|
|
| Fudan University · Dept. Atmospheric
& Oceanic Sciences | | Peking University
· Dept. Atmospheric & Oceanic Sciences | |
|
| Home | People | Research | Education | Publication | Gallery | |
|
Paper Download |
论文下载链接 https://www.researchgate.net/profile/Haijun_Yang5 https://scholar.google.com/citations?user=ZpqQ3MYAAAAJ&hl=zh-CN Or go to Research to download papers Publications |
主要论文 |
|
2027-2023 | |
|
1.
Tong,
M., H. Yang, R. Jiang, and P. Wu, 2024: Pivotal Role of Tibetan Plateau
and Antarctic in shaping present-day AMOC. J. Climate, in press. 2.
Zhou,
X., K. Yang, and H. Yang, 2024: Self-sustained multicentennial
oscillation of the AMOC in global box models. J. Climate, in press. 3. 王鉥祥,杨海军,2024:大西洋经圈翻转流多百年际变率的2维海洋模式研究.北京大学学报(自然科学版),出版中. 4. 亢一博,杨海军,2024:定量研究地球轨道参数和温室气体浓度变化对中全新世气候的影响.北京大学学报(自然科学版),60(4),607-614,https://doi.org/10.13209/j.0479-8023.2024.039. 5. Yang, H., R. Jiang, Q. Wen, and co-authors, 2024: The role of mountains in shaping the global meridional overturning circulation. Nat. Commun., 15, 2602, https://doi.org/10.1038/s41467-024-46856-x. 6.
Yang,
K., H. Yang, Y. Li, and Q. Zhang, 2024: North Atlantic Ocean-originated
multicentennial oscillation of the AMOC: a coupled model study. J. Climate,
37(9), 2789-2807, doi:
10.1175/JCLI-D-23-0422.1. 7. Yang, K., H. Yang, and Y. Li, 2024: A theory for self-sustained multicentennial oscillation of the Atlantic meridional overturning circulation. Part II: Role of Temperature. J. Climate, 37(3), 913-926, doi: 10.1175/JCLI-D-22-0755.1. 8. Cao, N., Q. Zhang, K. E. Power,
F. Schenk, K. Wyser, and H. Yang, 2023: The role of internal feedbacks in
sustaining multi-centennial variability of the Atlantic Meridional
Overturning Circulation revealed by EC-Earth3-LR simulations. Earth and
Planetary Science Letters, 621, 118372, https://doi.org/10.1016/j.epsl.2023.118372. 9.
Kang,
Y., and H. Yang, 2023: Quantifying effects of Earth orbital parameters
and greenhouse gases on Mid-Holocene climate. Climate of Past, 19,
2013-2026, https://doi.org/10.5194/cp-19-2013-2023. 10.
Huang,
J., X. Zhou, G. X. Wu, and co-authors, 2023: Global climate impacts of
land-surface and atmospheric processes over the Tibetan Plateau. Reviews of Geophysics,
https://doi.org/10.1029/2022RG000771. 11.
Wang, L., and H. Yang, 2023: Tibetan Plateau increases the
snowfall in southern China. Scientific Reports, 13, 12796, https://doi.org/10.1038/s41598-023-39990-x. 12. 刘亚,杨海军,2023:夏季热带印度洋季节内振荡的北向传播特征.北京大学学报(自然科学版),59(4),569-580,https://doi.org/10.13209/j.0479-8023.2023.044. 13. 杨海军,石佳琪,李洋,周湘莹,Qiong ZHANG,2023:多百年际气候变率:观测、理论与模拟研究。科学通报,68,1-9,doi:10.1360/TB-2022-1026。 14.
Wang, L., H. Yang, Q. Wen, Y. Liu and G. Wu, 2023: The Tibetan Plateau’s
far-reaching impacts on Arctic and Antarctic climate: seasonality and pathways. J. Climate, 36(5),
1399-1414, doi: 10.1175/JCLI-D-22-0175.1. 15.
Wu, G. X.,
X. Zhou, X. Xu, and co-authors, 2023: An integrated research plan for the
Tibetan Plateau land-air coupled system and its impacts on the global
climate. Bulletin of the American
Meteorological Society, 104(1), E158-E177, doi:
10.1175/BAMS-D-21-0293.1. 16.
