\overline{S}_2 - \overline{S}_4) + \overline{q}(S_2' - S_4')$$


$$V_1 S_1' + V_2 S_2' + V_4 S_4' = constant$$

$$\Delta \rho' = \rho_0 \beta [\delta(S_2' - S_1') + (1 - \delta)(S_3' - S_4')], \text{ and } \delta = \frac{V_1}{V_1 + V_4} = \frac{V_2}{V_2 + V_2} = \frac{D_1}{D}$$

$$q' = \lambda \Delta \rho' = \lambda \rho_0 \beta [S_2' - \delta S_1' - (1 - \delta) S_4')], \text{ and } \delta = \frac{V_1}{V_1 + V_4} = \frac{D_1}{D}$$

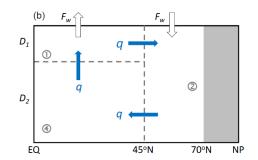

AMOC sensitivity to Density

A linear closure method:

D_2 70°N NP

$$M_1 = \frac{c_3 - 2c_4}{c_2} - \frac{2}{c_2} \sqrt{c_4^2 + c_4(c_2 - c_3)}, \quad M_2 = \frac{c_3 - 2c_4}{c_2} + \frac{2}{c_2} \sqrt{c_4^2 + c_4(c_2 - c_3)}.$$

$$M = \frac{\rho_d}{\overline{a}} \lambda$$
: nondimensional form of λ

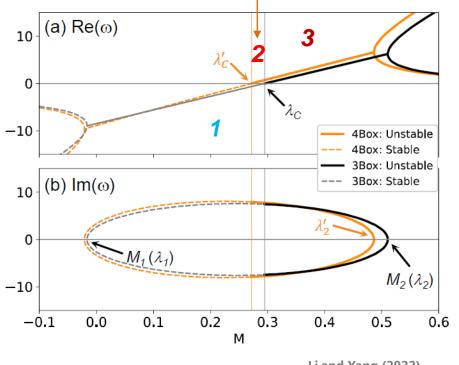

Parameter for the Box Model and Eigenvalues

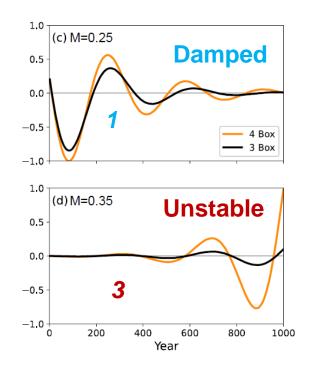
4-box	Growing Oscillatory mode (0.31	⊹5.83i)	0	-37.4
3-box	Damped Oscillatory mode (-0.29	±5.78i)		

Symbol	Physical meaning	Value
$\overline{V_2}$	Volume of upper subpolar Atlantic box	$2.8 \times 10^{15} \text{ m}^3$
V_1, V_3, V_4	Volumes of upper tropical Atlantic, lower subpolar Atlantic, and lower tropical Atlantic boxes, respectively	$5V_2, 7V_2, 35V_2$
D_1, D_2, D	Depths of upper box, lower box, and total, respectively	500, 3500, 4000 m
$\overline{S_1}, \ \overline{S_2}, \overline{S_3}, \overline{S_4}$	Reference salinity values of the four ocean boxes	36, 33.5, 33.5, 33.5 psu
\overline{q}	Equilibrium AMOC strength	$10 \text{ Sy } (10^6 \text{ m}^3 \text{ s}^{-1})$
F_w	Total virtual salt flux	$2.50 \times 10^7 \text{ psu m}^3 \text{ s}^{-1}$
β	Haline contraction coefficient	$7.61 \times 10^{-4} \text{ psu}^{-1}$
ρ_0	Reference density	$1.00 \times 10^3 \text{ kg m}^{-3}$
λ	Linear closure coefficient	12 Sv $kg^{-1} m^{-3}$

