| Fudan University · Dept. Atmospheric & Oceanic Sciences |   | Peking University · Dept. Atmospheric & Oceanic Sciences |

| Home | People | Research | Education | Publication | Gallery |

 

Paper Download  |  论文下载链接

https://www.researchgate.net/profile/Haijun_Yang5

https://scholar.google.com/citations?user=ZpqQ3MYAAAAJ&hl=zh-CN

Or go to Research to download papers

 

Publications  |  主要论文

2027-2023 |

1.       Tong, M., H. Yang, R. Jiang, and P. Wu, 2024: Pivotal Role of Tibetan Plateau and Antarctic in shaping present-day AMOC. J. Climate, in press.

2.       Zhou, X., K. Yang, and H. Yang, 2024: Self-sustained multicentennial oscillation of the AMOC in global box models. J. Climate, in press.

3.       王鉥杨海军2024大西洋经圈翻转流多百年际变率的2维海洋模式研究.北京大学学报(自然科学版),出版中.

4.       亢一博,杨海军2024:定量研究地球轨道参数和温室气体浓度变化对中全新世气候的影响.北京大学学报(自然科学版),604),607-614https://doi.org/10.13209/j.0479-8023.2024.039.

5.       Yang, H., R. Jiang, Q. Wen, and co-authors, 2024: The role of mountains in shaping the global meridional overturning circulation. Nat. Commun., 15, 2602, https://doi.org/10.1038/s41467-024-46856-x.

6.       Yang, K., H. Yang, Y. Li, and Q. Zhang, 2024: North Atlantic Ocean-originated multicentennial oscillation of the AMOC: a coupled model study. J. Climate, 37(9), 2789-2807, doi: 10.1175/JCLI-D-23-0422.1.

7.       Yang, K., H. Yang, and Y. Li, 2024: A theory for self-sustained multicentennial oscillation of the Atlantic meridional overturning circulation. Part II: Role of Temperature. J. Climate, 37(3), 913-926, doi: 10.1175/JCLI-D-22-0755.1.

8.       Cao, N., Q. Zhang, K. E. Power, F. Schenk, K. Wyser, and H. Yang, 2023: The role of internal feedbacks in sustaining multi-centennial variability of the Atlantic Meridional Overturning Circulation revealed by EC-Earth3-LR simulations. Earth and Planetary Science Letters, 621, 118372, https://doi.org/10.1016/j.epsl.2023.118372.

9.       Kang, Y., and H. Yang, 2023: Quantifying effects of Earth orbital parameters and greenhouse gases on Mid-Holocene climate. Climate of Past, 19, 2013-2026, https://doi.org/10.5194/cp-19-2013-2023.

10.    Huang, J., X. Zhou, G. X. Wu, and co-authors, 2023: Global climate impacts of land-surface and atmospheric processes over the Tibetan Plateau. Reviews of Geophysics, https://doi.org/10.1029/2022RG000771.

11.    Wang, L., and H. Yang, 2023: Tibetan Plateau increases the snowfall in southern China. Scientific Reports, 13, 12796, https://doi.org/10.1038/s41598-023-39990-x.

12.    刘亚,杨海军2023:夏季热带印度洋季节内振荡的北向传播特征.北京大学学报(自然科学版),594),569-580https://doi.org/10.13209/j.0479-8023.2023.044.

13.    杨海军,石佳琪,李洋,周湘莹,Qiong ZHANG2023:多百年际气候变率:观测、理论与模拟研究。科学通报,681-9doi10.1360/TB-2022-1026

14.    Wang, L., H. Yang, Q. Wen, Y. Liu and G. Wu, 2023: The Tibetan Plateau’s far-reaching impacts on Arctic and Antarctic climate: seasonality and pathways. J. Climate, 36(5), 1399-1414, doi: 10.1175/JCLI-D-22-0175.1.

15.    Wu, G. X., X. Zhou, X. Xu, and co-authors, 2023: An integrated research plan for the Tibetan Plateau land-air coupled system and its impacts on the global climate. Bulletin of the American Meteorological Society, 104(1), E158-E177, doi: 10.1175/BAMS-D-21-0293.1.