Yan, C., J. Yao, X. Shen, and H. Yang, 2023: Investigating the effect of Tibetan Plateau on the ITCZ using a coupled
Earth system model. Atmos. &
Oceanic Sci. Lett., 16, 100294,
https://doi.org/10.1016/j.aosl.2022.100294. 17. Guan, C. Y., X. Wang, and H. Yang, 2023: Understanding the
development of the 2018/19 central Pacific El Niño. Adv. Atmos. Sci., 40(1),
177−185,
https://doi.org/10.1007/s00376-022-1410-1. |
|
2022-2018 | |
|
18. Askjar, T. G., Q. Zhang and co-authors, 2022: Multi-centennial
Holocene climate variability in proxy records and transient model
simulations. Quaternary Science Reviews,
296, 107801. Journal
Link 19.
Li, Y., and H. Yang, 2022: A theory for self-sustained multicentennial
oscillation of the Atlantic meridional overturning circulation. J. Climate, 35(18), 5883-5896, doi:
19.1175/JCLI-D-21-0685.1. 20.
Yang, H., X.
Zhou, Q. Yang, and Y. Li, 2022: Roles of climate feedback and ocean vertical
mixing in modulating global warming rate. Climate Dynamics, doi:
10.1007/s00382-022-06374-2. 21. 温琴,何国瑞,杨海军,2022:青藏高原和落基山脉对ENSO影响的比较研究. 大气科学,46(5):1−16. 22.
Wen, Q., H. Yang, and co-authors, 2022: Possible thermal effect of Tibetan Plateau
on the Atlantic meridional overturning circulation. Geophys. Res. Lett., 49,
e2021GL095771. https://doi.org/10.1029/2021GL095771. 23. 邵星,杨海军,2021:青藏高原对北大西洋深水形成影响机制的季节差异.北京大学学报(自然科学版),57(5),865-874,https://doi.org/10.13209/j.0479-8023.2021.062. 24.
Shi, J., and H. Yang, 2021: Bjerknes compensation in a coupled global box
model. Climate Dynamics, 57, 3569-3582, doi: 10.1007/s00382-021-05881-y. 25.
Wen, Q., Z. Han, H. Yang, J. Cheng, Z. Liu, and J.
Liu, 2021: Influence of Tibetan Plateau on the North American summer monsoon
precipitation. Climate Dynamics. doi: 10.1007/s00382-021-05857-y. 26.
Wen, Q., C. Zhu, Z. Han, Z. Liu,
and H. Yang, 2021: Can the Tibetan
Plateau affect the Antarctic Bottom Water? Geophys. Res. Lett., 48,
e2021GL092448. doi: 10.1029/2021GL092448. 27.
Chen, Z., Q. Wen, and H. Yang, 2021: Impact of Tibetan
Plateau on North African precipitation. Climate
Dynamics, 57, 2767-2777, doi: 10.1007/s00382-021-05837-2. 28.
Jiang, R., and H. Yang, 2021: Roles of the Rocky Mountains in the Atlantic and
Pacific meridional overturning circulations. J. Climate, 34(16), 6691-6703, doi: 10.1175/JCLI-D-20-0819.1. 29. 邵星,杨海军,李洋,姜睿,姚杰,杨千姿,2021:不同分辨率下青藏高原对大西洋经向翻转流影响的耦合模式研究.北京大学学报(自然科学版),57(1),121-131,https://doi.org/10.13209/j.0479-8023.2020.092. 30. 陈志宏,杨海军,2020:青藏高原对非洲北部降水影响的模拟研究。北京大学学报(自然科学版),56(5),835~843,https://doi.org/10.13209/j.0479-8023.2020.063. 31. Wen, Q., K. Doos,
Z. Lu, Z. Han, and H. Yang, 2020:
Investigating the role of the Tibetan Plateau in ENSO variability. J. Climate, 33, doi:
10.1175/JCLI-D-19-0422.1. 32. Liu, Y., M. Lu, H. Yang, A. Duan, B. He, S. Yang and
G. Wu, 2020: Land-Atmosphere-Ocean coupling associated with the Tibetan
Plateau and its climate impact. National Science
Review, 7, 534-552,
doi: 10.1093/nsr/nwaa011. 33. Wen, Q., and H. Yang, 2020: Investigating the role of the Tibetan Plateau in the formation of Pacific meridional overturning circulation. J. Climate, 33(9), 3603-3617, doi: 10.1175/JCLI-D-19-0206.1. 34. Yang, H., and Q. Wen, 2020: Investigating the role of the Tibetan Plateau in
the formation of Atlantic meridional overturning circulation. J. Climate, 33(9), 3585-3601, doi:
10.1175/JCLI-D-19-0205.1. 35. Yang, H., X. Shen, J. Yao and Q. Wen, 2020: Portraying the impact of the
Tibetan Plateau on global climate. J. Climate, 33(9), 3565-3583, doi:
10.1175/JCLI-D-18-0734.1. 36. Wen, Q., J. Yao, K. Doos, and H. Yang,
2018: Decoding hosing and heating effects on global temperature and
meridional circulations in a warming climate. J. Climate, 31(23),
9605-9623, doi: 10.1175/JCLI-D-18-0297.1. 37. 姚杰,温琴,沈星辰,邵星,杨海军,2018:青藏高原对全球大气温度和水汽分布的影响。北京大学学报(自然科学版),54(6),1179~1185,doi:10.13209/j.0479-8023.2018.085. 38. Yang, Q., Y.