Stability Condition for 3-Box Model

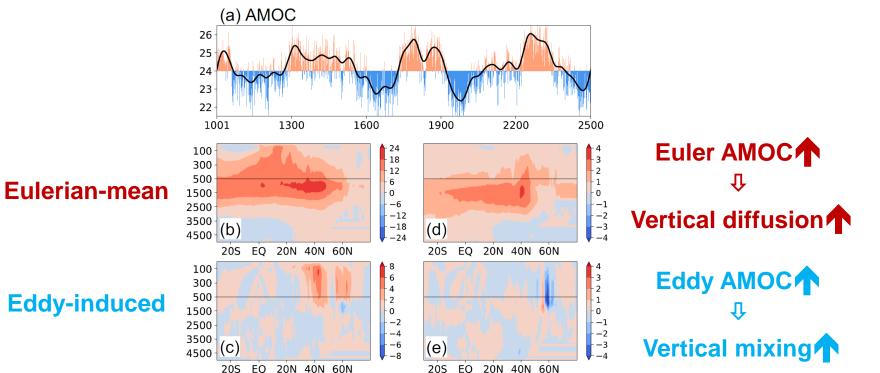
Li and Yang (2022)


$$\lambda < \lambda_C \equiv \frac{\overline{q}^2}{\rho_0 \beta \overline{F}_w} \left[1 + \frac{\delta_2}{\delta (1 - \delta)} \right]$$


 λ_C : the critical linear closure parameter when $Re[\omega]=0$, determined by \overline{q} , \overline{F}_W and basin geometry. A stronger \overline{F}_W and a weaker \overline{q} give a smaller λ_C , implying higher possibility for an unstable oscillation, since the background meridional salinity gradient in this situation will be stronger. In addition, salinity anomalies also spend more time at the surface with a weaker \overline{q} . This will also make the system more unstable, and this is why we have a quadratic term of \overline{q} . A bigger volume of the subpolar ocean (δ_2) gives a larger λ_C , implying a higher probability for a stable oscillation. In this situation, the salinity difference anomaly between subpolar and tropical upper oceans is larger under the same q', and thus the mean advection of salinity anomaly is stronger, which would result in a stronger stabilizing effect.

Oscillatory Modes with λ

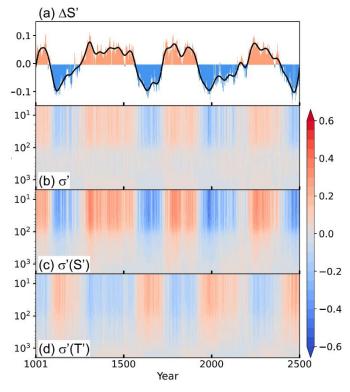
Self-Sustained Regime


Li and Yang (2022)

$$V_2 \dot{S}_2' = q' (\overline{S}_1 - \overline{S}_2) + \overline{q} (S_1' - S_2') - k_m (S_2' - S_3')$$

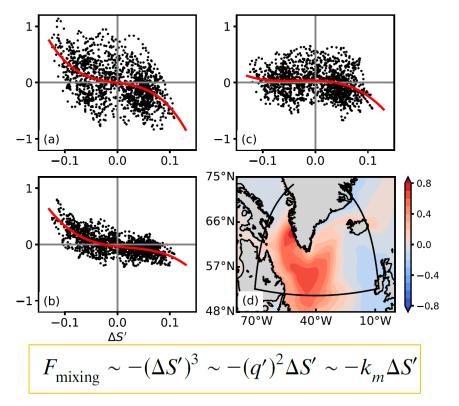
$$V_3 \dot{S}_3' = \overline{q}(S_2' - S_3') + k_m(S_2' - S_3')$$