16.    Yan, C., J. Yao, X. Shen, and H. Yang, 2023: Investigating the effect of Tibetan Plateau on the ITCZ using a coupled Earth system model. Atmos. & Oceanic Sci. Lett., 16, 100294, https://doi.org/10.1016/j.aosl.2022.100294.

17.    Guan, C. Y., X. Wang, and H. Yang, 2023: Understanding the development of the 2018/19 central Pacific El Niño. Adv. Atmos. Sci., 40(1), 177185, https://doi.org/10.1007/s00376-022-1410-1.

 

2022-2018 |

18.    Askjar, T. G., Q. Zhang and co-authors, 2022: Multi-centennial Holocene climate variability in proxy records and transient model simulations. Quaternary Science Reviews, 296, 107801. Journal Link

19.    Li, Y., and H. Yang, 2022: A theory for self-sustained multicentennial oscillation of the Atlantic meridional overturning circulation. J. Climate, 35(18), 5883-5896, doi: 19.1175/JCLI-D-21-0685.1.

20.    Yang, H., X. Zhou, Q. Yang, and Y. Li, 2022: Roles of climate feedback and ocean vertical mixing in modulating global warming rate. Climate Dynamics, doi: 10.1007/s00382-022-06374-2.

21.    温琴,何国瑞,杨海军2022:青藏高原和落基山脉对ENSO影响的比较研究. 大气科学,465):116.

22.    Wen, Q., H. Yang, and co-authors, 2022: Possible thermal effect of Tibetan Plateau on the Atlantic meridional overturning circulation. Geophys. Res. Lett., 49, e2021GL095771. https://doi.org/10.1029/2021GL095771.

23.    邵星,杨海军2021:青藏高原对北大西洋深水形成影响机制的季节差异.北京大学学报(自然科学版),575),865-874https://doi.org/10.13209/j.0479-8023.2021.062.

24.    Shi, J., and H. Yang, 2021: Bjerknes compensation in a coupled global box model. Climate Dynamics, 57, 3569-3582, doi: 10.1007/s00382-021-05881-y.

25.    Wen, Q., Z. Han, H. Yang, J. Cheng, Z. Liu, and J. Liu, 2021: Influence of Tibetan Plateau on the North American summer monsoon precipitation. Climate Dynamics. doi: 10.1007/s00382-021-05857-y.

26.    Wen, Q., C. Zhu, Z. Han, Z. Liu, and H. Yang, 2021: Can the Tibetan Plateau affect the Antarctic Bottom Water? Geophys. Res. Lett., 48, e2021GL092448. doi: 10.1029/2021GL092448.

27.    Chen, Z., Q. Wen, and H. Yang, 2021: Impact of Tibetan Plateau on North African precipitation. Climate Dynamics, 57, 2767-2777, doi: 10.1007/s00382-021-05837-2.

28.    Jiang, R., and H. Yang, 2021: Roles of the Rocky Mountains in the Atlantic and Pacific meridional overturning circulations. J. Climate, 34(16), 6691-6703, doi: 10.1175/JCLI-D-20-0819.1.

29.    邵星,杨海军,李洋,姜睿,姚杰,杨千姿,2021:不同分辨率下青藏高原对大西洋经向翻转流影响的耦合模式研究.北京大学学报(自然科学版),571),121-131https://doi.org/10.13209/j.0479-8023.2020.092.

30.    陈志宏,杨海军2020:青藏高原对非洲北部降水影响的模拟研究。北京大学学报(自然科学版),565),835~843https://doi.org/10.13209/j.0479-8023.2020.063.

31.    Wen, Q., K. Doos, Z. Lu, Z. Han, and H. Yang, 2020: Investigating the role of the Tibetan Plateau in ENSO variability. J. Climate, 33, doi: 10.1175/JCLI-D-19-0422.1.

32.    Liu, Y., M. Lu, H. Yang, A. Duan, B. He, S. Yang and G. Wu, 2020: Land-Atmosphere-Ocean coupling associated with the Tibetan Plateau and its climate impact. National Science Review, 7, 534-552, doi: 10.1093/nsr/nwaa011.

33.    Wen, Q., and H. Yang, 2020: Investigating the role of the Tibetan Plateau in the formation of Pacific meridional overturning circulation. J. Climate, 33(9), 3603-3617, doi: 10.1175/JCLI-D-19-0206.1.