Zhao, Q. Wen, J. Yao, and H. Yang,
2018: Understanding
Bjerknes compensation in meridional heat transports and the role of
freshwater in a warming climate. J. Climate, 31(12), 4791-4806, doi: 10.1175/JCLI-D-17-0587.1. |
|
2017-2013 | |
|
39.
Yang, H., Q. Wen, J.
Yao, and Y. Wang, 2017: Bjerknes compensation in meridional heat transport
under freshwater forcing and the role of climate feedback. J. Climate, 30(14), 5167-5185, doi:
10.1175/JCLI-D-16-0824.1 40.
Dai, H., H.
Yang, and J. Yin, 2017: Roles of energy conservation and regional climate
feedback in Bjerknes compensation: a coupled modeling study. Climate Dynamics, 49, 1513-1529, doi: 10.1007/s00382-016-3386-y. 41.
Zhao, Y., H. Yang, and Z. Liu, 2016: Assessing Bjerknes compensation for
climate variability and its timescale dependence. J. Climate, 29(15),
5501-5512. 42.
Yang, H., Y. Zhao, and
Z. Liu, 2016: Understanding Bjerknes compensation in atmosphere and ocean
heat transports using a coupled box model. J. Climate, 29(6),
2145-2160, doi: 10.1175/JCLI-D-15-0281.1. 43.
Liu, Z., H.
Yang, C. He, and Y. Zhao, 2016: A theory for Bjerknes compensation: the
role of climate feedback. J. Climate,
29(1), 191-208. doi: 10.1175/JCLI-D-15-0227.1. 44.
Yang, H., Y. Zhao, Q.
Li, and Z. Liu, 2015: Heat transport in atmosphere and ocean over the past
22,000 years. Nature Scientific Reports,
5: 16661. doi: 10.1038/srep16661. 45.
Yang, H., K. Wang, H.
Dai, Y, Wang, and Q. Li, 2016: Wind effect on the Atlantic meridional
overturning circulation via sea ice and vertical diffusion. Climate Dynamics, 46(11), 3387-3403, doi:
10.1007/s00382-015-2774-z. 46.
Yang, H., and H. Dai,
2015: Effect of wind forcing on the meridional heat transport in a coupled
model: equilibrium response. Climate
Dynamics, 45(5): 1451-1470, doi: 10.1007/s00382-014-2393-0. 47.
Yang, H., Q. Li, K.
Wang, Y. Sun and D. Sun, 2015: Decomposing the meridional heat transport in
the climate system. Climate Dynamics,
doi: 10.1007/s00382-014-2380-5, 44: 2751-2768. 48.
Wang, L., and H. Yang, 2014: The role of atmospheric teleconnection in the
subtropical thermal forcing on the equatorial Pacific. Adv. Atmos. Sci., 31(4),
985–994, doi: 10.1007/s00376-013-3173-1. 49.
Huang, B., J. Zhu, and H. Yang, 2014: Mechanisms of Atlantic meridional overturning
circulation (AMOC) variability in a coupled ocean--atmosphere GCM. Adv. Atmos. Sci., 31(2), 241-251, doi:
10.1007/s00376-013-3021-3. 50.
Wang, Y. X., H. Yang, and T. Furevik, 2013: What
determines the amplitude of ENSO events? Atmospheric
and Oceanic Science Letters. 6(2),
90-96. 51.