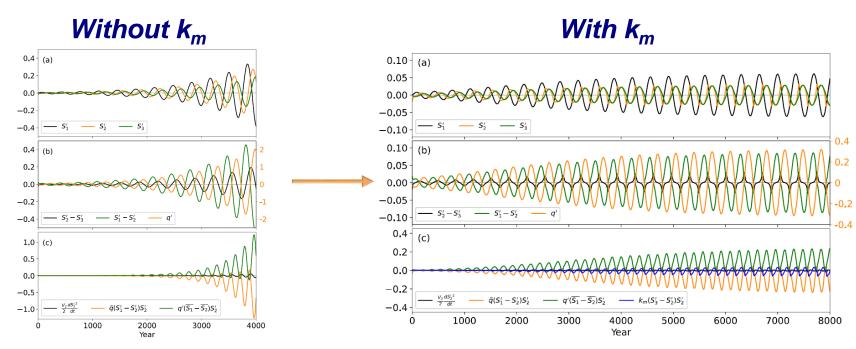
 $k_m = \kappa q'^2$: Proportional to AMOC anomaly



What *Enhanced* Mixing or Convection?

Stratification in Subpolar Atlantic

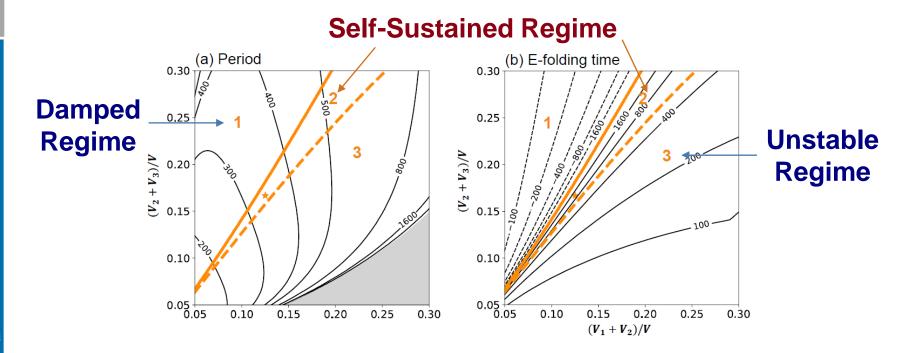

AMOC ~ σ ' ~ S' ~ -T'



What *Enhanced* Mixing or Convection?

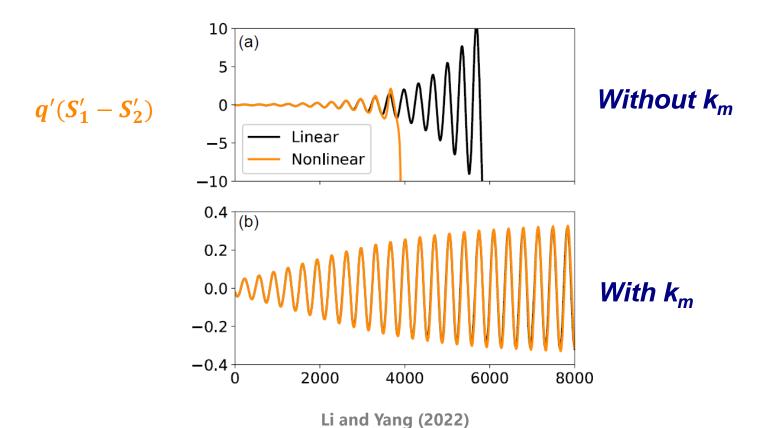
Mixing $\sim \Delta S'$

Can be only realized in 4-Box model

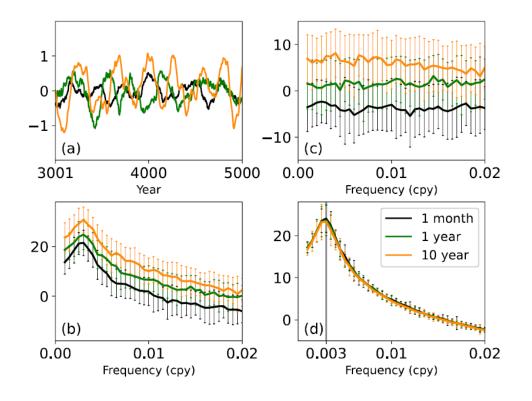


Self-Sustained Oscillation: Physics

Li and Yang (2022); Yang et al. (2022)



