Ocean – Atmosphere Interaction

杨海军 北京大学气候与海-气实验室 北京大学物理学院大气与海洋科学系 Email: <u>hjyang@pku.edu.cn</u>

Ocean-Atmosphere Interaction

- 1. Tropical-Extratropical, Interhemispheric Climate Interaction : Atmospheric Bridge and Oceanic Tunnel
- 2. Dynamics of Decadal Climate Variability and Tropical Decadal Variability
- 3. Ocean-Atmosphere Interaction: A Global Scale, Coupled Climate Dynamics and Bjerknes Compensation
- 4. Timescale and Reversibility of Climate Change

Tropical-Extratropical Interaction

Extratropical **Control** of tropical climate: Atmospheric Bridge and Oceanic Tunnel

Motivation

How Extratropics affect Tropics?

- Implication
 - 1. ENSO could be controlled by extratropical climate
 - 2. PDO important to global climate
 - 3. PDO may be background of ENSO
 - 4. PDO may control or modulate ENSO

Tropics \Leftrightarrow **Extratropics**

Yang, H. and Z. Liu, 2005: Tropical-extratropical climate interaction as revealed in idealized coupled climate model experiments. Climate Dynamics, 24, 863-879.

Question: Quantitative Impact?

- \ast NH \rightarrow Tropics \rightarrow SH

Fundamentally Important !

Traditional Approach

AGCM

Decoupled from full ocean dynamics (Lau 1997; Barnett et al. 1999)

OGCM

Decoupled from full atmosphere dynamics (Gu and Philander 1997; Liu 1998)

Our Model and Approach

- Fully coupled climate model (FOAM)
 <u>Atmos.</u> R15, NCAR-CCM2
 - <u>Ocean</u> $-1.4^{\circ} \times 2.8^{\circ} \times 32$ -level, GFDL-MOM
 - Control Run: 1000 years
 - **Experiments: 200 years**
- Partial Coupling technique

Partial Coupling

Full ocean-atmosphere coupling is allowed only in some selected region; elsewhere, the coupling is suppressed and the fixed climatology from model CTRL is prescribed to force the model atmosphere or ocean. It provides an important modeling surgical technique for assessing the individual role of the atmospheric bridge and oceanic tunnel in the interaction between different geometry regions (Wu et al. 2003; Liu and Yang 2003).

PC Exp. II

✤ T-ABOT

Tropical Atmospheric Bridge + Ocean Tunnel

PC Exp. III

OTOcean Tunnel only

Atmosphere

Extratropics → Tropics

Liu, Z. and H. Yang, 2003: Extratropical control on tropical climate, the atmospheric bridge and oceanic tunnel. *Geophys. Res. Lett.*, 30(5), 1230, doi: 10.1029/2002GL016492.

Yang, H., Z. Liu and H. Wang, 2004: Influence of extratropical thermal and wind forcing on equatorial thermocline in an ocean GCM. J. Phys. Oceanogr., 34(1), 174-187.

Yang, H. and Z. Liu, 2005: Tropical-extratropical climate interaction as revealed in idealized coupled climate model experiments. *Climate Dynamics*, 24, 863-879, doi: 10.1007/s00382-005-0021-8.

PEKING UNIVERSITY

Equatorial Ocean Response

Summary

- ⊗ Equal impact: Tropics ⇔ Extratropics

Atmos. Bridge: 70%

Ocean Tunnel: 30%

Latitude - Depth Section

PEKING UNIVERSITY

PEKING UNIVERSITY

复旦大学大气-海洋科学系, 2019.03.28, 上海

Horizontal Pattern

Mechanisms

ABOT

Atmos. Bridge: Ex-SST $\uparrow \Rightarrow \nabla SST \downarrow \Rightarrow HC (SH) \downarrow \Rightarrow ITCZ \downarrow \Rightarrow Trade Wind \downarrow \Rightarrow LH \downarrow \Rightarrow EQ-SST \uparrow$ *Ocean. Tunnel: HC $\downarrow \Rightarrow STCs \downarrow \Rightarrow Cold Water Trans. (V'T) \downarrow \Rightarrow EQ-SST \uparrow$ Warm Anomaly Subduction (VT', WT') $\uparrow \Rightarrow EQ-SST \uparrow$ OT Ocean. Tunnel:

Warm Anomaly Subduction (VT', WT') $\uparrow \Rightarrow EQ-SST \uparrow$

Atmosphere Bridge

Ensemble experiments:
 12-member, 12-year/exp
 Same as ABOT

Ensemble mean
 1st year

Hadley Cell and Heat Transport

PEKING UNIVERSITY

Thermodynamics: Surface Heat Budget

Ocean Dynamics: Term Balance

Before 6 months: Heat Flux \rightarrow T \uparrow After 6 months: -(vTy)' \rightarrow T \uparrow or -v'Ty (STC)

Ocean Dynamics: Subtropical Cell

Ocean Dynamics: Heat Transport

PEKING UNIVERSITY

Ocean Dynamics: Difference in ABOT and OT

* *<u>Ocean. Tunnel in ABOT</u>

Perturbation advection $(V'T) \downarrow \Rightarrow \text{EQ-SST} \uparrow$

Ocean. Tunnel in OT
 OT

Mean Subduction (*VT'*, *WT'*) $\uparrow \Rightarrow$ EQ-SST \uparrow

PEKING UNIVERSITY

Term Balance in Final Steady State

Tropics → Extratropics

PEKING UNIVERSITY

Extratropical Response

PEKING UNIVERSITY

Mechanisms

T-ABOT

Atmos. Bridge Only:

 $EQ-SST \uparrow \Rightarrow \nabla SST \uparrow \Rightarrow HC \uparrow \Rightarrow Cloud \downarrow \Rightarrow SW \uparrow$ $\Rightarrow Ex-SST \uparrow \uparrow \Leftarrow Sea ice - albedo feedback$

SH ⇔ NH

Yang, H., H. Jiang, and B. Tan, 2005: Asymmetric impact of the North and South Pacific on the Equator in a coupled climate model. *Geophys. Res. Lett.*, **32**(5), L05604, doi: 10.1029/2004GL021925.

PEKING UNIVERSITY

SH ⇔ EQ ⇔ NH

PEKING UNIVERSITY

Latitude - Depth Section

PEKING UNIVERSITY

Interhemispheric Interaction

Mechanism: Potential Vorticity

PV at 24-26 σ_t , Surface wind and Ekman pumping

Yang, H., H. Jiang, and B. Tan, 2005: Asymmetric impact of the North and South Pacific on the Equator in a coupled climate model. *Geophys. Res. Lett.*, 32(5), L05604

PEKING UNIVERSITY

Conclusions

- ♦ Extratropics → Tropics
 <u>Atmos. Bridge: 70%;</u> <u>Ocean Tunnel: 30%</u>
 ♦ Tropics → Extratropics
 - Atmos. Bridge: 100%
- ♦ SH → EQ 30% more than NH → EQ
- ♦ SH → NH 60% more than NH → SH
- SH dominates in global climate change

Pacific vs. Atlantic

Yang, H., and L. Wang, 2011: Tropical oceanic response to extratropical thermal forcing in a coupled climate model: A comparison between the Atlantic and Pacific Oceans. J. Climate, 24, 3850-3866.

Yang, H., and L. Wang, 2008: Estimating the nonlinear response of tropical ocean to extratropical forcing in a coupled climate model. *Geophys. Res. Lett.*, 35, L15705, doi: 10.1029/2008GL034256.

PEKING UNIVERSITY

Experiments

PC: Clim. + SSTA

- SSTA: $\pm 2^{\circ}C$, $\pm 4^{\circ}C$, $\pm 8^{\circ}C$; 200 years
- P Warming exp; M Cooling exp.

Summaries

- Tropical SST
 - Same magnitude in Atlantic and Pacific
- Tropical thermocline
 - Much stronger in Atlantic than in Pacific
- Atlantic STC (wind-driven)
 - Asymmetric change and critical role

Tropical Atlantic vs. Pacific

SST: Atlantic ~ Pacific; Tropics ~ ½ * Extra. Anti-symmetric Subsurface: Atlantic >> Pacific; Atlantic: Tro. ~ Extra.; Nonlinear Pacific: Tro ~ ½ * Extra

PEKING UNIVERSITY

SST and Thermocline Changes

Meridional Section of Temperature Changes

Trop. Atlantic $\approx 2 \times Pacific, different depth$ Green line – Mean Density; Color – Temperature change

Zonal Section of Temperature Changes

Trop. Atlantic \approx 2 x Pacific, different depth Green line – Mean Density; Color – Temperature change

Similarity and Difference: An Impression

Similarities

- SST: Same magnitude, nearly linear and antisymmetric
- Differences (subsurface)
 - Much stronger in Atlantic
 - Deeper in Atlantic
 - Western Atlantic VS. Eastern Pacific