Yang, H., 2013:
Assessing the meridional atmosphere and ocean energy transport in a varying
climate. Chinese Science Bulletin, 58(15), 1737-1740, doi: 10.1007/s11434-01305665-x. 52.
Yang, H., Y. Wang, and
Z. Liu, 2013: A modeling studies of the Bjerknes compensation in the
meridional heat transport in a freshening ocean. Tellus A, 65, 18480, doi: 10.3402/tellusa.v65i0.18480. 53. 孙瑜,杨海军,2015:全球地形影响大气和海洋经圈环流的耦合模式研究。北京大学学报(自然科学版),51(4),735~744,doi:10.13209/j.0479-8023.2015.006. 54. 孙道勋,杨海军,2015:温室气体变化数值模拟试验中全球降水和温度变化的迟滞效应。北京大学学报(自然科学版),51(4),763~771,doi:10.13209/j.0479-8023.2015.004. 55. 李庆,杨海军,2014:水球世界气候态与经向热量输送的数值模拟试验。北京大学学报(自然科学版),50(2),251~262,doi:10.13209/j.0479-8023.2014.032. 56. 李昕容,杨海军,王宇星,2014:大西洋热盐环流减弱对热带太平洋气候平均态及年际变率的影响。北京大学学报(自然科学版),50(2),242~250. 57. 王璐,杨海军,2013:副热带太平洋海温异常对赤道海洋的影响。北京大学学报(自然科学版),49(5),791~798. |
|
2012-2008 | |
|
58.
Yang, H., and L. Wang,
2011: Tropical oceanic response to extratropical thermal forcing in a coupled
climate model: A comparison between the Atlantic and Pacific Oceans. J. Climate, 24, 3850-3866. 59.
Yang, H., and J. Zhu, 2011: Equilibrium thermal
response timescale of global oceans. Geophys. Res. Lett., 38, L14711, doi:
10.1029/2011GL048076. 60.
Yang, H., and F. Wang,
2009: Revisiting the thermocline depth in the equatorial Pacific. J. Climate, 22, 3856-3863. 61.
Yang, H., F. Wang, and A. Sun, 2009: Understanding the ocean temperature change
in global warming: the tropical Pacific. Tellus,
61A(3),
371-380. 62. Yang, H., and Q. Zhang, 2008: Anatomizing the ocean role in ENSO changes under global
warming. J. Climate, 21, doi: 10.1175/2008JCLI2324.1, 6539-6555. 63. Zhang, Q., Y. Guan, and H. Yang,
2008: ENSO amplitude change in observation and coupled models. Adv. Atmos. Sci., 25(3), 361-366. 64. Yang, H., and L. Wang, 2008: Estimating the nonlinear response of tropical
ocean to extratropical forcing in a coupled climate model. Geophys.
Res. Lett., 35, L15705, doi: 10.1029/2008GL034256. 65.
Su, J., H. Wang, H. Yang, H. Drange, Y. Gao, and M. Bentsen, 2008: Role of the meridional overturning
circulation in the tropical SST changes. J.
Climate, 21, 2019-2034. 66. 朱江,杨海军,2012:北大西洋热盐环流对温室气体浓度变化的响应。 北京大学学报(自然科学版),48(2),231~238. 67. 袁为,杨海军,2010:Madden-Julian 振荡对中国东南部冬季降水的调制。北京大学学报(自然科学版),46(2),207~214. 68. 雷霁,杨海军,2008:海洋垂直混合系数对大洋环流影响的敏感性研究。北京大学学报(自然科学版),44(6),864~870. |
|
|
|
2007-2003 | |
|
69.
Zhang, Q., H.
Yang, Y. Zhong, and D. Wang, 2005: An idealized
study of the impact of extratropical climate change on ENSO. Climate
Dynamics, 25,
869-880, doi: 10.1007 /s00382-005-0062-z. 70.
Yang, H. and Z. Liu, 2005: Tropical-extratropical climate interaction as revealed in idealized
coupled climate model experiments. Climate Dynamics, 24,
863-879, doi: 10.1007/s00382-005-0021-8. 71.
Yang, H., H. Jiang, and B.
Tan, 2005: Asymmetric
impact of the North and South Pacific on the Equator in a coupled
climate model. Geophys. Res. Lett., 32(5), L05604, doi:
10.1029/2004GL021925. 72.