34.    Yang, H., and Q. Wen, 2020: Investigating the role of the Tibetan Plateau in the formation of Atlantic meridional overturning circulation. J. Climate, 33(9), 3585-3601, doi: 10.1175/JCLI-D-19-0205.1.

35.    Yang, H., X. Shen, J. Yao and Q. Wen, 2020: Portraying the impact of the Tibetan Plateau on global climate. J. Climate, 33(9), 3565-3583, doi: 10.1175/JCLI-D-18-0734.1.

36.    Wen, Q., J. Yao, K. Doos, and H. Yang, 2018: Decoding hosing and heating effects on global temperature and meridional circulations in a warming climate. J. Climate, 31(23), 9605-9623, doi: 10.1175/JCLI-D-18-0297.1.

37.    姚杰,温琴,沈星辰,邵星,杨海军2018青藏高原对全球大气温度和水汽分布的影响。北京大学学报(自然科学版),546),11791185doi10.13209/j.0479-8023.2018.085.

38.    Yang, Q., Y. Zhao, Q. Wen, J. Yao, and H. Yang, 2018: Understanding Bjerknes compensation in meridional heat transports and the role of freshwater in a warming climate. J. Climate, 31(12), 4791-4806, doi: 10.1175/JCLI-D-17-0587.1.

 

2017-2013 |

39.   Yang, H., Q. Wen, J. Yao, and Y. Wang, 2017: Bjerknes compensation in meridional heat transport under freshwater forcing and the role of climate feedback. J. Climate, 30(14), 5167-5185, doi: 10.1175/JCLI-D-16-0824.1

40.   Dai, H., H. Yang, and J. Yin, 2017: Roles of energy conservation and regional climate feedback in Bjerknes compensation: a coupled modeling study. Climate Dynamics, 49, 1513-1529, doi: 10.1007/s00382-016-3386-y.

41.   Zhao, Y., H. Yang, and Z. Liu, 2016: Assessing Bjerknes compensation for climate variability and its timescale dependence. J. Climate, 29(15), 5501-5512.

42.   Yang, H., Y. Zhao, and Z. Liu, 2016: Understanding Bjerknes compensation in atmosphere and ocean heat transports using a coupled box model. J. Climate, 29(6), 2145-2160, doi: 10.1175/JCLI-D-15-0281.1.

43.   Liu, Z., H. Yang, C. He, and Y. Zhao, 2016: A theory for Bjerknes compensation: the role of climate feedback. J. Climate, 29(1), 191-208. doi: 10.1175/JCLI-D-15-0227.1.

44.   Yang, H., Y. Zhao, Q. Li, and Z. Liu, 2015: Heat transport in atmosphere and ocean over the past 22,000 years. Nature Scientific Reports, 5: 16661. doi: 10.1038/srep16661.

45.   Yang, H., K. Wang, H. Dai, Y, Wang, and Q. Li, 2016: Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion. Climate Dynamics, 46(11), 3387-3403, doi: 10.1007/s00382-015-2774-z.

46.   Yang, H., and H. Dai, 2015: Effect of wind forcing on the meridional heat transport in a coupled model: equilibrium response. Climate Dynamics, 45(5): 1451-1470, doi: 10.1007/s00382-014-2393-0.

47.   Yang, H., Q. Li, K. Wang, Y. Sun and D. Sun, 2015: Decomposing the meridional heat transport in the climate system. Climate Dynamics, doi: 10.1007/s00382-014-2380-5, 44: 2751-2768.

48.   Wang, L., and H. Yang, 2014: The role of atmospheric teleconnection in the subtropical thermal forcing on the equatorial Pacific. Adv. Atmos. Sci., 31(4), 985–994, doi: 10.1007/s00376-013-3173-1.

49.   Huang, B., J. Zhu, and H. Yang, 2014: Mechanisms of Atlantic meridional overturning circulation (AMOC) variability in a coupled ocean--atmosphere GCM. Adv. Atmos. Sci., 31(2), 241-251, doi: 10.1007/s00376-013-3021-3.

50.   Wang, Y. X., H. Yang, and T. Furevik, 2013: What determines the amplitude of ENSO events? Atmospheric and Oceanic Science Letters. 6(2), 90-96.