Self-Sustained Oscillation in Ocean Space



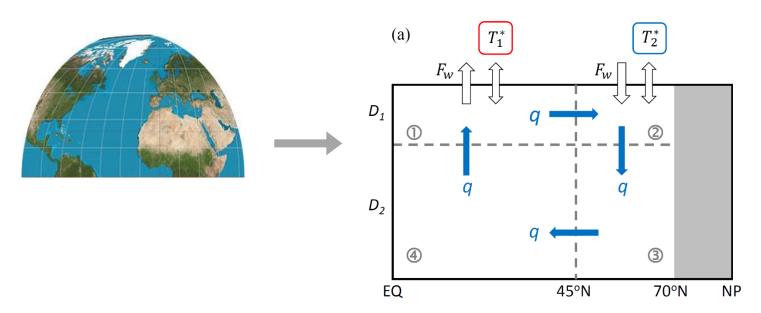
Nonlinear Advection Effect

Self-Sustained Oscillation Excited by Stochastic Forcing

Li and Yang (2022)

Contents

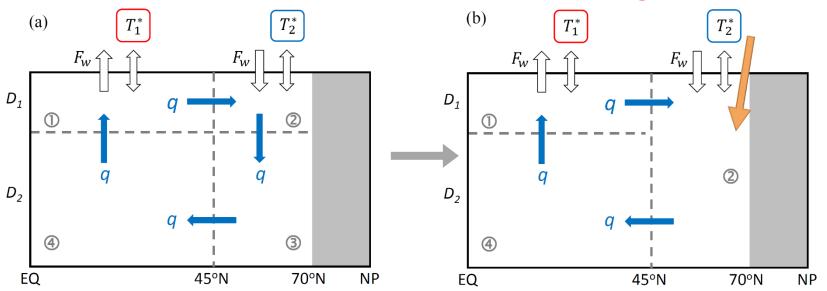
- 1. Motivation
- 2. Observation
- 3. Out theory, Part I: Salinity


Part II: Temperature

4. Modeling – CGCM or OGCM

One Hemisphere 4-Box Model

Both *Temperature* and *Salinity* Considered



Yang et al. (2022)

One Hemisphere 4-Box Model

Extreme Mixing or Convection

Li and Yang (2022)

FUDAN UNIVERSITY

One Hemisphere 4-Box Model

$$V_{1}\dot{T}_{1} = q(T_{4} - T_{1}) + V_{1}\tau(T_{1}^{*} - T_{1})$$

$$V_{2}\dot{T}_{2} = q(T_{1} - T_{2}) + V_{2}\tau(T_{2}^{*} - T_{2})$$

$$V_{3}\dot{T}_{3} = q(T_{2} - T_{3})$$

$$V_{4}\dot{T}_{4} = q(T_{3} - T_{4})$$

$$V_{1}\dot{S}_{1} = q(S_{4} - S_{1}) + F_{w}$$

$$V_{2}\dot{S}_{2} = q(S_{1} - S_{2}) - F_{w}$$

$$V_{3}\dot{S}_{3} = q(S_{2} - S_{3})$$

$$V_{4}\dot{S}_{4} = q(S_{3} - S_{4})$$

$$\overline{T_{1}} = T_{1}^{*} - \frac{\overline{q}V_{2}(T_{1}^{*} - T_{2}^{*})}{\overline{q}(V_{1} + V_{2}) + V_{1}V_{2}\tau}, \qquad \overline{T_{2}} = \frac{V_{1}T_{1}^{*} + V_{2}T_{2}^{*} - V_{1}\overline{T_{1}}}{V_{2}} = \overline{T_{3}} = \overline{T_{4}}$$

$$\overline{S_{1}} = F_{W}/\overline{q} + \overline{S_{2}}, \qquad \overline{S_{2}} = \overline{S_{3}} = \overline{S_{4}}$$