Yang, H., Q. Zhang, Y. Zhong, S. Vavrus, and Z. Liu,
2005: How does
extratropical warming affect ENSO? Geophys. Res. Lett.,
32(1),
L01702, doi: 10.1029/2004GL021624. 73.
Yang, H., Z. Liu and Q. Zhang, 2004: Tropical ocean decadal variability
and resonance of planetary wave basin modes: II. Numerical study. J.
Climate, 17, 1711-1721. 74.
Yang, H., Z. Liu and H. Wang, 2004: Influence of extratropical thermal and
wind forcing on equatorial thermocline in an ocean GCM. J. Phys. Oceanogr., 34(1),
174-187. 75.
Yang, H. and Z. Liu, 2003: Basin modes in a tropical-extratropical basin. J. Phys. Oceanogr., 33(12), 2751-2763. 76.
Yang, H. and Q.Y. Liu, 2003: Forced Rossby wave in the
northern South China Sea. Deep Sea Res.(I), 50, 917-926. 77.
Yang, H. and Q.
Zhang, 2003: On the decadal and interdecadal variability in the Pacific
Ocean. Adv.
Atmos. Sci.,
20(2), 173-184. 78.
Liu, Z. and H. Yang, 2003:
Extratropical control on tropical climate, the atmospheric bridge and oceanic
tunnel. Geophys. Res. Lett., 30(5),
1230, doi: 10.1029/2002GL016492. 79.
杨海军,刘秦玉,2003:缓变风场驱动下正压环流中的多涡结构。热带海洋学报,22(4),51-59. |
|
2002-1998 | |
|
80.
Yang, H., Q.Y. Liu, Z.
Liu, D.X. Wang and X.B. Liu,
2002: A GCM study of the dynamics of the upper ocean circulation of the South
China Sea. J. Geophys. Res., 107, doi: 10.1029/2001JC001084. 81. Liu, Z., H.
Yang and Q. Y. Liu, 2001: Regional
dynamics of seasonal variability in the South China Sea. J. Phys. Oceanogr., 31(1), 272-284. 82. Stephens, M., Z.
Liu and H. Yang, 2001: Evolution of subduction planetary waves with
application to north pacific decadal thermocline variability. J. Phys. Oceanogr., 31(7), 1733-1746. 83. Liu, Q.Y., H.
Yang and Z. Liu, 2001:
Seasonal features of the Sverdrup circulation in the South China Sea. Progress
in Natural Sciences, 11(3), 203-206. 84.
Liu, Q.Y., H.
Yang and Q. Wang, 2000: Dynamic characteristics of seasonal thermocline in the deep sea region of South China Sea. Chinese. J. Oceanol. Limnol., 18(2), 104-109. 85.
Liu, Q.Y., H.
Yang, W. Li and K. Nishiyama, 2000: Subtropical countercurrent and intraseasonal
oscillation in the North Pacific. Proceedings of
China-Japan Joint Symposium on Cooperative Study of Subtropical Circulation
System. China Ocean Press, 125-134. 86.
Yang, H., Q.Y. Liu and X.J. Jia, 1999: On the upper oceanic heat
budget in the South China Sea: Annual Cycle. Adv. Atmos. Sci., 16(4),
619-629. 87.
Yang, H., Q.Y. Liu and W. Li, 1998: An influence of bottom topography
on the western boundary current. Acta Oceanographica
Taiwanica, 37(1), 77-88. 88.
刘秦玉,杨海军,贾英来,甘子钧,2001:南海海面高度季节变化的数值模拟。海洋学报,23(2),9-17. 89.
刘秦玉,杨海军,鲍洪彤,李薇,2000:北太平洋副热带逆流的气候特征。大气科学,24(3),363-372. 90.
刘秦玉,杨海军,李薇,刘倬腾,2000:吕宋海峡上层纬向海流及质量输送。海洋学报,22(2),1-8. 91. 杨海军,刘秦玉,1998:南海上层水温分布季节特征。海洋与湖沼,29(5),501-507. 92.
杨海军,刘秦玉,1998:南海海洋环流研究综述。地球科学进展,13(4),364-368.
|
|
|
|
|
|
| 首页 | 人员 | 研究 | 教学 | 文章 | 画廊 | 复旦大学 · 大气与海洋科学系 | 北京大学
· 大气与海洋科学系 | |
|
|
|
Copyright © 2017,
Climate and Ocean Research Program, All Right Reserved ® Last Updated: Tuesday, September 10, 2024 |