51.   Yang, H., 2013: Assessing the meridional atmosphere and ocean energy transport in a varying climate. Chinese Science Bulletin, 58(15), 1737-1740, doi: 10.1007/s11434-01305665-x.

52.   Yang, H., Y. Wang, and Z. Liu, 2013: A modeling studies of the Bjerknes compensation in the meridional heat transport in a freshening ocean. Tellus A, 65, 18480, doi: 10.3402/tellusa.v65i0.18480.

53.    孙瑜,杨海军2015:全球地形影响大气和海洋经圈环流的耦合模式研究。北京大学学报(自然科学版),514),735744doi10.13209/j.0479-8023.2015.006.

54.    孙道勋,杨海军2015:温室气体变化数值模拟试验中全球降水和温度变化的迟滞效应。北京大学学报(自然科学版),514),763771doi10.13209/j.0479-8023.2015.004.

55.    李庆,杨海军2014:水球世界气候态与经向热量输送的数值模拟试验。北京大学学报(自然科学版),502),251262doi10.13209/j.0479-8023.2014.032.

56.    李昕容,杨海军,王宇星,2014:大西洋热盐环流减弱对热带太平洋气候平均态及年际变率的影响。北京大学学报(自然科学版),502),242250.

57.    王璐,杨海军2013:副热带太平洋海温异常对赤道海洋的影响。北京大学学报(自然科学版),495),791798.

 

2012-2008 |

58.   Yang, H., and L. Wang, 2011: Tropical oceanic response to extratropical thermal forcing in a coupled climate model: A comparison between the Atlantic and Pacific Oceans. J. Climate, 24, 3850-3866.

59.   Yang, H., and J. Zhu, 2011: Equilibrium thermal response timescale of global oceans. Geophys. Res. Lett., 38, L14711, doi: 10.1029/2011GL048076.

60.   Yang, H., and F. Wang, 2009: Revisiting the thermocline depth in the equatorial Pacific. J. Climate, 22, 3856-3863.

61.   Yang, H., F. Wang, and A. Sun, 2009: Understanding the ocean temperature change in global warming: the tropical Pacific. Tellus, 61A(3), 371-380.

62.    Yang, H., and Q. Zhang, 2008: Anatomizing the ocean role in ENSO changes under global warming. J. Climate, 21, doi: 10.1175/2008JCLI2324.1, 6539-6555.

63.    Zhang, Q., Y. Guan, and H. Yang, 2008: ENSO amplitude change in observation and coupled models. Adv. Atmos. Sci., 25(3), 361-366.

64.    Yang, H., and L. Wang, 2008: Estimating the nonlinear response of tropical ocean to extratropical forcing in a coupled climate model. Geophys. Res. Lett., 35, L15705, doi: 10.1029/2008GL034256.

65.   Su, J., H. Wang, H. Yang, H. Drange, Y. Gao, and M. Bentsen, 2008: Role of the meridional overturning circulation in the tropical SST changes. J. Climate, 21, 2019-2034.

66.    朱江,杨海军2012:北大西洋热盐环流对温室气体浓度变化的响应。 北京大学学报(自然科学版),482),231238.

67.    袁为,杨海军2010Madden-Julian 振荡对中国东南部冬季降水的调制。北京大学学报(自然科学版),462),207214.

68.    雷霁,杨海军2008:海洋垂直混合系数对大洋环流影响的敏感性研究。北京大学学报(自然科学版),446),864870.

 

2007-2003 |

69.   Zhang, Q., H. Yang, Y. Zhong, and D. Wang, 2005: An idealized study of the impact of extratropical climate change on ENSO. Climate Dynamics, 25, 869-880, doi: 10.1007 /s00382-005-0062-z.

70.   Yang, H. and Z. Liu, 2005: Tropical-extratropical climate interaction as revealed in idealized coupled climate model experiments. Climate Dynamics, 24, 863-879, doi: 10.1007/s00382-005-0021-8.

71.   Yang, H., H. Jiang, and B. Tan, 2005: Asymmetric impact of the North and South Pacific on the Equator in a coupled climate model. Geophys. Res. Lett., 32(5), L05604, doi: 10.1029/2004GL021925.