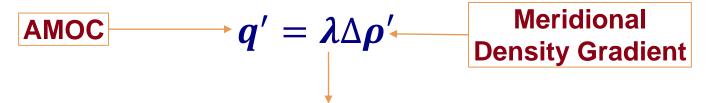
$$1/\tau = \frac{\rho_{W}c\Delta zA}{\kappa_{0}A} = \frac{\rho_{W}c\Delta z}{\kappa_{0}}$$

$$q = \overline{q} + q'$$

$$q' = q'_{T} + q'_{S} = \lambda\Delta\rho'_{T} + \lambda\Delta\rho'_{S} = \lambda\Delta\rho'$$

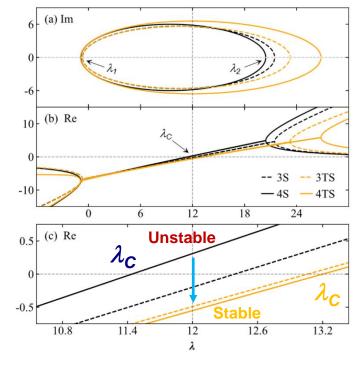
$$\Delta\rho'_{T} = -\rho_{0}\alpha[\delta(T'_{2} - T'_{1}) + (1 - \delta)(T'_{3} - T'_{4})]$$

$$\Delta\rho'_{S} = \rho_{0}\beta[\delta(S'_{2} - S'_{1}) + (1 - \delta)(S'_{3} - S'_{4})]$$


$$\delta = \frac{V_{1}}{V_{1} + V_{4}} = \frac{V_{2}}{V_{2} + V_{3}} = \frac{D_{1}}{D}$$

AMOC sensitivity to Density

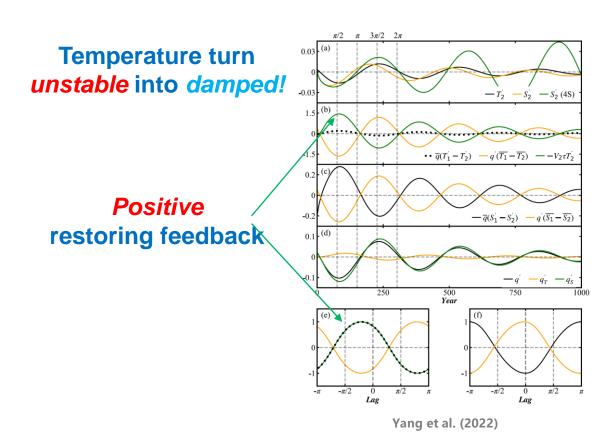
A linear closure method:


Eigenvalues: 4TS vs 4S

4S-box	croming decimatery mode (cross-cross)	0	-37.4
4TS-box	Damped Oscillatory mode (-0.55±6.59i)	0	-37.4, -366 -366, -324 -5.28, -0.78

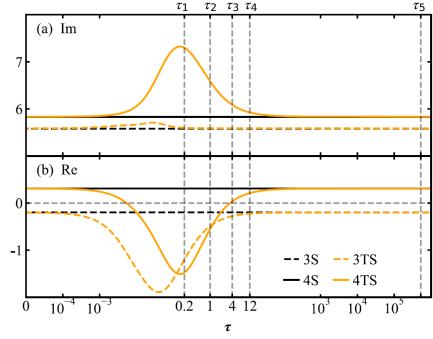
Oscillatory Modes with 1

Temperature
makes
system
more
damped!



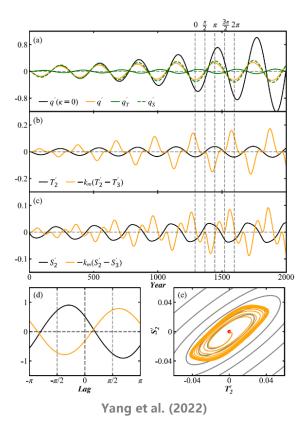
Bigger λ_c requires bigger sensitivity!