Overturning Circulations in the Pacific and Atlantic

Pacific

0

Symmetric Change

Asymmetric Change

A Close Look at the Atlantic MOC

- MOC: thermohaline, weakened in P4
- STC: thermocline, wind-driven
 - Weakened in the southern branch
 - Strengthened in the northern branch

Interaction between STC and MOC in Atlantic

MOC → STC:

- ♦ MOC → Atmosphere → STC
- MOC suppress the Northern STC (Zhang et al., 2003; Hazeleger and Drijfhout, 2006):

STC → MOC:

 STC advects S & T anomalies which may reach the area of deep water formation and enhance or shut off the MOC (Delworth et al., 1993; Yin and Sarachik, 1995)

Pasquero and Tziperman (2004), JPO

- Zhang et al., J. Climate (2003): THC reduce the supply of thermocline water to the equator from the North Atlantic and increase the supply from the South Atlantic. (DATA)
 - Schott and McCreary (2004): Shallow overturning circulations of the tropical-subtropical oceans. Earth Climate: the Ocean-Atmosphere Interaction Geophysical Monograph Series

PEKING UNIVERSITY

- Hazeleger and Drijfhout, J. G. R. (2006): STC in the
 NH ~ 1.5 Sv, confined to western boundary.
- MOC prevents much of the subsurface branch of the North Atlantic STC from reaching the equator.
 (High-res. ocean model)
- The weakness of northern STC is of course a consequence of the MOC

Changes in STC and Temperature

Pacific:

 Tropical temperature change ⇔ STCs change in both hemisphere, V & W

Atlantic:

Tropical subsurface
 maximum ⇔ Northern STC
 change, only

Temperature Changes on Isopycnal Level

- Shallow subduction
- Pacific: Eastern boundary pathway from the SH
- Atlantic: Eastern boundary pathway from the SH
 Interior pathway from the NH

Temperature Changes on Isopycnal Level

- Intermediate water subduction
- Atlantic: Western boundary pathway from the NH Black contour – depth of 27.5; color – T on 27.5

Basin Mode in CGCM

 \rightarrow 0.02 m/s

Atlantic VS Pacific: Relative Role

Zonal and vertical average (ΔT):

Atlantic >> Pacific

Zonal and vertical integral (Heat content):

• Atlantic \approx Pacific

Comparable weighting in global ocean

Summaries

- Stronger and deeper temperature response in Atlantic due to enhanced northern STC
- For tropical Atlantic, should focus more on the STC instead of MOC
- Same weighting in global ocean.
 - Pacific bigger area;
 - Atlantic bigger temperature change

PEKING UNIVERSITY

52

52

Implications

- Critical region in global climate change
- Regional contribution to global warming
- PDO: direct and indirect connection
- SH crucial for long-term climate prediction

Extratropics -> ENSO

Zhang, Q., H. Yang, Y. Zhong, and D. Wang, 2005: An idealized study of the impact of extratropical climate change on ENSO. *Climate Dynamics*, 25, 869-880, doi: 10.1007/s00382-005-0062-z.

Yang, H., Q. Zhang, Y. Zhong, S. Vavrus, and Z. Liu, 2005: How does extratropical warming affect ENSO? *Geophys. Res. Lett.*, 32(1), L01702, doi: 10.1029/2004GL021624.

PEKING UNIVERSITY

ENSO: 1st EOF mode

PEKING UNIVERSITY

ENSO Variability: Nino-3 SST

Nino-3: 150W-90W, 5N-5S Remove: Mean annual cycle Secular linear trend 5-85 months band-pass filter Standard Deviation: 10-year sliding window

PEKING UNIVERSITY

ENSO variability: σ(SST)

ENSO variability: σ(Z20)

PEKING UNIVERSITY

Skewed ENSO: El Nino vs. La Nina

Skewed ENSO: Occurrence

Slowed ENSO

Extensive Change in ENSO!

Intensity

Pattern

Frequency

ENSO Background: A Weaker Gradient

Warm Water Volume

A Slackened Recharge/Discharge

Conclusion Diagram

Summary and Discussion

- SST: Atmosphere bridge
- Thermocline: Ocean dynamics
- STC and MOC
- ↔ Tropics → Extratropics
 - Atmosphere bridge
 - Hadley Cell
- SH ⇔ NH
 - SH more important
- Atlantic vs Pacific: same important

Thanks