72.   Yang, H., Q. Zhang, Y. Zhong, S. Vavrus, and Z. Liu, 2005: How does extratropical warming affect ENSO? Geophys. Res. Lett., 32(1), L01702, doi: 10.1029/2004GL021624.

73.   Yang, H., Z. Liu and Q. Zhang, 2004: Tropical ocean decadal variability and resonance of planetary wave basin modes: II. Numerical study. J. Climate, 17, 1711-1721.

74.   Yang, H., Z. Liu and H. Wang, 2004: Influence of extratropical thermal and wind forcing on equatorial thermocline in an ocean GCM. J. Phys. Oceanogr., 34(1), 174-187.

75.   Yang, H. and Z. Liu, 2003: Basin modes in a tropical-extratropical basin. J. Phys. Oceanogr., 33(12), 2751-2763.

76.   Yang, H. and Q.Y. Liu, 2003: Forced Rossby wave in the northern South China Sea. Deep Sea Res.(I), 50, 917-926.

77.    Yang, H. and Q. Zhang, 2003: On the decadal and interdecadal variability in the Pacific Ocean. Adv. Atmos. Sci., 20(2), 173-184.

78.   Liu, Z. and H. Yang, 2003: Extratropical control on tropical climate, the atmospheric bridge and oceanic tunnel. Geophys. Res. Lett., 30(5), 1230, doi: 10.1029/2002GL016492.

79.   杨海军,刘秦玉,2003:缓变风场驱动下正压环流中的多结构。热带海洋学报,22(4)51-59.

 

2002-1998 |

80.   Yang, H., Q.Y. Liu, Z. Liu, D.X. Wang and X.B. Liu, 2002: A GCM study of the dynamics of the upper ocean circulation of the South China Sea. J. Geophys. Res., 107, doi: 10.1029/2001JC001084.

81.   Liu, Z., H. Yang and Q. Y. Liu, 2001: Regional dynamics of seasonal variability in the South China Sea. J. Phys. Oceanogr., 31(1), 272-284.

82.   Stephens, M., Z. Liu and H. Yang, 2001: Evolution of subduction planetary waves with application to north pacific decadal thermocline variability. J. Phys. Oceanogr., 31(7), 1733-1746.

83.   Liu, Q.Y., H. Yang and Z. Liu, 2001: Seasonal features of the Sverdrup circulation in the South China Sea. Progress in Natural Sciences, 11(3), 203-206.

84.   Liu, Q.Y., H. Yang and Q. Wang, 2000: Dynamic characteristics of seasonal thermocline in the deep sea region of South China Sea. Chinese. J. Oceanol. Limnol., 18(2), 104-109.

85.   Liu, Q.Y., H. Yang, W. Li and K. Nishiyama, 2000: Subtropical countercurrent and intraseasonal oscillation in the North Pacific. Proceedings of China-Japan Joint Symposium on Cooperative Study of Subtropical Circulation System. China Ocean Press, 125-134.

86.    Yang, H., Q.Y. Liu and X.J. Jia, 1999: On the upper oceanic heat budget in the South China Sea: Annual Cycle. Adv. Atmos. Sci., 16(4), 619-629.

87.   Yang, H., Q.Y. Liu and W. Li, 1998: An influence of bottom topography on the western boundary current. Acta Oceanographica Taiwanica, 37(1), 77-88.

88.   刘秦玉,杨海军,贾英来,甘子钧,2001:南海海面高度季节变化的数值模拟。海洋学报,23(2)9-17.

89.   刘秦玉,杨海军,鲍洪彤,李薇,2000:北太平洋副热带逆流的气候特征。大气科学,24(3)363-372.

90.   刘秦玉,杨海军,李薇,刘倬腾,2000:吕宋海峡上层纬向海流及质量输送。海洋学报,22(2)1-8.

91.    杨海军,刘秦玉,1998:南海上层水温分布季节特征。海洋与湖沼,29(5)501-507.

92.    杨海军,刘秦玉,1998:南海海洋环流研究综述。地球科学进展,13(4)364-368.

 

 

|  首页 | 人员 | 研究 | 教学 | 文章 | 画廊 |   复旦大学  ·  大气与海洋科学系  |  北京大学  ·  大气与海洋科学系 |

 

Copyright © 2017, Climate and Ocean Research Program, All Right Reserved ®

Last Updated: Tuesday, September 10, 2024