Oscillation with T and S

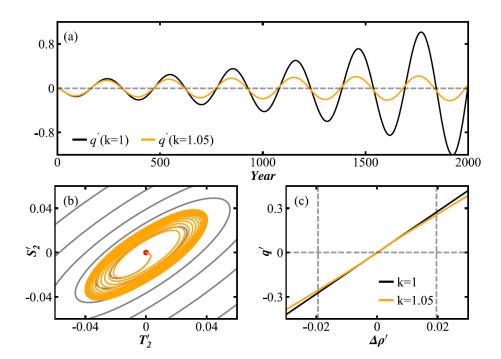


Salinity dominates AMOC

Role of *Restoring* Temperature

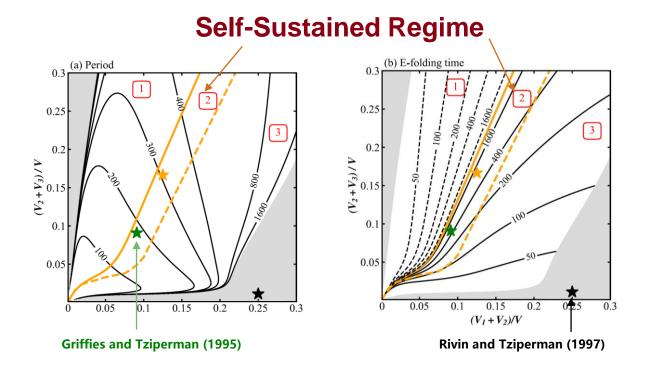


Yang et al. (2022)


Self-sustained Oscillation With Enhanced Mixing

FUDAN UNIVERSITY

Self-sustained Oscillation With Nonlinear Closure

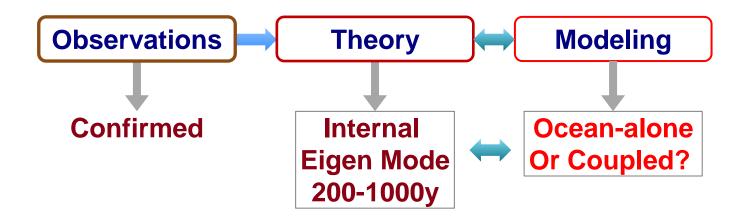

A tiny nonlinearity makes the system Self-sustained!

$$q' = \begin{cases} \lambda \rho_{cri} \left[k \left(\left[\frac{\Delta \rho'}{\rho_{cri}} \right]^{\frac{1}{k}} - 1 \right) + 1 \right], & if \ \Delta \rho' > \rho_{cri} \\ \lambda \Delta \rho' & if \ -\rho_{cri} < \Delta \rho' < \rho_{cri} \\ -\lambda \rho_{cri} \left[k \left(\left[-\frac{\Delta \rho'}{\rho_{cri}} \right]^{\frac{1}{k}} - 1 \right) + 1 \right], if \ \Delta \rho' < -\rho_{cri} \end{cases}$$

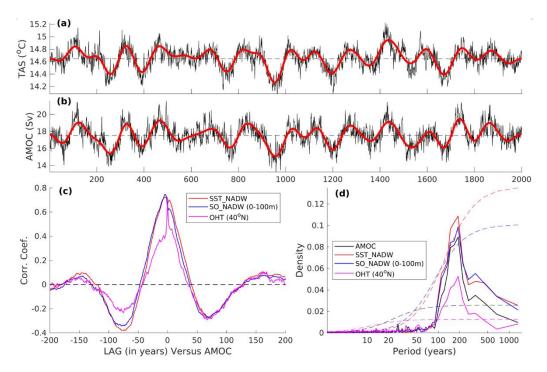
Yang et al. (2022)

Self-Sustained Oscillation in Ocean Space

Yang et al. (2022)

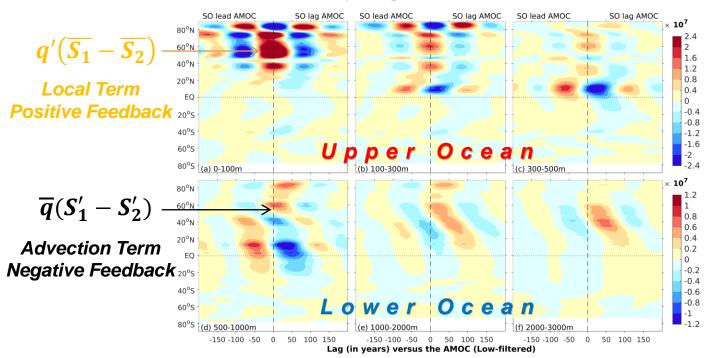

Contents

- 1. Observation
- 2. Theory
- 3. Modeling CGCM or OGCM


FUDAN UNIVERSITY

Centennial-Millennial Variabilities

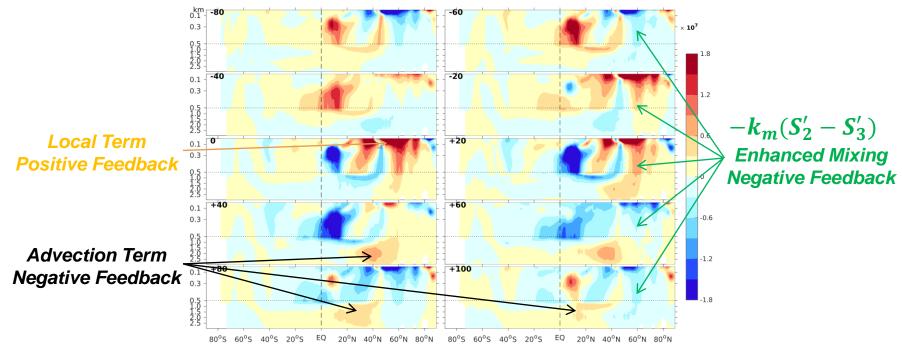
MCO in EC-Earth3.0: 200 Years



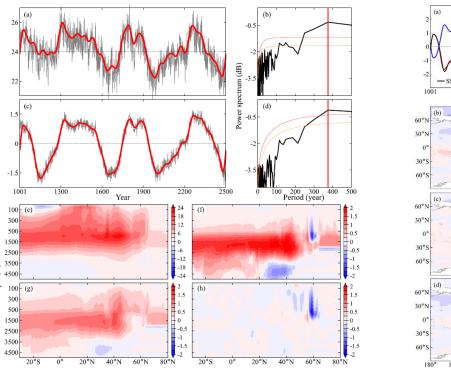
Cao et al., 2023: On the mechanisms in sustaining multi-centennial variability of the Atlantic meridional overturning circulation in EC-Earth3-LR simulation. ERL, accepted.

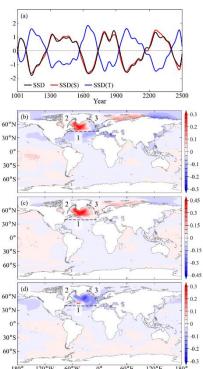
MCO in EC-Earth3.0: 200 Years

Salinity regression on AMOC

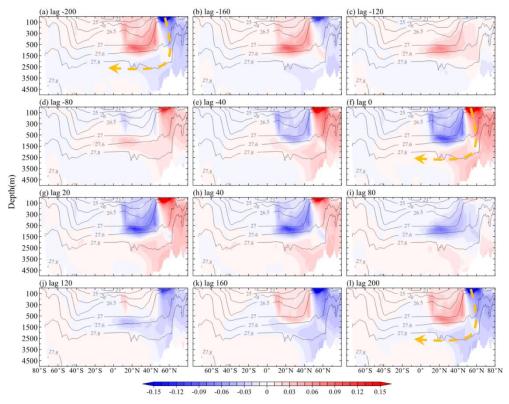


Cao et al., 2023: The role of internal feedbacks in sustaining multi-centennial variability of the Atlantic Meridional Overturning Circulation revealed by EC-Earth3-LR simulations. EPSL, 621, 118372

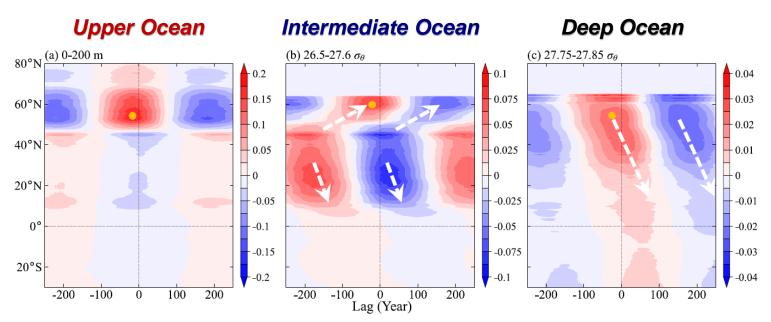

MCO in EC-Earth3.0: 200 Years


Salinity regression on AMOC

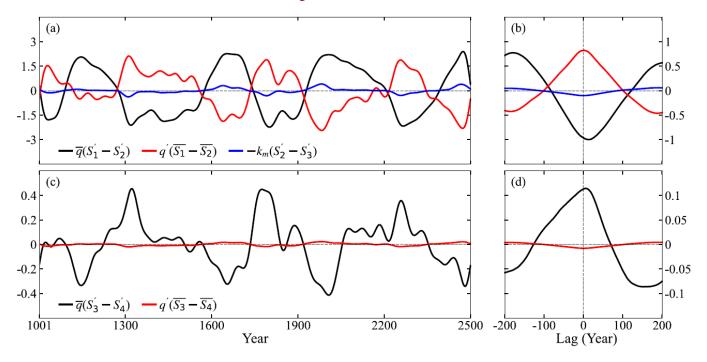
Cao et al., 2023: On the mechanisms in sustaining multi-centennial variability of the Atlantic meridional overturning circulation in EC-Earth3-LR simulation. ERL, accepted.



Yang et al., 2023: North Atlantic Ocean-originated multicentennial oscillation of the AMOC: a coupled model study. J. Climate. Submitted.



Salinity regression on AMOC

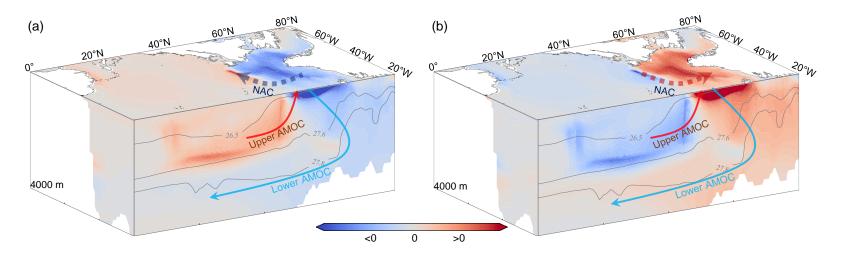


Salinity regression on AMOC

Validated by theoretical model

FUDAN UNIVERSITY

Self-Sustained Oscillation: Physics


$$q'(S_2') \sim \left\{ egin{array}{ll} q'(\overline{S_1} - \overline{S_2}) & \textit{Local Term} \\ \overline{q}(S_1' - S_2') & \textit{Advection Term} \\ -k_m(S_2' - S_3') & \textit{Enhanced Mixing} \\ Negative Feedback & -mathematical Properties of the proper$$

Li and Yang (2022); Yang et al. (2022)

A Schematic Diagram: MCO of AMOC in CESM1.0

Originated in the *North Atlantic*

Summary

https://corp.fudan.edu.cn/

Eigen Mode: Identified!

Physics: Disclosed!

Self-sustained: Realized!

Salinity change matters

Advection-feedback process dominates

A 10-year journey to decipher the MCO

Li and Yang, 2022: A theory of self-sustained multicentennial oscillation of the AMOC. , J. Climate Yang et al., 2023: A theory for self-sustained multicentennial oscillation of the AMOC. Part II: Role of Temperature. J. Climate. In press

Yang, K., H. Yang, Y. Li, and Q. Zhang, 2023: North Atlantic Ocean-originated multicentennial oscillation of the AMOC: a coupled model study. J. Climate. Submitted.

